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Abstract. Given a directed graph D = (V, A) and a set of specified vertices S = {s1,...,54} C V with
|S| = d and a function f: S — N where N denotes the set of natural numbers, we present a necessary and
sufficient condition that there exist 37, ¢ f(si) arc-disjoint in-trees denoted by Ti,1, Ty, - - -
every ¢ = 1,...,d such that T} 1,...,T; #(s,;) are rooted at s; and each T; ; spans vertices from which s; is

> Ti g(s5) for

reachable. This generalizes the result of Edmonds [2], i.e., the necessary and sufficient condition that for a
directed graph D = (V, A) with a specified vertex s € V, there are k arc-disjoint in-trees rooted at s each
of which spans V. Furthermore, we extend another characterization of packing in-trees of Edmonds [1] to
the one in our case.

1 Introduction

Let D = (V, A) be a directed graph which may have
parallel arcs. A vertex v is said to be reachable from
a vertex u when there is a path from u to v. We
denote by e = uv an arc e whose tail and head are
u and v, respectively. If e = wv has no parallel
arc, we may simply write uv. For X, Y C V, let
(X, Y;D)={e=w e A:u € X,v € Y}. For
W C V, we write 7 (W; D) and 6§~ (W; D) instead
of 6(W,V\W, D) and §(V \ W, W; D), respectively.
For W C V, let D[W] be a subgraph of D induced
by W. For u,v € V, we denote by A(u,v; D) the
local arc connectivity from v to v in D, ie.,

Au,v; D)

=min{|6"(W;D):u g Wyoe WWW CV} (1)

We can see from (1) that foreveryu,v € V, W CV
withu ¢ W andv e W.

AMu,v; D) < |6~ (W;D)|. 2)

Notice that A(u,v;D) is equal to the maximum
number of arc-disjoint paths from v to v in D by
Menger’s Theorem (see Corollary 9.1b in Chapter 9
of [6]).

Background: In 1973, Edmonds gave a construc-
tive proof of the following theorem.

Theorem 1.1 ([2]) Given a directed graph D =
(V, A) with a specified vertex s € V, there exist k
arc-disjoint in-trees rooted at s each of which spans
V if and only if A(v, s; D) > k holds for every v €
V\{s}.

Alternative proofs are found in [5, 7]. In this paper,
we generalize this theorem as follows. We are given
a set of specified vertices S = {s1,...,84} C V
with |S| = d and a function f: § — N where N
denotes the set of natural numbers, and we will
present a necessary and sufficient condition that
there exist . . f(si) arc-disjoint in-trees denoted
by Ti1,Ti2,- .-, Ty g(s;) for every 4 = 1,...,d that
Ti15- -+ f(s;) are rooted at s; and each Tj ; spans
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Figure 1: (a) Directed graph D and function f. (b) Transformed graph D*.
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Figure 2: (a) T1,1. (b) T1,2. (C) Tz,l. (d) T3,1.

vertices from which s; is reachable. As shown be-
low, in the previous papers such as [6] which consid-
ered the generalization of Theorem 1.1 to the case
that allows D to have multiple specified vertices,
they assumed that every vertex s; € S is reachable
from every vertex v € V, while in this paper we do
not.

For example, given a directed graph D in Fig-
ure 1(a) with § = {s1,s2,s3} and f(s1) =
2,f(s2) = 1, f(s3) = 1, the set of vertices from
which s; is reachable is equal to {u,v,w, s}, and
the set of vertices from which sy is reachable is
equal to {u,v,w, 51, s2}, and the set of vertices from
which s3 is reachable is equal to {u,v,w,z,y,s3}.
‘We see that Tl,ly Tl,g, T2,1, and T3,1 shown in Fig—
ure 1(b) are arc-disjoint, and span vertices from
which s;, s2 and s3 are reachable, respectively.
Main result: Here we give the precise descrip-
tion of the main theorem in this paper. We first
introduce necessary notations. For each v € V,
R(v) denotes the set of vertices in S which are
reachable from v. For i = 1,...,d, V; denotes
the set of vertices in V from which s; is reachable.
D* = (V*, A*) is a directed graph obtained from D
by adding vertex s* and connecting s; to s* with
f(s:) parallel arcs (see Figure 1(b)).

