FEEREN LB B
IPSJ SIG Technical Report

2008 —AL—118
200875721

BARNRT 5 IDOEKEFIEEEHDE

ZAVEIE R

R Fa2

1 ERATORiHFE®V IV IRAE 0Ty b

T 671-2280 MR THES 2167 RERSIKEN

2 JRERFE RERITFEHER FHRI¥EER
T 739-8527 HL &L 1-4-1

B

AFETIE, 75 7 DBEREEIRESHBBBECONWTERTS. UTTIE, HBHASATT 7087
T A LCZ OBERSERBER TR B Z LRt ARART S 7 L1, BRAARLOFR RIZ
Yo TETMEENDRETT7THY, REZT 700 ELSDEICR->TWVWS., AETEXLHEN
RRTF T DGy 7 T A%, BEAKRKFOAKE2U LD) — FRELOEDTHD &V HIREES

N7 5AThH5.

Maximum Connected Domatic Partition of Directed
Path Graphs

Masaya MITO!

Satoshi FUJITA?

1 JST ERATO Maenaka Human-Sensing Fusion Project
Hyogo Prefectural Unversity, Shosha 2167, Mimeji, 671-2280 Japan
2 Department of Information Engineering, Graduate School of Engineering
Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 Japan

Abstract

In this paper, we consider the problem of finding a maximum connected domatic partition of a given
graph. We propose a polynomial time algorithm for solving the problem for a subclass of directed
path graphs which is known as a class of intersection graphs modeled by a set of directed paths on a
directed tree. More specifically, we restrict the class of directed path graphs in such a way that the
underlying directed tree has at most one node to have several incoming arcs.

1 Introduction

A connected dominating set (CDS, for short) for
graph G is a dominating set which induces a con-
nected subgraph of G [8, 13]. A connected do-
matic partition (CDP, for short) of G is a parti-
tion of the vertex set of G such that each subset in
the partition is a CDS for G. In the literature, it
is pointed out that CDS plays an important role in
the resource allocation in computer networks, such
as the message routing in wireless ad hoc networks
[5, 14, 15], collective communication in sensor net-
works [3, 6, 9], and so on.

Let d.(G) denote the cardinality of a largest CDP
of graph G [11, 12]. The problem of finding a CDP
of maximum cardinality is known to be NP-hard for
general graphs [6], and there have been derived sev-
eral interesting results on the bound of value d.(G);
e.g., it satisfies d.(G) < &(G) unless G is a complete
graph [16], where k(G) denotes the vertex connec-
tivity of graph G, and it satisfies d.(G) < 4 for any
planar graph G [10]. It is also known that the above
maximization problem can be solved in polynomial
time for several classes of easy instances such as
trees, cycles, and complete bipartite graphs. Unfor-
tunately however, unlike ordinary domatic partition

®)

problem which has been investigated during these
decades [1, 2], very few is known about the “con-
nected” version of the partitioning problem.

In this paper, we first point out that the problem
of finding a maximum CDP can be solved in linear
time for the class of interval graphs. We then ex-
tend the result to a subclass of directed path graphs,
which is an intersection graph modeled by a set of
directed paths on a directed tree with a single “join-
ing” node characterized by a vertex set called junc-
tion (a formal definition of the class of considered
graphs will be given in Section 4). The basic idea
of the proposed scheme is to focus on a set of criti-
cal vertices in a junction, and to carefully partition
such vertex set by solving the k-edge-coloring prob-
lem for a corresponding bipartite multigraph. An
extension of the greedy partitioning scheme used for
the class of interval graphs could be effectively ap-
plied to complete the partitioning of the remaining
vertices.

The remainder of this paper is organized as fol-
lows. Section 2 introduces necessary definitions.
Section 3 describes a linear time algorithm for
solving the partitioning problem for directed path
graphs modeled by a directed tree with a single
source. An extension of the algorithm to the case
with a single junction is given in Section 4. Finally,
we conclude the paper with future problems in Sec-
tion 5.

2 Preliminaries

Let T be a directed tree consisting of node set W
and arc set A. If there is a directed path from node
z to node y in T, then we say that they satisfy
relation z < y, and that z is an ancestor of y or y
is a descendant of z. A node with no descendant is
called a sink, and a node with no ancestor is called
a source. Given directed path P in T, the first
and the last nodes of the path are denoted as o(P)
and 7(P), respectively. (For brevity, we will use a
similar notation for the set of paths.)

