BN LS SRS 2008—AL—118 (8)
IPSJ SIG Technical Report 200875727

R FRERMEICN TS A*7ILT) XL

B o NI Eh ki
FERZR LB GR AT FR

BIE: RRMREREHEER, A5 7 G, &le = (v,w) BT 3IELER
REBERL c.(t) (U t i3 v DHBERED, fhrs, #Brid EHFERL L D5X 50
LB, Bl ICs hOHREL dICEIET 2 X TORBECREZIETSC
oAb n, HHRNTRERME (. €8 O—RtLkoTs.

C ORI U, Dijkstra EDHERIR (Dreyfus '69) MMERENTLUE, #7140
FRIC D BMERICEED L TEREE LWAENNSNEh o Tehy, ARt
IC—E A7)V Y ALEZREL, THICEOIAL LT, milEEHN3 ALT
7)Y XL (Goldberg and Harrelson '05) O—f#{tt 5% 3.

A* Algorithm for the time-dependent shortest path problem

Liang Zhao, Tatsuya Ohshima, ‘Hiroshi Nagamochi
Graduate School of Informatics, Kyoto University

Abstract: Given a directed graph G, a nonnegative transit-time function c(f)
for each edge e = (v, w) (where t is the time to leave v), a source node s,
a destination node d and a departure time ¢, the time-dependent shortest
path problem asks to find an s, t-path that leaves s at time #p and minimizes
the arrival time at d. This formulation generalizes the classical shortest path
problem (with constant c.) and can further cover the time-variable case.

For near 40 years since the generalized Dijkstra algorithm was proposed
(Dreyfus '69), there was no significant advancement despite of many studies.
This paper presents a fresh generalized A* algorithm and, as an application,
gives a generalization of the ALT algorithm (Goldberg and Harrelson '05) too.

1 Introduction

The shortest path problem is a classical problem that appears in every book on combinatorial
optimization. It has countless applications and since 1950s numerous algorithms have been
proposed so far (see, e.g., [1]), including the well-known Dijkstra algorithm. However, (partly
because new improvement becomes fairly difficult), recently researchers began to study variants

of the problem, which include the time-dependent generalization.

Given a directed graph G = (V,E), a nonnegative transit-time function c,(t) for each edge
e = (v,w) € E (where ¢ is the time to leave v), a source node s € V, a destination node d € V and
a departure time to, the time-dependent shortest path problem asks to find an s, t-path that leaves s
at time o and minimized the arrival time at d (see Figure 1 for an illustration). For simplicity,
we suppose the domain of definition for all ¢,(t) is R* (i.e. the set of nonnegative reals), but our
algorithms work for the discrete version too. We also assume the time complexity to calculate
a c¢(f) is bounded by some constant @. Without loss of generality, we suppose d is reachable
from s. Notice undirected graphs can be treated by replacing each (undirected) edge with two
reverse directed edges. This formulation generalizes the classical shortest path problem (with
constant c,(t) and to). It can further handle time-variable edge costs, thus has more applications
than the classical one, which is also referred to as the static problem in contrast.

transit-time for edge e

Figure1 An illustration of the time-dependent shortest path problem. The difference from
the classical (static) problem is that the edge length is generalized from a constant to a
time-variable function (hence a departure time f; at the source s is also needed as an input).

Actually this problem is not new. Cook and Halsey [2] considered it and gave a Dynamic-
Programming algorithm which is not polynomial-time at all. Dreyfus [4] then suggested a
(polynomial-time) straightforward generalization of the Dijkstra algorithm (see also Section 2).
However, he did not notice that it works correctly only for instances satisfying the FIFO (First-In
First-Out) property, i.e., for any edge e = (v,w) and #; < #,, it holds that t; + c,(t;) < t; + C.(f2)
(in other words, the arrival-time function ¢ + c,(t) is nondecreasing). With this property, we can
ensure that there is no cycle of negative transit-time, hence a simple optimal solution exists.
This was pointed out and discussed later by a number of studies [7, 10, 13].