Moreover, we define f(8') = 3, .o f(s:) for
each S’ C S. Then, the main theorem which we
will prove in this paper is described as follows.
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Theorem 1.2 Given a directed graph D = (V, A)
with a set of specified vertices § = {s1,...,s4} and
a function f: S — N, there exist f(S) arc-disjoint
in-trees denoted by Ti1,...,T; 5(s,) for every i =
1,...,d such that T3, ..., T; ¢(,,) are rooted at s;
and each T; ; spans V; if and only if A(v, s*; D*) >
f(R(v)) holds for every v € V.

Non-triviality: Theorem 1.2 of the case where
R(v) = S holds for every v € V is known (see Corol-
lary 53.1a in Chapter 53 of [6]).

Theorem 1.3 ([6]) There exist f(S) arc-disjoint
in-trees denoted by T}, ... ,Ti’,f(si) for every i =
1,...,d such that T} |, ... 7Ti’,f(si) are rooted at s;
and each T} ; spans V if and only if A(v,s*; D*) >
f(S) holds for every v € V.

(a) (b)

Figure 3: (a) Input directed graph D. (b) Transformed
graph D',

It apparently seems that Theorem 1.2 can be di-
rectly derived from Theorem 1.3 by transforming
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Figure 4: (a) Arc disjoint in-trees 7% ; and 7% ; for which removing arcs added (dotted arcs) results in 73,3 and
13,1 that satisfy the statement of Theorem 1.2. (b) Arc disjoint in-trees T7 ; and T3 ; for which removing arcs
added results in 71,1 and T>,1 that do not satisfy the statement. of Theorem 1.2.

a directed graph D = (V, A) by adding f(s;) arcs
from every vertex not in V; to s;. But this is not
the case. To see this, let us consider a directed
graph D = (V, A) in Figure 3(a) with S = {s1, 52}
and f(sl) = 17 f(sz) = 17 where ‘/1 = {u,'v,w,sl}
and Vo = {u,v,%, 52} hold. Now we add arcs zsj,
5281, wsy, and s152 to A so that R(v) = S holds
for every v € V (Figure 3(b)). Let IV be the re-
sulting graph. From Theorem 1.3, there exist two
arc-disjoint in-trees in D’ denoted by 77 ; and Ty
such that 77, and T, span V, and are rooted at
s1 and sy, respectively. However, removing arcs
that are added to obtain D’ from T} ; and T} ; does
not always produce the desired 77 ; and 75 such
that 735 is rooted at s; and spans V;, and T3
is rooted at sz and spans V. For 77, and T3,
which are respectively illustrated in the left side and
the right side of Figure 4(a), 73,1 and 75 ; obtained
from 77 ; and 77 ; by simply removing arcs added
to D (dotted arcs) satisfy the statement of Theo-
rem 1.2. However, it is not the case as is seen from
Figure 4(b) for 77 ; and T3 ; which are respectively
illustrated in the left side and the right side of Fig-
ure 4(b). Therefore, we can see that Theorem 1.2
can not be immediately derived from Theorem 1.3.
Motivation: In our recent paper [4], we consid-
ered the evacuation problem defined on dynamic
network and showed that this problem can be ef-
ficiently solved if the following property holds for
the underlying directed graph D° = (V°, A°) and a
sink s° € V° of a given dynamic network: For P =
{s1,...,84} which is a set of vertices in V° incident
to s°, there exists |6~ ({s°}; D°)| arc-disjoint in-
trees denoted by T} 1,... ,ﬂilﬁ({si}’{so};Du)l for ev-
eryi=1,...,dsuch that T} 1,... 7n’15({si},{so};Do)|
are rooted at s; and each T;; spans from ver-
tices s; is reachable. This property is the same as
Theorem 1.2 by setting D = D°\ {s°}, § = P,
and f(s;) = |6({s:},{s°}; D°)| for s; € P where
D\ {s°} denotes the directed graph obtained by
removing s° and arcs incident to s° from D°. In
[4], we proved Theorem 1.2 only for the case where
D is acyclic. In this paper, we extend the result in
[4] to the case where D° is allowed to have cycles.