Graph G = (V,E) is called a directed path
graph (DPG, for short) if it is an intersection graph
modeled by a set of directed paths in a directed tree
T, i.e., V corresponds to a set of directed paths in
T and two vertices! in V are connected by an edge
iff their corresponding paths share at least one node
(see Figure 1 for illustration). In the following, we
say that “G is modeled by 7 if the meaning of
the sentence is clear from the context. In addition,

LThroughout this paper, we will use terms “vertex” and
“edge” for graph G, and distinguish them from terms “node”
and “arc” used for tree 7T'.

source o(P)

{1,568} 7653

{4,5}

{6,8}

{8,9}

Figure 1: An example of DPG (the upper figure is
the underlying directed tree, and the lower figure is
the corresponding DPG).

we identify a vertex v in G with its correspond-
ing directed path in 7. For example, we often say
that vertex v “contains” node z if the correspond-
ing path contains z. For any subset V' of V, we
use symbol V' to denote a subgraph of T which is
obtained by taking a union of paths corresponding
to the vertices in V'. Moreover, for any subgraph
T' of T and a vertex set V' C V, a subgraph of
T, which is obtained by taking an intersection of T"
and V', is denoted by T" N V".

3 Tree with Single Source

In this section, we propose a simple algorithm to
find an optimal CDP of DPG modeled by a tree
with a single source. Note that this algorithm will
be used as a subroutine in the next section.

3.1 Interval Graphs

To clarify the basic idea of the scheme, we first con-
sider the case in which given G is modeled by a di-
rected tree with a single source s and a single sink
t; i.e., when G is an interval graph. The proposed
scheme partitions V into k(@) CDSs for Gj i.e., it

Figure 2: An interval graph (the upper figure is a
path of nodes and the lower figure shows an interval
model of the given interval graph which is a collec-
tion of paths).

is optimal since k(@) is an upper bound on the car-
dinality of CDP. Let C be a set of k(G) subsets of
vertices, each of which is intended to represent a
CDS for G. The proposed algorithm proceeds as
follows:

e Let U + V and initialize each element in C to

0.

o Repeat the following operations until every el-
ement in C becomes a CDS for G.

— Let ¢* be an element in C such that
7(¢*) = min.cc{7(c)}, where 7(c) denotes
the last node of path ¢ which is defined as
min,cy{o(v)} if ¢ is an empty set.

— Let v be a vertex in U such that o(v) <
7(c*) < 7(v). If U contains no such ver-
tex, then output “failed” and terminate.

— Move vertex v from U to c*.

e Output C as a solution after adding the remain-
ing vertices in U (if any) to an arbitrary ele-
ment in C, then terminate.

Figure 2 illustrates a part of interval graphs, and
we will explain the behavior of the above algorithm
by using this graph. Assume that the vertex con-
nectivity of the graph is three, i.e., we will partition
the vertex set into three subsets C;,Cs, and Cjs.
After initializing set U to V, it picks up vertex a
(which corresponds to a path in the interval model)
as the first element in Cj, since it has the leftmost
source node 1. It then picks up vertices b and d as
the first elements of Cy and Cs, respectively. After
that, we will focus on subset C; and try to extend
it to the right hand side, since it has the leftmost

terminal node at this time. In fact, we can find a
vertex which enables such extension (e.g., vertex f
or k), and could proceed a similar operation until
all subsets become a (connected) dominating set for
the given graph.

Proposition 1 If G is ¢ DPG modeled by a di-
rected path, then the above algorithm outputs a CDP
of cardinality k(G) in linear time.

Proof. Since the time complexity is obvious by the
description, in the following, we show that it always
outputs a required partition. Let ¢ be an element
in C selected at the beginning of an iteration, and
without loss of generality, let us assume that there
is an arc a to have 7(c) as its predecessor (since
otherwise, ¢ has already been a CDS for G). Let a,
denote the number of paths containing arc a. By
the description of the algorithm, if C contains an
element (i.e., a path) which does not contain arc
a, then any element (i.e., path) containing the arc
can never be selected as the candidate. Thus, since
k(G) = mingea{a,}, the scheme associates x(G)
vertices containing arc a to different elements in C,
in such a way that every element contains exactly
one such vertex. A similar claim holds for every
arc in the given 7. Thus the proposition follows.
Q.E.D.

