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Abstract

In this paper, we make exact analysis of the recurrence relations generalized from the
Tower of Hanoi problem of the form T'(n, &, 8) = mini<s<n{aT(n —t,e, B) + B S(t,3)},
where S(¢,3) = 2° — 1 is the optimal solution for the 3-peg Tower of Hanoi problem. It is
shown that when a and G are natural numbers and o > 2, the sequence of differences of
T(n,a,B)s, ie., T(n,a,B) —T(n—1,a, B), cousists of numbers of the form $2%a7 (3, j >
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0) lined in the increasing order.

1 Introduction

The Tower of Hanoi problem with 3 pegs was
invented by E. Lucas in 1883 [9]. In 1907, it
was generalized to the problem having 4 pegs
by H.E. Dudeney [3]. Since then the origi-
nal problem and its variants have not only
been used as an introductory example of re-
cursive algorithms, but have been also stud-
ied widely in computational research fields
[2,5,7,8,11-14]. Stockmeyer’s survey [13] lists
more than 200 references, not included arti-
cles in psychological journals and textbooks

in discrete mathematics. In the simplest case
with 3 pegs and n disks, the algorithm of first
moving the upper n — 1 disks to the inter-
mediate peg, then moving the bottom disk
to the peg of destination, and finally mov-
ing the remaining n — 1 disks to the destina-
tion, is the best possible and the total number
of moves is 2" — 1. Somewhat surprisingly,
for the general Tower of Hanoi problem with
k (> 4) pegs and n disks, the optimal solution
is not known yet. The best upper bound is
obtained by the algorithms by Frame [5] and
Stewart [11]. Their algorithms are rediscov-
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ered many times ([12] lists them). Further-
more, in (8], Klavzar et al. have shown that
seven different approaches to the multi-peg
Tower of Hanoi problem, which include the
ones by Frame and Stewart, are all equiva-
lent. On the other hand, the subexponential
lower bound was first proven by Szegedy [14]
and it was improved by Chen et al.[2]. Since
the upper bound is believed to be optimal, it
is called the “presumed optimal” solution.

The Stewart’s recursive algorithm for the
4-peg Tower of Hanoi is written as follows.
For 1 <t < n, consider the procedures of first
moving the top n—t disks to the intermediate
peg using the 4 pegs, moving the remaining
t disks to the destination using the available
3 pegs, and then moving the n — ¢ disks to
the destination with the 4 pegs. The algo-
rithm chooses the minimum one among them.
When the total number of moves is denoted
by S(n,4), the recurrence relation is written
as S(’l’l, 4) = minlStSn{2 S(n—t, 4)+S(t, 3)}
This is solved with the difference S(n,4) —
S(n—1,4) =271 for t;_; < n < t;, where t;
is the triangular number, i.e., t; = i(i + 1)/2.
It is also possible to obtain the closed formula
for S(n,4).

To clarify the combinatorial structures la-
tent in this type of recurrence relation, we
investigate the general recurrence relation
of the form T(n,a,) = min<p{aT(n —
t,o,8) + BS(t,3)} (n > 1),T(0,0,8) = 0,
where o and § are arbitrary natural numbers.
S(n,4) is then written as S(n,4) = T(n,2,1).

The main contribution of this paper is
to exactly solve this relation for all natural
numbers o and 8. Especially, suppose that
{an}n>1 is the integer sequence which consists
of numbers of the form 2o’ (i,j > 0) lined
in the increasing order. Then for a > 2, the
difference of T'(n, &, B)’s is written using this
sequence as T'(n, o, ) —T(n—1, e, B) = Ba,.
T(n,a, ) is then computed by summing up
the differences. We note that when o = 3,
an=1,2,3,4,6,8,9, 12, 16, 18, ---. These
numbers are called “3-smooth numbers” and
are explored in relation to the distribution of
prime numbers [6] and new number represen-
tations [1,4,10].

The remaining of the paper is organized
as follows: In Section 2, we state the main
results. In Section 3, the proof of the main
theorem is given. Some Tower of Hanoi vari-
ants are discussed in Section 4 and concluding
remarks are given in Section 5. Finally, Ap-
pendix follows.