w

2 Proof of Theorem 1.2

It is not difficult to see that “only if-part” holds.
We then prove the “if-part”. That is, we assume
that

Av,s*;D%) > f(R(v)) for every ve V.  (3)

‘We prove the theorem by induction on f(S). In the
case of f(S) = 1, the theorem clearly holds from
|S| = 1.

We consider the case of f(§) > 1. Let us fix
t€{1,...,d} and e; € §({s;},{s*}; D*). To prove
the theorem by induction on f(S), we will find an
in-tree in D* denoted by T = (W, B) with W C
Vi U {s*} such that T is rooted at s* and satisfies
(F0) and (F1).

(F0) 6~ ({s*};T) = {e}, i-e., T has only one arc ¢;

incident to s*.

(F1) For everyv € V,

f(R(’U)) - 17
f(R(v)),
where D \ A’ denotes the directed graph ob-

tained by removing A’ from D, i.e., D\ A’
(V,A\ A') for each A’ C A.

ifveV,

Av, 5D \B)Z{ ifoeV\Vi

If we can find an in-tree T rooted at s* which spans
V; and satisfies (F0) and (F1), T{V;] is an in-tree
rooted at s; since a path from every v € V; to s*
in T contains s; from (F0). Moreover, since T' does
not contain any arc s;s* for j # i from (F0),

f(sj)_17 1f.7211
f(si)s it j #1i.
Hence we can regard D* \ B as D* for the case of
f(8) — 1, and the proof is done by induction.

Here we remark that every in-tree rooted at s*
which spans V; dose not always satisfy (F0) and
(F1). For example, an in-tree in Figure 5(b) satisfies
(F0) and (F1) in a directed graph D* in Figure 5(a)
and spans V;, while an in-tree in Figure 5(c) de-
noted by T = (W, B) does not satisfy (F1) since
A(w,s*; D* \ B) = 0 holds.

16({s;}, {s"}; D \ B)] = {
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Figure 5: (a) D* with § = {s1,s2} and f(s1) = 1, f(s2) = 1. (b) Feasible in-tree. (c) Infeasible in-tree.

We call an in-tree T' = (W, B) with W C V;U{s*}
feasible if T is rooted at s* and satisfies (F0) and
(F1). For a feasible in-tree T = (W, B), we call an
arc e = zy eligible when e satisfies

(B0) ze V,\Wandyec W,
(E1) T = (W U {z}, BU {e}) is feasible.

That is, if there exists an eligible arc e for a feasible
in-tree T, we can extend 7' by adding e while main-
taining the feasibility of the augmented in-tree.
Novelty: Our proof that we can construct a fea-
sible in-tree that spans V; is based on the proof of
Theorem 1.1 of Lovéasz [5]. However, recall that in
Theorem 1.1, the local arc connectivity from every
v € V\{s} to s is assumed to be at least a constant k
which does not depend on ». Thus, given an in-tree
T = (W, B) rooted at s such that A(v,s; D\ B) >
k—1 holds and T does not span V, we can determine
whether an arc e can be added to T' while maintain-
ing A(v, s; D\ (BU{e})) > k—1 for every v € V\{s}
by simply testing whether [§~(V'; D\ (BU{e}))| is
at least k— 1 for every V/ C V with s € V. But in
our case, the condition of the local arc connectivity
from each v € V to s* in D* is not uniform. Hence,
given a feasible in-tree T = (W, B) which does not
span V;, to determine whether an arc e is eligible,
we have to test whether |6=(V'; D* \ (B U {e}))|
is at least min{f(R(v)) — 1:v € V; \ V'} and
min{ f(R(v)): v € V\(V;UV")} for every V' C V*
with s* € V’. This makes the proof of Theorem 1.2
much harder. To cope with this hardness, we will
introduce Lemma 2.3. The proof of Lemma 2.3 is
trivial for the case of Theorem 1.1 and Theorem 1.3.
i.e, the case where S is a singleton and every vertex
in S is reachable from every v € V, respectively.
However the proof of Lemma 2.3 for the case of
Theorem 1.2 is not trivial. The proof of Lemma 2.3
is the main contribution of this paper.