3.2 A Generalization

The above idea can be easily generalized to trees
with a single source-and several sinks. Let T' be
a directed tree with a single source s and £ sinks
t1,t2,... ,t¢. Let P; denote the path from s to t;,
and let Ty, T4, ... ,T;_1 be subtrees of T defined as:
To def {s}, and Tj &ef -1 UPjforeach 1 < j <
£~ 1. Let P; be the path from node 7(P; N T;_1)
to node t;. Note that T; can also be represented as
To U (UL, Po).

A generalized algorithm for such tree T' proceeds
as follows:

e Let U « V and initialize each element in C to

0.

e For j = 1 to £ sequentially, repeat the following
operation until every element in C contains a
vertex containing sink t;:

— Let ¢* be an element in C such that 7(c*N
P;) = mincc{r(cnP;)}, where 7(c* ﬂP)
is defined as the first node of P ifc ﬂP =
0.

— Let v be a vertex in U such that o(v N
P)) < 7(¢*nP;) < 7(wNP;). U contains

no such vertex, then output “failed” and
terminate.

— Move the vertex v from U to c*.

o Output C as a solution after adding the remain-
ing vertices in U (if any) to an element in C,
then terminate.

Proposition 2 If G is a DPG modeled by a di-
rected tree with a single source, the above algorithm
outputs a CDP of size k(G) in linear time.

Proof. The case of £ =1 is immediate from Propo-
sition 1. To prove the claim for £ > 2, it is enough
to show that the following three conditions hold at
the beginning of the ;%" iteration for each 2 < j < £:
1) every element in C contains a vertex containing
a(P), 2) if there is an element in C which contains
a vertex v containing an arc in PJ, then the vertex
v must be reachable from ¢(P;) in C, and 3) for any
arc a in P}, each element in C contains at most one
vertex containing a.

The first condition is immediate since every ele-
ment in C is a CDS for a subgraph of G modeled by
T;_1 at the beginning of the jt* iteration. The sec-
ond condition can be verified by considering a vertex
v such that o(vN P; %) > o(P), which is never being
selected during the processing for sinks t1,... ,t;_1,
since Tj_; Nv = {. Finally, the third condition can
be proved by using an argument similar to the proof
of Proposition 1. Hence, the proposition follows.
Q.E.D.

4 Graph with Single Junction

4.1 Definitions

In the following, we let £ = k(G), for brevity. In this
section, we consider a class of trees which contains
exactly one node to have more than one incoming
arcs. Note that it is a generalization of the class
of trees considered in the last section, since it al-
lows the existence of several sources, as long as the
number of “joins” is restricted to one.

Let J be the set of all vertices containing such
a joining node w, which will be referred to as the
junction with respect to w. Note that a junction
induces a clique in the given graph, and that it par-
titions the given vertex set into three subsets as J,
vt e < o(v)}, and V- ¥ v\ (JUVH).
Figure 4 illustrates a junction. For each node
z in T, let f(z) denote the number of paths in V
containing both w and z. A lower boundary of
a subtree of T' centered at node w, is defined as
follows:

junction (6,8}

18,9}

Figure 3: Junction (note that a junction is a set
of vertices in V' which forms a clique in the given
DPG).

Definition 1 (Lower Boundary) Let W™ be
the set of descendants z of w such that: 1) f(z) < k
and 2) a predecessor y of z satisfies f(y) > k. Given
W+, lower boundary Wy is defined as the set of
nodes z satisfying either: 1) a successor of z is in
W+, or 2) z is a sink with f(z) > k.

A vertex in junction J is said to be critical if it
corresponds to a path in the tree containing a node
in the lower boundary Wy. Let J* be the set of
critical vertices. For each node z in T, let f*(z)
denote the number of vertices in J* containing z.
With the above notions, an upper boundary of the
subtree with respect to node w is defined as follows:

Definition 2 (Upper Boundary) If f*(w) = k,
upper boundary Wy and set W~ are both defined
as {w}. Otherwise, W~ is the set of ancestors «
of w such that: 1) f*(z) < k and 2) a successor y
of z satisfies f*(y) > k; and given set W, upper
boundary Wy is defined as the set of nodes z sat-
isfying either: 1) a predecessor of z is in W™, or 2)
z is a source with f*(z) > k.