On the other hand, the general problem without the FIFO constraint is NP-hard if waiting at
nodes is not allowed ([12, 14]). Orda and Rom [13] showed that, however, if waiting at nodes
is allowed (which is natural in transportation systems), then any instance can be converted to
an equivalent instance that satisfies the FIFO property (hence no waiting is needed), and that
can be done in polynomial time (if c,(f) can be calculated in polynomial time). Thus in the
following, we will only consider instances that satisfy the FIFO property.

Even with the FIFO constraint, unlike the static case, studies are not rich. During the past
near 40 years after Dreyfus’s proposal of the generalized Dijkstra algorithm, despite of many
studies (e.g., [3, 5,7, 9, 10, 13, 14]), there was no significant advancement in solving the problem
more efficiently. In this paper, we give a fresh algorithm that generalizes the A* algorithm [8] for

the static problem. Unlike the generalized Dijkstra algorithm, this generalization is not trivial,
see Section 2. We note that Kanoulas et al. [9] considered, for piecewise linear functions, a
slightly-generalized A* algorithm, which we will discuss later in Section 2 too. Furthermore, as
an application of our algorithm, in Section 3 we will give a generalization of the ALT algorithm
([6]) that is based on the static A* algorithm and is faster than the Dijkstra algorithm using
preprocessing. Thus we have found the first algorithm for the time-dependent problem that
speeds up the calculation using preprocessing, which is reported to be several times faster than
the generalized Dijkstra algorithm. Finally we conclude in Section 4.

2 A* algorithm for the time-dependent shortest path problem

For ease of understanding, let us start from the classical and well-known Dijkstra algorithm.

Suppose c.(t) = c. is a constant for each edge e and ¢, = 0 (the value of t; is not important in this
static case), the Dijkstra algorithm tries to find a shortest s, d-path in a greedy manner. Let p(v)
denote the precedent node of a node v in the shortest s, v-path found. The Dijkstra algorithm
maintains for each node v a status(v) € {“unlabeled”, “labeled”, “finished”} and a distance label
8(v). At the beginning, g(s) is set to 0 and all status(v) are initialized to “unlabeled” except that
s is “labeled”. Then it repeatedly find a “labeld” node v with the smallest g(v) (such v is called
the active node) until v = d; then it tries to relax all non-“finished” neighbours w of v, i.e., if
status(w) = “unlabeled” then set it to “labeled” and let g(w) = ¢(v) + c(ou), P(w) = v; otherwise
status(w) = “labeled”, then let g(w) = g(v) + Cow), p(w) = v if g(w) > g(v) + cuw); after all these
have done, set status(v) to “finished” and continue. See Table 1 for the pseudo-code.

Table1 Pseudo-code of the Dijkstra algorithm for the (static) shortest path problem.

1 | status(s) := “labeled”, g(s) := 0, status(v) := “unlabeled” for all v # s
2 | Let v be a “labeled” node with the smallest g(v) (the active node). IF v = d GOTO 11
3 | FOR all edges (v, w) DO
4 IF status(w) = “unlabeled” THEN
5 status(w) := “labeled”, g(w) := g(v) + c(w), P(W) := v
6 ELSE IF status(w) = “labeled” AND g(w) > g(v) + ¢(y,w) THEN
7 8w) := g(v) + c(ow), p(w) :=v
8 END IF
9 | DONE
10 | status(v) := “finished”. GOTO 2
11 | OUTPUT g(d) and the s, d-path found (i.e. the reverse of d,p(d), p(p(d)), ..., s).

The A* algorithm follows the same fashion except that it employs an estimator h(v) for all v
and chooses the active node by the smallest g(v) + h(v). Notice that how to determine h(v) is
not part of the A* algorithm. It must be obtained by some other method, and the choice of &

determines the correctness and the efficiency of the A* algorithm (a good lower-bound on the
v, d-distance is preferred). Clearly the Dijkstra algorithm is a special case with i = 0.

Table 2 Pseudo-code of the A* algorithm for the static problem. Notice that the Dijkstra
algorithm is a special case of 1 = 0. For general /1, however, the correctness is not guaranteed.