2.1 Construction of feasible in-tree
It is not difficult to see the following lemma.

Lemma 2.1 For every subset A’ of arcs in D*[V; U
{s*}) and v € V\V;, A(v, s*; D*\ A’) = A(v, s*; D*)

(b)

(0)

holds. That is, the local arc connectivity from v to
s* does not change by removing arcs in A’ from D*.

Now we will prove that there exists a feasible in-
tree T = (W, B) which spans V; by induction on
|W|. For the basis of induction, it holds that T =
({s*,si},{e;}) is feasible from Lemma 2.1.

Suppose that we have a feasible in-tree T =
(W, B) which does not span V;. Then, we will prove
that there always exists an eligible arc for T'. Since
T has to satisfy (F0), an arc whose head is s* is not
eligible. Furthermore, since §(V \ V;,V;;D*) = 0
follows from the definition of V; and W\ {s*} C V;
holds, for any e = zy € 6~ (W \ {s*}; D*\ B)

zeV,\W “4)
ie., every e € § (W \ {s*}; D* \ B) satisfies (E0).
Thus, to prove that there exists an eligible arc, it is
sufficient to prove that there exists an arc e = zy €
5~ (W\{s*}; D*\ B) such that T" = (WU {z}, BU
{e}) satisfies (F1).

It is obvious that 6=~ (W \ {s*}; D* \ B) # 0 since
T does not span V; and s; is reachable from every
v € V;\ W in D. However, not every arc in §~(W'\
{s*}; D* \ B) is eligible. Consider the case where
there exists v € V; with A(v, s*; D*\ B) = f(R(v))—
1. In this case, from (1), there must exist X C
V* with s* € X, v ¢ X, and |5~ (X;D* \ B)| =
f(R(w)) — 1, ie, 6~ (X;D*\ B) is the minimum v-
s* cut in D* \ B. Then, an arc e = gy € 6~ (W'\
{s*}; D* \ B) such that e € §—(X;D*\ B) is not
eligible since T = (W U {z}, BU {e}) violates (F1)
for v.

For example, assume that for D* in Figure 5(a),
we currently have a feasible in-tree T' = (W, B) such
that W = {s*,s1,u,w} and B = {s1s*,wsy1,us1}.
Figure 6(a) shows D* \ B. Suppose we add vu to
T and let 7" = (W', B’) be the resulting in-tree.
Then, A(v, s*; D* \ B') = 0, and hence T’ does not
satisfy (F1). That is, vu is not eligible. In this case,
letting X = {s*, 51,52, 4,2}, |07 (X; D*\B)|=1=
f(R(v)) — 1 and vu € 6~ (X; D* \ B) holds.

Here we give the precise description of the above
discussion. A vertex set X C V* with s* € X is
called critical when X satisfies the following condi-
tions.



Figure 6: (a) D* \ B. (b) X = {s*, 51,52, u,7}.

(CO) Vi\ (XuW)+#0.
(C1) |6 (X;D*\ B)| = f(R(v)) — 1 for some v €
\ X.

%

Lemma 2.2 Every e = zy € 6~ (W \ {s*}; D*\ B)
is eligible if there exists no critical set X C V* with
e € 6~ (X;D*\ B).