2 Main Results

2.1 Linearity of T'(n,,3) on 3
We first show that T'(n, @, 8) is linear on 3.

Theorem 1 For any natural numbers o
and 8, T(n,a,3) is linear on 3. Namely,
T(n,a,8) = 8T(n,a,1) holds.

Proof of Theorem 1: By induction on n.
When n = 0, T(0,,8) = 0 = 8T(0,a,1).
Therefore, the equality holds. Next, suppose
that for n = k, the equality holds. By the def-
inition of T'(n, &, B) and by the assumption of
induction,

T(k+1,0,0)
= min {aT(k+1—ta,8)+85(3)}

1<t<k+1

= min {a8T(k+1—t,a,1)+BS(t3)}

1<t<k+1

= ﬁlSItnSl’?H{aT(k +1—t0,1)+ S(t3)}

BT(k+1,a,1).

Therefore, the linearity of T'(n,a,3) also
holds for n =k + 1.

This completes the proof of Theorem 1. O

We note that the linearity of T'(n,«, )
also holds for any real number 3.

2.2 Properties
and T'(n,q,1)

of AT(n,a,1)

Owing to Theorem 1, it is enough to com-
pute T(n,o,1) instead of T(n,a,B). We
consider the following recurrence relation for
T(n,a,l):

T(n,a,1) = min {aT(n—t,0,1)+S(,3)} (n > 1)

T(0,0,1) =0 (1)



Table 1: The values of tmin, T(n, 3,1), and AT(n,3,1)

n 112134 (5|67 8|9/10]117]12
tmin 11212331414 4]|5]|5 5 5
T(n,3,1) |1[3]6[10[16[24 (334561 79| 103|130
AT(n,3,1)[1]2[3|4 |6 |89 12]16|18] 24 | 27
Table 2: The values of tyin, T'(n,4,1), and AT(n,4,1)
n 112 3 | 4 5 6 7 8 91107 11 ] 12
o 1[2(23[3 |34 4 |45 45| 5 565656
T(n,4,1) [1[]3] 7 [11]19 [27] 4359 [ 75| 107 | 139 | 171
AT(n,4,1) 1|21 4 4 8 8116 |16 16| 32 | 32 | 32

Tables 1 and 2 show the values for
T(n,3,1) and T'(n,4,1) up to n < 12. In the
tables, tmin is the value of the argument with
which the right-hand side of the recurrence
relation takes the minimum and AT(n,q, 1)
is the differences of T'(n,a, 1)’s.

When o = 3, we observe that all the
numbers of the sequence {2'3'}, ;¢ appear
in the increasing order as the differences of
T(n,3,1)s. When a = 4, at some n’s,
T(n,4,1) takes the minimum at two values
of tmin, which is essentially different from the
case a = 3. For clarifying the characteristics
of AT(n, a, 1)’s, we define a set of number se-
quences as follows. Let p and ¢ be any natural
numbers and let {a,},>1 be the sequence of
numbers of the form p'¢’ (4,7 > 0) which are
lined in the increasing order. (Note that when
g = p* for some integer I, p'g?’s such that
p'¢’ = p'¢/ and (i,5) # (#,5') appear suc-
cessively.) Then the sequence of differences
of T(n,,1)’s is shown to be exactly of this
form {p'p’}. Namely, we show the following
theorem.

Theorem 2 Let o be a natural number and
let {an}n>1 be the number sequence which
consists of numbers of the form 2ia? (i,5 > 0)
lined in the increasing order. Then forn > 1,
the difference of T(n,a, 1)’s is written as fol-
lows.

1 (a=1)

T(n,1)=T(n-1,0,1) Z{ an (a>2)

Combining Theorems 1 and 2 leads to the

following corollary.

Corollary 1 Under the same condition with
Theorem 2, T'(n, o, 8) is computed as follows.

3 Gn (a:l, nZO)
T(n,a,B) = { BY e (@>2, n>1)

3 Proof of Theorem 2

When o = 1, Equation (1) takes the min-
imum at ¢ 1 with T'(n,1,1) T(n —
1,,1)+8(1,3) =T(n —1,1,1) + 1. There-
fore, T'(n,1,1) = T{(n - 1,1,1) = 1 holds.

When a > 2, the proof is divided into the
following two cases: When « is not of the
form 2' for any integer I > 1 (Case 1); and
otherwise (Case 2).

Case 1. We proceed by induction on n.