(same as Table 1)

2 | Let v be a “labeled” node with the smallest g(v) + h(v). IF v = d GOTO 11

(same as Table 1)

Now we are ready to describe our generalized A* algorithm. It generalizes h(v) by the time-

dependent version h(v, t), where t is the time at node v. Thus in Table 3, we use h(v, g(v)) to

replace h(v). Notice the rule for choosing the active node has been changed in addition.

N =

Table 3 Pseudo-code of our A* algorithm for the time-dependent shortest path problem.

status(s) := “labeled”, g(s) := ty, status(v) := “unlabeled” for all v # s
Let v be a “labeled” node with the smallest g(v) + h(v, g(v)). In the case that there are
multiple candidates, choose one with the smallest g(v). IF v = d GOTO 11
FOR all edges (v, w) DO
IF status(w) is “unlabeled” THEN
status(w) := “labeled”, g(w) := g(v) + ¢(vw)(8(v)), p(w) := v
ELSE IF status(w) is “labeled” AND g(w) > g(v) + ¢(s,1)(g(v)) THEN
8() = g(0) + Coy(8(0)), pw) := v
END IF
DONE
status(v) := “finished”. GOTO 2
OUTPUT g(d) and the s, d-path found (i.e. the reverse of d, p(d), p(p(d)), . . ., s).

In general, the above algorithm may fail to find an optimal solution. In the next theorem, we

give two sufficient (but reasonable) conditions for the correctness.

Theorem 1 Given an instance (G, ¢, s, d, tp) of the time-dependent shortest path problem such
that satisfies the FIFO property and d is reachable from s, the generalized A* algorithm in Table 3
finds an optimal solution if & satisfies the next conditions.

o (FIFO Condition) For all nodes v and t; < #,, t; + h(v, t1) < t2 + (v, t5).

(Triangle Condition) For all edges e = (v, w) and t, h(v, t) < c.(f) + h(w, t + c(t)).

Before going to the proof, we remark that the Triangle Condition (illustrated in Figure 2) is
a natural generalization from the classical A* algorithm, whereas the FIFO Condition is only
available in the time-dependent case. The generalized Dijkstra algorithm is nothing but the

75‘7

simplest case with & = 0, and the generalization of Kanoulas et al. [9], on the other hand, simply
uses a constant function h(v, t) = h(v), thus it is also a simple special-case of our algorithm.

time: t+c, (£)
h(w,t+c,(2)

Figure 2 An illustration of the Triangle Condition for function k. Roughly speaking, it
means the supposed transit-time h(v,) from v to d is no more than c,(f) + h(w, t + c.(£), i.e.
the supposed transit-time of a v,d-path v — w ~» d. Notice h(w, t + c.(t) is the supposed
transit-time from w to d by leaving w at time ¢ + c.(t).

It is easy to see the next lemma by the Triangle Condition (by induction on k).

Lemma1l Let P = v3,v,,...,v; be a path and t be a departure time at v;. Define 0; = 0 and
0 = ’];i Cwjop)(t + 0}) be the transit-time from v; to v;, i = 2,..., k. Then it holds that

h(vy,t) < ok + h(vg, t + o).
(The Triangle Condition is the case of k = 2.) m

Proof (for Theorem 1). We show by induction that, every active node v must get the optimal
distance label, i.e., the earliest arrival time at v for leaving s at time to. Obviously this will prove
the theorem (notice we have supposed d is reachable from s).

Let v be an active node and consider when v is active. If v = s, we are done. Otherwise let
P be a simple optimal s, v-path (it exists!) and w be the first node on P such that status(w) #
“finished”. Clearly w must exist and w # s (it can be v), see Figure 3 for an illustration.

"finished" nodes v (the active node)

w (the first non-"finished" node)

Figure 3 An illustration of the proof for Theorem 1 where an optimal s, v-path is being considered.

Let g* denote the optimal distance (i.e. the earliest arrival time). It is obvious that g(w) = ¢*(w)
because w was relaxed when the precedent node u of w was active and g(u) = g*(u) (by the

induction). Let 0 = g*(v) — g*(w) be the shortest transit-time from w to v with departure time
§"(w) (notice ¢ > 0). By applying Lemma 1 to the w, v-path on P with t = g*(w), we have

h(w, g'(w)) < o +h(v,g' W) +0) = §'(v) - &' W) +h(g" (V).