Inside of the
boundary

(a) Lower boundary (DOWN stands for W and
DOWN’ stands for Wy,).

up

Inside of the
boundary

(b) Upper boundary (UP stands for W~ and UP’
stands for Wy).

Figure 4: Upper and lower boundaries of critical
vertices around junction centered at node w.

4.2 Basic Strategy for Partitioning
Critical Vertices

The proposed scheme tries to find a partition C of
J* to satisfy the following two conditions:

o SHARE: For any ¢ € C and for any x € W~ U
W+, J* Nc contains at most one path contain-
ing node z.

e RESERVE: For any ¢ € C and for any z € Wy U
W1, J*Nc contains at least one path containing
node z.

In this and the next subsection, we describe how
to find such a partitioning in polynomial time, and
in Subsection 4.4, we explain how those conditions
are related with the overall partitioning of V. The
basic idea for the partitioning of J* to satisfy the
above two conditions is to use k-edge-coloring of a
bipartite multigraph reflecting the structure of crit-
ical vertices. More precisely, we consider a bipartite

multigraph H with vertex set Vg = W~ UW™ and
edge set Eg(C W~ x W), where vertices z and
y are connected by an edge in Eg iff J* contains a
path containing both = and y. Note that there may
exist vertices in J* which have no corresponding
edge in Eg; e.g., a path terminating at the lower
boundary does not contain a node in W+ (handling
of such “hidden” vertices will be discussed in the
next subsection).

Let ¢ be a k-edge-coloring of H; i.e., ¢ is a func-
tion from Ey to {1,2,...,k} such that any two
adjacent edges are assigned different colors. Note
that graph H is k-edge-colorable in O(|Eg|logk)
time, since the maximum degree of H is at most k
[4]. Given a k-edge-coloring ¢ of H, let us consider
the following natural association of vertices in J* to
the elements in C:

1) If an edge in Ep corresponding to vertex v(€
J*) is assigned color i by ¢, then v is associated
to the it" element in C.

2) Otherwise, the vertex is associated to an ele-
ment in C which contains no vertex sharing the
same node in W~ UW with v. Note that such
element always exists in C, since f*(z) < k for
anyz e W-UWT.

The above assignment obviously satisfies condition
SHARE. However, the second condition RESERVE
cannot always be satisfied if we directly apply the
procedure to the original H (due to the problem
of “hidden” vertices). In the next subsection, we
show that the second condition can always be satis-
fied if we conduct an appropriate preprocessing for
the modification of graph H before conducting the
above assignment procedure.

4.3 Preprocessing to Satisfy Condi-
tion RESERVE

In the preprocessing phase, bipartite multigraph H
is modified for each node in Wy, according to the
type of node defined as follows: A node of Type 1
is a sink; a node of Type 2 has a successor y with
f*(y) > k; and a node of Type 3 or 4 has a succes-
sor but none of them has a f* value greater than
or equal to k. The difference of the last two types
is the summation of f* values over all successors;
i.e., in Type 3, the summation is bounded by k,
but it is greater than k for Type 4. Recall that the
objective of the preprocessing phase is to satisfy RE-
SERVE after simply applying the above assignment
procedure.

Type 1: Recall that a sink z € Wy, is not con-
tained in the vertex set of the original H. Let

S(C J*) be a vertex set consisting of arbitrary k
paths containing sink . Add a new vertex corre-
sponding to z to Vg, and connect it to k nodes in
W~ via edges corresponding to the selected k paths.

Type 2: No modification is necessary if z has a
successor y with f*(y) > k. In fact, when f*(y) =
k, since it associates exactly one path containing y
to ¢ for any ¢ € C, condition RESERVE obviously
holds for its parent z. When f*(y) > k, on the
other hand, since x must have a descendant of the
other type contained in Wy, the condition holds for
z as long as it is satisfied for at least one of its
descendants.

Type 3: Let S’ be the set of successors of z,
and f*(8") € ¥ co f7(y). I £7(S') < k, then
contract vertices in Vg NS’ to a single vertex Z, i.e.,
Vu < (Vg \ S') U{&}, and connect it to nodes in
W~ via corresponding edges. Then, after selecting
arbitrary f*(z) — f*(S') (> 0) paths terminating
at node z from J*, add edges corresponding to the
selected paths to Ex. Note that this modification
obviously satisfies RESERVE for node z, and does
not violate SHARE for any y € S'.