When n = 0, since T(0,e,1) = 0 and
T(1,0,1) =aT(0,a,1) +5(1,3) = 0+ (2* -
1) =1, T(,01) — T(0,0,1) = 1. On the
other hand, a; = 2°%° = 1. Therefore,
T(1,a,1) ~T(0,a,1) = a; holds.

When n > 1, for ¢ > 0, let k; be the inte-
ger such that ag, = 2°. We assume that the
following equation holds up to ;.
Tn,o,1)=T(n—1,0,1)=a, (1<n<k)

(2)
We extend this equation for n’s such that
ki +1 < n < kiyq. For brevity, define 7, :=
aT(n —t,o,1) + S(t,3). Then T(n,a,1) =
minlgtsn{Tn,t}.



Now we clarify with which argument T, ,
is minimized.
Lemma 1 Under the assumption of the in-
duction, the following statements hold.
(i) When ki < n < kip1 — 1, T(n,0,1) =
mini<;<n{Tn:} takes the minimum at t =
i+ 1.
(i) When n = ki, T(n,o1) =
miny<een{Tn} takes the minimum at t =
14 2.

The next lemma on the sequence {a,} =

{p'¢’} plays the crucial role to prove Lemma
1 and Theorem 2.

Lemma 2 Let p and q be any natural num-
bers such that ¢ > p > 2 and let {an}n>1 be
the sequence with numbers of the form pi¢’
(i, 7 = 0) lined in the increasing order. Then
the following statements hold.

(i) When q# ot for any integer I, for any n
such that p' < a, < p"*, ap = gan_(i11).-

(ii) When q = p* for some integer l, for any
i and n such that ap, = p*, Gpy1 = Gap_;.

A proof of Lemma 2 is given in Appendix.
Throughout this section, Lemma 2 is used
with (p, ¢) = (2, ).

Proof of Lemma 1: The difference T}, 141 —
T, is computed as follows.

Tht+1 = Tny

= {aT(n—(t+1),a,1)+S(t+1,3)}
—{aT(mn —t,a,1)+ S(t3)}

= —o{Tn—-t,a,1)=T(n—t—1,0,1)}
+ @ -1 - (2 -1)

= —aa,—+2' (by Assumption (2)). (3)

(i) When k; < n < k;13 —1, we first show that
for t < i+1, T, is monotonically decreasing.
At Equation (3), when ¢ < i+ 1, both —a,_;
and 2! take the maximums at ¢ = i. There-
fore,

Toj+1 — Tos —Qan_; +2°

<
< —aag,—; +2° (since k; < n)

Thus, T,,; is monotonically decreasing when
t<i+ 1.

When t > i+1, both a,_; and 2 take the
minimums at ¢ =i + 1. Therefore,

Toet1 —Tny =2 —0n_(ir1)+ 201
2 =0k, —1—(i+1) T Ok,
(since n < kiyy — 1)
= ~0,,,-1+ o, (by Lemma 2(i))
> 0.

Thus, 7, is monotonically increasing when
t > 1+ 1. Consequently, when k; < n <
kiy1—1, T4 takes the minimum at ¢t =i+ 1.

(ii) When n = k;;1, the argument is exactly
the same with the case n = k; in (i). So,
Tk,,,,+ takes the minimum at ¢t =7 + 2.

This completes the proof of Lemma 1. O
Now we are ready to prove Case 1 of Theo-
rem 2. It is further divided into two subcases:
When k; +1 <n < k;jy; — 1 (Case 1-1); and
when n = k41 (Case 1-2).
Case 1-1. By Lemmas 1 and 2, T(n,a, 1)
T(n—1,a,1) is computed for k; +1 < n
kiy1 — 1 as follows.
T(n,o,1) = T(n—1,0,1)
Tnjiv1 — Tn-1i41
afT(n—(GE+1),0,1) ~T(n—1— (i +1),
o, 1)} +S8(+1,3)—SGE+1,3)
= aan—(+1) (by Assumption (2))
= a, (by Lemma 2(i)).

<

Thus, Case 1-1 is shown.