That is equivalent to
§'(w) +h(w, g'(w)) < &'(v) +h(w, g"(v))-

Then, since v is the active node (thus has the smallest g(v) + h(v, g(v))), we have
8(v) + h(v,8(v)) < g(w) +h(w, g(w)) = g'w)+hw,g'W)) < &) +h(w,g'w@). (1)
On the other hand, by the FIFO Condition and g*(v) < g(v) (the optimality of g*), we have
§'(v) +h(v,8'(v)) < () +h(v, g(v)). @
Therefore we get the next fact by combining (1) and (2).
8(v) +h(v,g(v)) < gw)+h(w,gw)) = &'(w)+h(w,g'W)) < &) +h(v, §(v)).

This means the equalities hold, hence g(v) + h(v, g(v)) = g(w) + h(w, g(w)). Then by our choice
of the active node, g(v) < g(w) must hold. Thus g(v) < ¢g*(w) < g*(v), hence g(v) = ¢*(v). n

Remark 1. We remark that, analogously to the static version, an h with h(d, t) = 0 implies
h(v,t) is a lower bound on the shortest transit-time from v to d with departure time g(v) (by
Lemma 1). Moreover, it is not difficult to show that with an h satisfying h(d,t) = 0 and h > 0,
the search space (the set of active nodes) of the generalized A* algorithm is no bigger than that
of the generalized Dijkstra algorithm. Using this observation, we will give an algorithm in the
next section that is (practically) faster than the generalized Dijkstra algorithm.

Remark 2. We note the two Conditions and the way to choose the active nodes are reasonable
in the meaning that without one of them, we can find examples for which the A* algorithm may
fail to find an optimal solution. This is not difficult but we omit it due to the page limit.

3 An application: the generalized ALT algorithm

Itis easy to see that the time complexity of the generalized Dijkstra algorithm is O(n log 1+ ma)
by using a Fibonacci heap (we note it was O((m +nlog n)a) in [5]), where m, n, a are the number
of edges, the number of nodes, and the time complexity to calculate c,(t), respectively. While
we cannot improve this theoretical bound, let us give a practically faster algorithm that is based
on our A* algorithm and generalizes the (static) landmark-based ALT algorithm [6].

The ALT algorithm is such an algorithm that is supposed to answer (unknown) shortest-path
queries for a known graph. This means we can preprocess the graph beforehand and use it to
answer a query faster than a normal calculation by, e.g., the Dijkstra algorithm. Of course there

is a trivial method of saving solutions for all possible queries and answer a query in O(1) time,
but the n? order (for the static case) is big (if not impossible) for large graphs, e.g., usually a
road network is sparse (i.e., m < kn for some small k) and has several millions of nodes. So
researchers are seeking efficient algorithms that uses O(n) storage, see [15] for a review. While
this is an extremely hot topic for the static problem these several years, for the time-dependent
case, as far as we know, there was no proposal before our work.

Now let us describe the detail of our generalized ALT algorithm. Let 7*(v, w, t) denote the
shortest transit-time from a node v to another node w with departure time ¢ (hence we want to
find an s, d-path of transit-time 7*(s, d, t5)). Suppose we have a node z and values 7*(z, v, t) for
all nodes v and all ¢ (z is called a landmark). Also suppose we can calculate a 7 (if exists) that

f = max{t' : ¥ +7T°(z,0,¢) <t}

In other words, £ is the latest departure time in order to get v before time (from z). Define h by

ho(o,8) = { max{t*(z,d,f) - v(z,v,), 0} if fexis?s, o _ 3
0 otherwise (i.e., f does not exist).

It is clear that h,(d,t) = 0 and F, > 0. Actually this definition is a generalization from the static
case, i.e., h, is an estimation (a lower bound) on the v,d transit-time, which is no shorter than
the right side of (3) (by the triangle inequality due to the optimality of 7*). Moreover, we can
show that h, satisfies the FIFO Condition and the Triangle Condition at the same time, too. The
proof is not trivial nor difficult, but due to the page limit, we omit it in this paper. We note it is
important to choose £ to be the maximum.