Type 4: Let S’ = {y1,¥2,... ,y¢} be the set of
successors of x. At first, for each y; € Vg N 9,
add new vertex §j; to Vy, and connect it with y;
via k — f*(y;) (> 0) parallel edges. Then, after
adding another vertex p to Vp, connect it with ver-
tices in {§i1, 92, ... ,§¢} in the following manner: Let
i be an integer such that Z;;ﬁ f*(y;) < k and

D=1 f*(y;) > k. Vertex p is connected with §;
via f*(y;) parallel edges for 1 < j <i—1, and con-
nected with vertex §; via k — 3=, f*(y;) parallel
edges. Note that in any k-edge-coloring of the resul-
tant H, k edges incident on p are assigned distinct
colors, which will be propagated to edges incident
on S’ via vertices in {1, §2,. .. ,§¢}. Thus, it satis-
fies condition RESERVE for node z.

A similar modification could be done for each
node in Wy. Hence, a proof of the satisfaction of
RESERVE will complete by proving the following
lemma.

Lemma 1 In the resultant graph H, each vertez in
J* corresponds to at most one edge in Ey.

Proof. The claim apparently holds for the original
H. An addition of edges corresponding to vertices
in J* takes place only when it examines node z of
Type 1 or 3. In the former case, the path from w
to & never contains a node in W, and even if it
contains a node in Wr,, the modification of H for
the node in Wy, does not take place since it should
be a node of Type 2. When z is a node of Type 3,

on the other hand, every edge added by the modi-
fication corresponds to a path terminating at node
z. Thus, it does not contain a node in W+, and
even if it contains a node in Wy, it does not cause
a modification of H. A similar argument holds for
the upper boundary Wy;. Hence, the lemma follows.
Q.E.D.

4.4 Partition of the Remaining Ver-
tices

Now, we have obtained a partition C of J* satisfy-
ing conditions SHARE and RESERVE. Given such
partition C, a greedy assignment scheme described
in Section 3 correctly finds a (connected domatic)
partition of J* U V™ in linear time, where V*+ =
{v | w < o(v)}. Thus, in the remaining of this sec-
tion, we describe how to realize a correct partition
of V- =V \ (J*uV™).

For each source s in T, let Z, denote the set
of sinks reachable from s without passing through
node w; let T denote an out-tree which is obtained
by taking a union of paths connecting from s to
nodes in Z,, and let P, denote the unique path from
s to w. The procedure for the partition of V'~ pro-
ceeds as follows: First, for each source s, it assigns
paths on P, to C with an algorithm described be-
low. After that, it assigns paths in T to C by using
a greedy scheme for out-trees described in Section
3.2.

More concretely, the partition of paths on Py pro-
ceeds as follows:

e Let U « V, initialize each element in C to
an empty set, and initialize D to the output
of previous procedures; i.e., D is a (connected
domatic) partition of J* UV of size k.

o Repeat the following operation until every ele-
ment in C contains each arc on P,.

— Let ¢* be an element in C such that 7(c*N
P,) = min.cc{7(cNPs)}, where 7(c*NP;)
is defined as source s if ¢ =). Let d* be
an element in D such that o(d* N P;) =
mindep{a(d n Ps)}.

— Let v be a vertex in U such that o(v N
P,) < 7(c*NP;) < 7(vNP;). If U contains
no such vertex and 7(c*NP;) < o(d*NF;),
then output “failed” and terminate.

— Move vertex v from U to ¢* if U contains
v. Otherwise, ¢* + ¢* Ud* and D +

D\ {d*}.

e Output C as a solution, and terminate.

Proposition 3 If D is initialized to the output of
previous procedures, then the above procedure suc-
cessfully outputs necessary partition in linear time.

Proof. In the following, we will merely consider the
correctness of scheme, since the time complexity is
obvious by description. Let ¢ be an element in C se-
lected at the beginning of an iteration, and suppose
that 7(cNP,) < w, without loss of generality. (Note
that if 7(¢N P;) = w, ¢ has already contained every
arc on P;.) Let a be an arc on P; starting from
node 7(cN Ps,4,), and let o, denote the number of
vertices in G containing arc a. By the description
of the algorithm, if there is an element in C which
does not contain a, then any element in C contain-
ing arc a can never be selected as the candidate.
In addition, since D is initialized to a partition of
J*UVT satisfying SHARE and RESERVE for nodes
in (W~ UWy) N Ps, it does not contain an element
which contains more than one vertices containing
arc a, or every element in D has contained arc a.
Thus, since the vertex connectivity k(= &(G)) is
represented as min,e4{@,}, element ¢ can contain
a vertex containing arc a. A similar claim holds for
every arc on path Ps. Thus, the proposition follows.
Q.E.D.