Case 1-2. When n = k;;;, we should prove
T(kz'+1>04,1) - T(ki+1 -1 1) = Qkyyy (:
271}, By Lemma 1, T(k;11, o, 1) and T'(k;1 —
1,a,1) take the minimums at ¢ = ¢ + 2 and
t =1+ 1, respectively. Therefore,

T(kiy1,0,1) ~ T(kir1 — 1,0,1)

Teirrivz — Theipa—1,i+1

o{T(kiyr — (i +2),0,1) = T(kip — 1 -

(i+1),0,1)} +S(E+2,3) — 8(i +1,3)
— (2i+2 . 1) _ (2'i+1 _ 1) — 22'-5—1~

= —ag+41 + ag, (by Lemma 2(i)) Thus, Case 1-2 is shown and the proof for

0.

A

Case 1 is completed.



Case 2. Now o = 2! for some integer | > 1.
Similarly to Case 1, we proceed by induction
on n. For ¢ > 0, let k; be the largest index n
such that a, = 2%

When n = 0, the proof is exactly the same
with Case 1.

When n > 1, we assume that the following
equation holds up to k;.

T(n,a,1)—T(n-1,e,1)=a, (1<n<k)

We extend this equation upto k; +1 < n <
kiy1, ie., for n’s such that a, = 27!, Simi-
larly to Lemma 1, we clarify with which ar-
gument Tp,; is minimized.

Lemma 3 Under the assumption of the in-
duction, the following statements hold.

(i) When n = ki, T(n,a,1) = mini<z<n{Tn.}
takes the minimum at t =i + 1.

(it) When k;i+1 <n <k —1, T(n,a,1)
miny<s<n{Tns} takes the minimum at t
i+1,1+ 2.

(i) When n = kiy, T(n,a1)
miny<ycn{Tn:} takes the minimum at t
14 2.

Proof of Lemma 3: Similarly to Lemma
1, we compute the difference T3, 411 — Tpp =
—0ly_s + 2%,

(i) When n = k;, we first show that when
t < i+ 1, T,; is monotonically decreasing.
When ¢t < i+1, again both —a,_; and 2! take
the maximums at ¢ = i. Therefore,

1l

It

Tki,t-%-l - Tk@',t < —a Qe —i + 2

Thus, Tk, is monotonically increasing when
t > ¢+ 1. In all, when n = k;, T}, , takes the
minimum at ¢t =4 + 1.

(ii) When k; +1 < n < k41 — 1, we note that
ay, is equal to 27! constantly due to the def-
inition of k;. When ¢t < i + 1, both a,_; and
2! take the maximums at ¢ = ¢. Therefore,

Top1 = Tng < —Qap_+2°
—Gp41 + 2" (by Lemma 2(ii))

< —ap +20=0.

i

Thus, T, is monotonically decreasing when
t<i+ 1.

When t =i+ 1, T), ;11 — Tt is computed
as
2i+l

Tnire — Togsa —QQn—(i+1) +

It

—QA(n—1)—i + 2‘i+1
—a, + 27! (by Lemma 2(ii))
0.

i

Therefore, T5, ;40 = Tp 41 holds.

When ¢t > i+ 1, both —a,_; and 2! take
the minimums at t =7 + 2. Therefore,

Toir1 —Tngy 2 —0ap_(iv2) + 2it2
> —aa,_; + 202
= —age1 + 272 (by Lemma 2(ii))
> 0.

Thus, T, is monotonically increasing when
t>i+1. Inall, when k;+1 <n < kjy1 — 1,
Ty, takes the minimum at t =4+ 1, ¢+ 2.

= —Qk+1+ ax, (by Lemma 2(ii))iii) When n = k;,, the proof is the same

< 0.

Thus, T, is monotonically decreasing when
t<i+1.

When ¢ > ¢+ 1, both —a,_; and 2t take
the minimums at ¢ = 4 + 1. Therefore,

Thipor = Thip > —0@p,—y1) + 211
> —oay,_; + 20!

with the case (i).
This completes the proof of Lemma, 3.

Now we are ready to prove Case 2 of The-
orem 2, i.e., T(n,a,1) — T(n —1,,1) = a,
for ki+1 < n < ki+1. In this case, by Lemma
3(i), (ii), and (iii), we observe that T, , takes
the minimum at least at ¢t =4+ 2 and T,y ;
takes the minimum at least at ¢t = ¢+ 1. (For
all of the three cases, we choose such com-

—ay, + 2" (by Lemma 2(i1))mon arguments to simplify the computation.)