We still have to show how to calculate #, which usually is difficult if there is no explicit
expression for 7°(z,v,t). Moreover, in general it is difficult to hold all values of 7*(z,v,t).
Fortunately, however, we can show that sampling of time works, i.e., we can calculate and hold
values 7°(z,v, t;) only for some t; < t, < ... < t; and define f, if it exists, by

f = max{t;: t; + (2,0, £;) < 8.

Again, we can show the function #, defined by (3) with the above f satisfies the FIFO Condition,
the Triangle Condition, and h,(d,t) = 0, h, > 0. Moreover, we can employ more than one
landmarks to get a better estimation (notice the maximum of all h,s works). Applying this
generalized ALT algorithm to a number of road networks (where 320,000 < n < 1,210,000 and
m < 3n) with periodic piecewise-linear transit-time functions (with 9 samples a day), we have
noticed that it runs at an average of about 4 times faster than a normal Dijkstra Algorithm with
16 landmarks and 2 time samplings. For details, we refer the reader to the thesis [11].

4 Conclusion

In this paper, we have given a generalized framework of A* algorithm for the time-dependent
shortest path problem. By constructing some appropriate estimator 4, it is possible to get an

algorithm that is faster than a normal generalized Dijkstra algorithm. As an example, we have
generalized the landmark-based ALT algorithm, which we believe is the first algorithm that uses
preprocessing to speed up the calculation of time-dependent shortest paths. Our experimental
result shows it is several times faster than a normal generalized Dijkstra algorithm (which
requires no preprocessing) for large road networks.

BE W

[1] RK. Ahuja, T.L. Magnanti, J.B. Orlin. Network flows: theory, algorithms, and applications.
Prentice-Hall, 1993.

[2] K.L.Cook, E. Halsey. The shortest route through a network with time-dependent internodal
transit. J. Math. Anal. Appl., 14:493-498, 1966.

[3] B.C. Dean. Continuous-time dynamic shortest path algorithms. Master’s thesis, MIT, 1999.

[4] S.E.Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17(3):395—
412, 1969.

[5] B. Ding, J.X. Xu, L. Qin. Finding time-dependent shortest paths over large graphs. Proc.
EDBT '08, ACM Intl. Conf. Proc. Ser. 261:205-216, 2008.

[6] A.V. Goldberg, C. Harrelson. Computing the shortest path: A* search meets graph theory.
Proc. SODA 2005, 156-165, 2005.

[7] HJ. Halpern. Shortest route with time dependent length of edges and limited delay possi-
bilities in nodes. Operations Research, 21:117-124, 1977.

[8] PE. Hart, N.J. Nilsson, B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions Systems Science and Cybernetics, 4(2):100-107, 1968.

[9] E. Kanoulas, Y. Du, T. Xia, D. Zhang. Finding fastest paths on a road network with speed
patterns. Proc. ICDE ‘06, 10-19, 2006.

[10] D.E.Kaufman, R.L. Smith. Fastest paths in time-dependent networks for intelligent vehicle-
highway systems application. J. Intelligent Transportation Systems, 1(1):1-11, 1993.

[11] T.Ohshima. A landmark algorithm for the time-dependent shortest path problem. Master’s
thesis, Graduate School of Informatics, Kyoto University, 2008.

[12] A. Orda, R. Rom. Traveling without waiting in time-dependent networks is NP-hard.
Manuscript, Dept. Electrical Engineering, Technion - Israel Institute of Technology, Haifa,
Israel, 1989.

[13] A. Orda, R. Rom. Shortest-path and minimum-delay algorithms in networks with time-
dependent edge-length.]. ACM, 37(3):607-625, 1990.

[14] H.D. Sherali, K. Ozbay, S. Subramanian. The time-dependent shortest pair of disjoint paths
problem: Complexity, models, and algorithms. Networks, 31(4):259-272, 1998.

[15] D. Wagner, T. Willhalm. Speed-up techniques for shortest-path computations. Proc. STACS
2007, LNCS 4393, 23-36, 2007.