Proof: It is sufficient to prove that 77 = (W U
{z}, BU{e}) satisfies (F1). Suppose that for an arc
e = zy that satisfies the lemma assumption, 7" does
not satisfy (F1). Since from Lemma 2.1 the local
arc connectivity from every w € V \ 'V; to s* does
not change by removing arc in D[V;] (notice that e
is an arc in D[V;] from (4)), there exists v € V; such
that A(v, s*; D* \ (B U {e})) < f(R{v)) — 2. From
(1), there exists Y C V* with s* € Y andv ¢ ¥V
such that

167(Y; D"\ (BU{e}D))| < f(R()) - 2. (5)
We will show that Y satisfies (C0) and (C1), and
e € 6~ (Y;D* \ B) holds, which contradicts that e
satisfies the lemma assumption.

Since T satisfies (F1), [6-(Y;D* \ B)| >
F(R(v)) — 1 follows from (2). Thus, since
[6=(Y; D*\B)| — |6~ (Y;D*\ (BU{e}))| is at most
one, |6~ (Y; D*\ B)| must be equal to f(R(v)) —1
(i.e., Y satisfies (C1)) and e € 6~ (Y; D* \ B) holds
from (5).

Since z € V; \ W follows from (4) and ¢ ¢ ¥
follows from e € §—(Y; D*\ B), z € V; \ (Y UW)
holds. Thus, Y satisfies (C0). This completes the
proof.

‘We now consider the case where there exists a crit-
ical set. From now on, we prove that in this case,
there always exists an eligible arc e € 6§~ (W \
{s*}; D* \ B). To prove this, let us fix Xy as
a critical set which satisfies

| Xmax| = max{|X|: X is critical}, (6)

and let vmax € V;\ Xmax be a vertex satisfying (C1)
for Xmax, 1-€., Umax satisfies

|57(Xmax;D* \ B)| = f(R(vmax)) — 1. (7

From (1) and (F1),

)‘('Umaxa 5*;D* \B) = f(R(vmax)) -1 (8)

The following lemma concerning Xmax and vmax
plays a crucial role in our proof.

Lemma 2.3 Letting X .« and vy, be those de-
fined above, f(R(w)) = f(R(Umax)) bolds for every
w € Vi \ (Xmax UW).

Since the proof of Lemma 2.3 is long, we prove the
theorem by using this lemma before giving the proof
of Lemma 2.3. The proof of this lemma is given in
Section 2.2.

First we prove the following lemma.

Lemma 2.4 There exists an arc e = zy with = €
Vi\ (Xmax UW) and y € W\ Xppay in D* \ B.

Proof: Since a tail and a head of every e € B are
contained in W,

07 (Xmax UW; D*\ B) = § (Xyax UW; D*). (9)
Next we prove

IJ_(Xmax Uw; D*)| > f(R(vma.x)) (10)
From (C0), there exists w € V; \ (Xnax UW). From
(2), w ¢ Xmax UW and (3),

67 (Xmax UW;D%)| > Aw,s*; D*) > f(R(w)) .
e e e e
from (2) from (3)

Thus, (10) follows from Lemma 2.3. Hence, from
(7), (9) and (10)

167 (Xmax UW; D™\ B)| > |67 (Xmax; D™\ B)|.

From this inequality, we can see that there exists
at least one arc e = zy with £ € V* \ (Xpax UW)
and y € W \ Xinax. Hence, the lemma holds since
z € V; \ W follows from (4) and y € W \ Xpax-

Let an arc satisfying Lemma 2.4 be é = &§ with
% € Vi\(XmaxUW) and § € W\ Xy,ax (see Figure 7).
In order to prove that é is eligible, using Lemma 2.2,
we will prove that there exists no critical set Y such
that é € 6~ (Y; D*\ B).

Lemma 2.5 There exists no critical set' Y C V*
such that € € 67(Y; D* \ B).

Proof: We will show that if there exists such Y,
XmaxUY is critical and £ satisfies (C1) for XmaxUY .
This implies that | Xmax| < [Xmax UY| holds since



Figure 7: Nlustration of é.

§ € Y\ Xmnax follows from § € W\ Xax and § € Y,
which contradicts the maximality of X« in (6).