Finally, we can easily show that the greedy
scheme given in Section 3.2 works well even for out-
tree T,. Thus, we have the following proposition.

Proposition 4 If G is a DPG modeled by a di-
rected tree containing at most one node to have sev-
eral incoming arcs, then the connected domatic par-
tition problem can be solved in polynomial time.

5 Concluding Remarks

This paper proposed an algorithm for solving the
connected domatic partition problem for a subclass
of directed path trees. An important open problem
is to examine if the proposed algorithm can be ex-
tended to general directed path graphs with more
than one junctions. We have a positive conjecture
for this problem, such that it could be solved by
repeatedly applying the proposed assignment pro-
cedure for each junction (probably, it needs an ap-
propriate ordering of such junctions). Since it can
be easily shown that an undirected version of the
problem is NP-hard using a reduction from the 3-
edge-coloring problem [7], it would clarify a sharp
boundary on the complexity of the connected do-
matic partition problem.

References

[1] A. A. Bertossi. On the domatic number of in-
terval graphs. Information Processing Letters,
28(6):275-280, August 1988.

[2] M. A. Bonuccelli. Dominating sets and domatic
number of circular arc graphs. Discrete Applied
Mathematics, 12:203-213, 1985.

[3] M. Cardei and D.-Z. Du. Improving Wire-
less Sensor Network Lifetime through Power
Aware Organization. ACM Wireless Networks,
11(3):333-340, 2005.

[4] R. Cole, K. Ost and S. Schirra. Edge-Coloring
Bipartite Multigraphs in O(Flog D) Time.
Combinatorica, 21(1):5-12, 2001.

[5] F. Dai and J. Wu. An Extended Localized
Algorithm for Connected Dominating Set For-
mation in Ad Hoc Wireless Networks. IEEE
Transactions on Parallel and Distributed Sys-
tems, 53(10):1343-1354, 2004.

[6] Q.Dong. Maximizing System Lifetime in Wire-
less Sensor Networks. In Proc. of the 4th Inter-
national Symposium on Information Process-
ing in Sensor Networks, 13—-19, 2005.

[7] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Com-
pany, San Francisco, 1979.

8

[}

S. Guha and S. Khuller. Approximation Al-
gorithms for Connected Dominating Sets. In
Proc. European Symposium on Algorithms,
179-193, 1996.

[9] R. W. Ha, P. H. Ho, X. Shen and J. Zhang.
Sleep Scheduling for Wireless Sensor Networks
via Network Flow Model. Computer Commu-
nications, 29(13-14):2469-2481, 2006.

B. L. Hartnell and D. F. Rall. Connected Do-
matic Number in Planar Graphs. Czechoslovak
Mathematical Journal, 51(1):173-179, 2001.

T. W. Haynes, S. T. Hedetniemi, and P. J.
Slater. Fundamentals of Domination in
Graphs. Marcel Dekker, Inc., 1998.

T. W. Haynes, S. T. Hedetniemi, and P. J.
Slater. Domination in Graphs: Advanced Top-
ics. Marcel Dekker, Inc., 1998.

[10]

(11]

(12]

S. Hedetniemi and R. Laskar. Connected dom-
ination in graphs. In Graph Theory and Com-
binatorics, Academic Press, London, pp. 209-
218, 1984.

(13]

[14] J. Wu and H. Li. Domination and Its Applica-
tions in Ad Hoc Wireless Networks with Unidi-
rectional Links. In Proc. of International Con-
ference on Parallel Processing, pages 189-200,
2000.

[15] J. Wu. Extended Dominating-Set-Based Rout-
ing in Ad Hoc Wireless Networks with Unidi-
rectional Links. IEEFE Transactions on Parallel
and Distributed Computing, 22:327-340, 2002.

[16] B. Zelinka. Connected Domatic Number of a
Graph. Math. Slovaca, 36:387-392, 1986.

73‘7