= 21421l 5,

Therefore, for k; +1 <n < ki,
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Figure 1: Variants of the Tower of Hanoi problem on graphs.

T(n,a,1)—T(n - 1,a,1)

Tn,i+2 - Tn—l,i+l

a{T(n—(i+2),0,1) —Tn—1-(i+1)

o, )} + (272 —1) = (2% - 1)
= 2

Therefore, the proof for Case 2 is shown.
This completes the proof of Theorem 2. 0

4 On Tower of Hanoi
Variants on Graphs

One of the motivation for considering the re-
currence relations for T'(n, o, 3) is because
they appear in some variants of the Tower
of Hanoi problem. For example, we consider
the Tower of Hanoi problem on the graphs
in Fig. 1, where pegs are located on all of
the vertices and disks are moved only through
the edges. The objective for the graph in Fig.
1(a) (and (b), resp.) is to move all the n disks
from A to C (and A to B, resp.). Then these
problems admit algorithms with the following
recurrence relations, respectively.

3Ti(n—1,3,2)+2 (n>2)
0, T1(1.32) =1

=3
S
vCO
S
I

T3(n,3,1) = min {3T2(n —¢,3,1) + S(¢,3)}
1<i<n

T»(0,3,1) =0

Therefore, the analysis of the recurrence re-
lations for T'(n, o, 8) could be used for these
types of Tower of Hanoi variants.

5 Concluding Remarks

We made exact analysis of the recurrence re-
lations generalized from the Tower of Hanoi
problem. The differences of T'(n, o, 3)’s had
"unexpectedly simple form such as {2'a/}. It
has to be noted that the results of this paper
are not the one to improve the bounds of the
original multi-peg Tower of Hanoi problem,
rather, the contribution should lie on clari-
fying the combinatorial structures in the set
of recurrence relations generalized from the
Stewart’s algorithm. Relations with number
theory, especially with smooth numbers and
the properties of the sequence {p'¢’} should
be further explored.
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A Proof of Lemma 2

In this appendix, we prove Lemma 2.

Lemma 2 Let p and g be any natural num-
bers such that ¢ > p > 2 and let {a,}n>1 be
the sequence with numbers of the form pi¢?
(i, 7 > 0) lined in the increasing order. Then
the following statements hold.

(i) When q# ot for any integer I, for any n
such that p* < a, < P, 4y = qan—(41).
(ii) When ¢ = p* for some integer I, for any
i and n such that a, = p*, apne1 = qGn_;.

In the proof of Lemma 2, we use the fol-
lowing lemma.

Lemma 4 Let p and q be natural num-
bers such that ¢ > p > 2 and let {an}tn>1
be the sequence with numbers of the form pi¢?
(i, 3 > 0) lined in the increasing order. Then
the following statements hold.

(i) When q # p* for any integer 1, for any
integer 7 > 0, |{an|¢? < an < ¢} =
max{i|i € N, p* < ¢/*1}.

(ii) When q = p' for some integer I, for
any integers j and k such that 7 > 0 and
0<k<i~1,

{an | an = pf¢’ = "} = j+ 1.

Proof of Lemma 4: (i) By induction on j.
We define I; = {a,|¢/ < a, < ¢/*'} and
i; =max{i|i € N, p* < ¢t}

When j = 0, I; = {a,]1 < an < g} =
{i|1 < p* < g}. Therefore, |Iy| = .

Next, assume that |I;| = 4;. Since I;1 =
{an| ¢! < an < ¢/*?} is the union of the two
sets {qa, |a, € I;} and {p']|i € N, ¢/*! <
pi < qj+2}’

| Zj+1]

1|+ {p'|i € N, ¢* < p’ < ¢}
= max{i|i €N, p' < ¢} +

Ho' |dt < p' < g2}
= {p'lieN, p' <p' < g™}
= ij+1.
Therefore, (i) is proven.
(ii) In this case, the numbers in the sequence
{p'¢?} are written as follows.
piqj = 1, p p2’ Tty pl_ly
v P P

pjl> pjl: Tt piH_k’ ) p(j+1)l_17

For any k such that 0 < k < l»— 1, since there
are j + 1 ways to compute p** using p and
g = p', p"** appears j + 1 times. Namely,
Han |ay = pkqj = P7l+k}| = 7+ 1 holds.