From é € 6~ (Y; D*\ B), # ¢ Y holds. Thus, % €
Vi \ (Xmax UY UW) holds since Z € V; \ (Xmax UW)
follows from the definition of é. Thus X UY
satisfies (C0) for X = Xppax UY.

What remains is to prove that |6~ (XmaxUY; D*\
B)| = f(R(#)) = 1, ie., (C1) holds. From % ¢
Xmmax UY, (2) and (F1),

I‘;_(Xma.x uY; D* \ B)|
> (3,5 D"\ B) > f(R(2)) —1.
from (2)

from (F1)

Thus, to prove that (C1) holds, it is sufficient to
show

107 (Xmaxe UY; D"\ B)| < f(R(£)) - 1. (11)

Since Y is critical, there exists we, € V;\Y satisfying
(C1) for Y, i.e,
[67(Y; D"\ B)| = f(R(wer)) — 1. (12)
Then, from the submodularity of |5~ (-)],
J(R(Umax)) — 1+ f(R(wer)) — 1
= 167 (Xmax; D"\ B)| + 167 (Y; D" \ B)|
by (7) and (12)
> [67 (Xmax NY; D™\ B)| (13)
116~ (X UY; D\ B)|.

Since vmax, Wer & Xmax NY follows from vmax ¢
Xmax and we, ¢ Y, we have

|6~ (Xmax NY;D*\ B)|
> max{A(Vmax, 8*; D* \ B), Mwer, s*;D* \ B)}
from (2)
> max{ f(R(vmax)), fF(R(wer))} — 1.
from (F1)

(14)

In the case of f(R(we)) > f(B(vmax)), from (13)
and (14), we straightforwardly have

07 (Xmaxe UY5.0%\ B)| < f(R(vmax)) — 1. (15)
In the case of f(R(wer)) < f(R(Vmax)), we have
|6_(Xma.x u Y;D* \ B)' < f(R(wcr)) —1 from (13)
and (14), and hence (15) follows from f(R(we)) <
S (B(vmax))-

Since & € V; \ (Xmax U W) from the definition of
é, f(R(2)) = f(R(Umax)) follows from Lemma 2.3.
Thus, (11) follows from (15). This completes the
proof.

Proof of Theorem 1.2. It is not difficult to see
that “only if-part” holds. We then prove “if-part”.
The proof is done by induction on f(S). In the case
of f(S) = 1, the theorem clearly holds from [§| = 1.

Assuming that there exists a feasible in-tree T =
(W, B) such that |W| =1> 2 and |W| < |V;|, we
will prove that there exists a feasible in-tree 7' =
(W', B') such that |W’| =l +1, i.e., there exists an
eligible arc for T'. If there exists no critical set, it
follows from Lemma 2.2 that any e = uv € §— (W
{s*},D* \ B) is eligible. In the case where there
exists a critical set, letting X, be a critical set
satisfying (6), we can see from Lemmas 2.4 and 2.5
that there exists an eligible arc e = zy with z €
Vi\ (XimaxUW) and y € W\ X 0. Hence, repeating
this process, we eventually have a feasible in-tree
T = (W, B) which spans V;. This completes the
proof.

2.2 Proof of Lemma 2.3

In this section, we prove Lemma 2.3. Lemma 2.3
can be proved by the following two lemmas.

From the definition of a feasible in-tree (F1),
AMw,s*; D* \ B) is at least f(R(w)) — 1 for every
w € V;. However, we can see from the following
lemma that in fact, A(w,s*;D* \ B) is equal to
F(R(w)) — 1 for every w € V.

Lemma 2.6 Letting T = (W, B) be a feasible in-
tree, A(w, s*; D* \ B) = f(R(w)) — 1 for every w €

i

Proof: From the way of construction of D* and
the definition of R(-), every set of f(R(w)) arc-
disjoint paths from w to s* in D* use all arcs in
5(R(w), {s*}; D*). From (F0), |6(R(w), {s"}; D" \
B)| = f(R(w))—1 follows. Thus, A(w, s*; D*\B) <
F(R(w))— 1 holds since A(w, s*; D* \ B) is equal to
the maximum number of arc-disjoint paths from w
to s* in D* \ B. The lemma follows from (F1).



Lemma 2.7 Let X, be a critical set satisfying
(6) and vmax be a vertex satisfying (C1) for Xmax-
Then, for every w € V; \ (Xmax UW), A(w, s*; D*\
B) = A(¥max, 8*; D* \ B).

Proof: We first prove that for every w € V; \
(Xmax U W)

Aw, s*; D"\ B) < AMtmax, s"; D*\ B).  (16)
Since w ¢ Xmax follows from w € V; \ (Xmax U W),

F(R(vmax)) — 1
15" (Xma D \ B)| > Aw, 5% D" \ B).
from (7)

(17)

from (2)

This inequality and (8) imply (16).
To prove the lemma, we next show that if there
exists w € V; \ (Xmax U W) such that

AMw, s*; D*\ B) < M¥max,s*; D*\ B), (18)

there exists a critical set X 2 Xyax, which contra-
dicts the maximality of X,,«. Let us fix w as a
vertex satisfying (18) and

U={ueV*'\ Xnax: R(u) C R(w)},
P = Xma.x U (V* \ (Xma.x U U))

(19)
(20)

Notice that w € U follows from (19). Then, we will
prove

(U0) vmax € P,
(U1) |6~ (P; D\ B)| = f(R(w)) ~ 1.

(U0) implies [Xmax| < |P] since vmax & Xmax fol-
lows from the definition of vpmax such that vy €
Vi \ Xiax and Xpax € P follows from (20). (U1)
implies that P is critical from the following two
reasons:

e s* € P follows from s* € Xmax and (20).

e w e V;\ (PUW) holds since (i) w ¢ W follows
from w € V; \ (Xmax UW), and (i) w ¢ P
follows from w ¢ Xmax and w € U and (20).

This contradicts the maximality of Xy, in (6).

Now let us prove (U0). It is sufficient to prove
Umax & U since vmax ¢ U Implies vmax € V* \
(Xmax UU) from vmax & Xmax, and hence vmax € P
follows from (20). To prove vmax ¢ U, we will show
R(Vmax) € R(w) since this implies vy ¢ U from
(19). Assuming R(vmax) € R(w), from the defini-
tion of f(-),

J(B(tmax)) < f(R(w)). (21)

From (F1), (21) and (8),
Aw, s*; D*\ B)
> f(B(w)) =1 (from (F1))
> f(R(max)) —1 (from (21))
= A(VUmax, 8" ; D*\ B) (from (8)).

This contradicts (18). Thus, (U0) holds.
Next we prove (Ul). We first show

6(P;D*\ B) C 6~ (Xma; D*\ B).  (22)

To prove (22), from (20}, it is sufficient to prove
8(U\ Xmax, V¥ \ (Xmax UU); D*\ B) =0, (23)

since from (U \ Xmax) U (V*\ (Xmax U U)) = V*\
Xmax, (23) implies (22) (see Figure 8). Assuming
that there exists an arc e = zy in the arc set of
the left hand side of (23), R(y) C R(z) follows from
the definition of R(-). From (19), z € U implies
R(z) C R(w), and also y ¢ U implies R(y) € R(w).
This contradicts R(y) € R(z). Thus, (23) holds.

...............................................
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Figure 8: Illustration of (23)

From now on, we prove (Ul) by using (22). Re-
calling that w ¢ P follows from w ¢ Xmax, w € U
and (20),

|67 (P; D*\ B)| > Mw,s™; D"\ B) > f(R(w)) — 1.
from (F1)

from (2)

Thus, to prove (Ul), it is sufficient to prove
that |6~ (P;D* \ B)] < f(R(w)) — 1. Assuming
|67 (P; D*\ B)| > f(R(w)) -1,
|67 (Xmas; D™\ B)\ 6~ (P; D™\ B)|
=107 (Xmax; D"\ B)| — |67 (P; D* \ B)
by (22)
= (f (B(vmax)) — 1) =67 (P; D" \ B)|
by (7)
< (F(B(vmax)) — 1) - (F(R(w)) — 1)
by the assumption made above

= f(R(vmax)) — f(B(w)).