This completes the proof of Lemma 4. 0

Haanlan € L} + {p' |¢™! < ar < ¢}



Proof of Lemma 2: (i) By induction on 4.

When ¢ = 1, since ¢ > p, there is no a,
such that p° = 1 < a, < p' = p. Therefore,
the equality in (i) holds.

Now assume that for all n such that
Pl <a, <p°, 1 <5 <14, a, = qaps
holds. We show that for any N such that
P <ay <pt, ay = qan—41) holds. We di-
vide into two cases: When ay = ¢/ for some
integer j (Case 1); and otherwise (Case 2).

Case 1. When ay = ¢/, there exist i a,’s
between ¢! and ay = ¢/ by Lemma 4(i).
So, an—(i+1) is equal to ¢/~!. Therefore,
an = gan_(i+1) holds.

Case 2. When ay # ¢’ for any integer j > 0,
ay is divisible by p. So, there exists M such
that p~! < ap < p* and ay = pap,. Then
by the assumption of the induction, ay =
gap—;. Therefore, ay = pay = plgay—;) =
q(par—i). To prove ay = qan—(+1), it is
enough to show that pay_; = AN (i+1)-

By the definition of {a,} and since p' €
{anlay < a, < an},
Han lam/q < an < an/q}|
Han|am < an <an}—1
(N—M-1)-1
N—M-2. 4)
Using (4) and am/q = apm-i, an/q is
computed as an/q¢ = QM-y+(N-M-2)+1 =
an-(i+1y- Lherefore, ay = gay_(+1) holds.
This completes the proof of Lemma 2(i).

It

(ii) Suppose that ¢ = p' for some integer
l>1 Forj>0and 0 <k <1-1,let
G be the subsequence of {a,} which con-
sists of p/**’s. By Lemma 4(ii), note that
|Gjkl = j + 1. Furthermore, for j > 0, let G;
be the union of G’s for 0 <k <1 —1, ie,

-1
UG
k=0

{pjlv T pjlv Tt ij_k:a "'>pjl+k:7
c, UL -1y,

G,

I}

We note that in this notation, same numbers
are not identified as opposed to the usual def-
inition of a set.

Now, it is enough to show that for any
an = P"* in Gy, a1 = Qan-(jisk)-

Let an, = p"** be any elements in G; with
j =2 0and 0 < k <1—1. Suppose that
an is the tth element (p/"**) in G, where
1<t<j+ 1. Thenn and n — (jl+ k) are
explicitly written as follows.

i
D 1Gml+ G+ Dk +t

n =
m=1
j
= > ml+(G+1Dk+t
m=1
bii+1
= i(—32+—)+(j+1)lc+t.
Gi+1
n—{Gl+k) = J(]—2+~)+(j+l)k+t
—(Gl+k)
(j—1)j
= u+jk+t
2
-1
= D |Gl +jk+t.
m=1

Since ¢ is within 1 <t < j+1 and |Gj_14] =
J, the place ap_ik) is located in {G;} differs
in the following two cases: When 1 < ¢ < j
(Case 1); and when t = j + 1 (Case 2). We
consider each of these cases.

Case 1. When 1 < t < j, ap(ipk) IS
the ¢th element in G; 1. So, ap_(jiyn =
pYU=Dk Therefore, we obtain gan—(jick) =

PO = gk = g

Case 2. When t = j+ 1, a, is the last el-
ement in Gji. Then, an_(ix is the first
element in Gj_igt1, ie., pU~ DAL except
for the case a, = pUtDI-! ig the last ele-
ment in G;. We consider this exceptional
case later. Now since an_(jii) = plDiHe+1
Qn-Giag) = PpUDEERL - pilkl g
Note that the last equality holds because ay,
is the last p/'™* in Gy

We finally consider the exceptional case,
that is, when a,, = pU*tD=1 is the last element
in G;. In this case, k = [ — 1, 80 Gp—(ji+k) =
Any1-(G+1y- Since |Gy = (§ + 1) and apq
is the first element in Gjy1, Gpi1-(j41y IS
the first element in Gy, ie., p’*. Therefore,
Qan—Girr) = PP = pUt = appy.

This completes the proof of Lemma 2. O