(24)



However, as will be shown below, (24) contradicts
that there exist f(R(vmax)) — 1 arc-disjoint paths
from vmax to s* in D*\ B. To prove this statement,
we prove

(S0) there exist at most f(R(w)) — 1 arc-disjoint
paths from vpyayx to s* in D*\ B which use arcs
in §=(P; D*\ B).

(S0) implies that there exist less than f(R(vmax))—1

arc-disjoint paths from vmax to s* since

e the number of arc-disjoint paths from vma, t0
s* in D*\ B that use arcs in 6~ (Xmax; D*\ B)\
§7(P; D*\B) isless than f{R{vmax))— f(R(w))
from (24), and

o the number of arc-disjoint paths from vy, to
s* in D* \ B that use arcs in 6~ (P; D*\ B) is
at most f(R(w)) — 1 from (S0).

Here we prove (S0). Let H be the set of
heads of all arcs in 6 (P;D* \ B). If we can
prove (Upcp R(R)) € R(w), (S0) holds since
|6(R(w),{s*}; D*\ B)| = f(R(w)) — 1 follows from
the definition of D* and (F0). Assume that there
exist 55 € (UpegR(B) \ R(w) and e = zy €
8~ (P; D* \ B) such that s; € R(y). Notice that
e € 7 (P; D*\ B) implies z ¢ P, and hence z ¢ P
implies € U from (20). Thus, since R(z) C R(w)
follows from z € U and R(y) C R(z) follows from
the definition of R(-), s; € R(y) implies s; € R(w).
This contradicts s; € (U, <y B(h))\R(w), and com-
pletes the proof of (S0). Hence (U1) is proved by
(S0), and this completes the proof of the lemma.

Proof of Lemma 2.3. For every w € V; \ (Xmax U
w),

f(R(w))—lf Alw, s*; D*\ B) = AMVmax, s*; D* \ B).

from Lemma 2.6 from Lemma 2.7

The lemma follows from this equality and (8).

3 Another Characterization

Edmonds [1] showed the following another charac-
terization of packing in-trees. For directed graphs
Dy = (W1, By) and Dy = (Wa, By), the union of
Dy and D, is defined as D3 = (W; UWa, By U Bz).
‘We call a subgraph T of D tree when T has no cycle
in the graph obtained by ignoring the direction of
arcs of D. Here we define a feasible set of k trees
T in D with specified vertex s € V as a set of k
arc-disjoint trees such that each tree spans V and
for everyv eV

k,

srRnl={ g fus v\

ifv=s,

where F' is the union of k arc-disjoint trees in 7.

Theorem 3.1 ([1]) Given a directed graph D =
(V, A) with a specified vertex s € V, there exists a
feasible set of k trees if and only if Av,s; D) > k
holds for every v € V' \ {s}.

We extend this characterization to the one in our
case as follows. Here we define a feasible set of
f(S) subtrees T* in D* as a set of f(S) arc-
disjoint trees denoted by Ti‘:l,’l“ifQ,...,Tiff( 5) for
every i = 1,...,d such that each T, spans V;U{s*}
and for every v € V

oy [ SE@), ivev,
kil ={ ]

if v = %,

where F* is the union of f(S) trees in 7.

Since the proof of the following theorem is based
on the proof of Theorem 3.1 of Gabow (see Corol-
lary 2.1 in [3]), we omit the details.

Theorem 3.2 Given a directed graph D = (V, A)
with a set of specified vertices S = {s1,...,54} and
a function f: § — N, there exists a feasible set of
f(S) subtrees if and only if A(v, s*; D*) > f(R(v))
holds for every v € V.
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