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RPNI is an algorithm to identify regular languages in the limit by merging compatible pairs of
states, which has been proposed by Oncina and Garcfa. RPNI employs the length-lexicographic
total order as a state-merging strategy (SMS). The authors believe that a study on SMSs helps us
comprehend RPNI and other state-merging algorithms. In this paper, RPNI is generalized so that
it can employ any SMS. Moreover, the characterization of SMSs that guarantee identifiability in
the limit, and some natures of state-merging algorithms are studied.

1 Introduction tomaton. This output is the correct minimal deter-
ministic finite automaton (DFA) of the target lan-

RPNT is an algorithm to identify regular languages guage if the input sample satisfies some special con-

in the limit by merging compatible pairs of states,
which has been proposed by Oncina and Garcia in
1992 [1]. RPNI employs the length-lexicographic to-
tal order as a strategy. In this paper, we general-
ize this strategy and study the characterization of
strategies that guarantee identifiability in the limit
in order to comprehend some natures of RPNI and
other state-merging algorithms.

RPNI is a learning algorithm in IIL (identifica-
tion in the limit) framework, formulated by Gold [2].
First, this algorithm constructs a special finite au-
tomaton that accepts only an input positive sample
of a target language. Secondly, it merges compati-
ble pairs of states of this automaton in a specified
order, which we call in this paper a state-merging
strategy (SMS) of this algorithm. RPNI employs the
length-lexicographic order as a SMS. After finishing
merging states, RPNI outputs this state-merged au-

dition. This condition has a monotonic property,
which means that, if an input sample satisfies this
condition, then any superset of this sample does so.
Hence, once a given input sample of a target lan-
guage satisfies this condition, RPNI does not change
its conjectures, in other words, identifies the correct
minimal DFA of the target language in the limit.
We have a little difficulty understanding from
the verification of RPNI in [1] why RPNI with the
length-lexicographic total order succeeds in identi-
fying regular languages in the limit, for the proof
is slightly short and informal. If the verification is
written more precisely, then we more comprehend
some natures of RPNI and other state-merging al-
gorithms. Moreover, if we can characterize SMSs
of RPNI that guarantee identifiability in the limit,
then our choice of a SMS will be greatly extended,
which affects the efficiency of the convergence.
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In this paper, we will first generalize RPNI so
that it can deal with any SMS. We will secondly
study the characterization of SMSs that guarantee
identifiability in the limit. In this process, we will
consider some natures of RPNI and other
state-merging algorithms.

There have been proposed many state-merging
learning algorithms of regular languages including
[3, 4], some of which use those SMSs that are not
length-lexicographic. However, as far as we know,
there is not established the complete characteriza-
tion of SMSs of the original RPNI that guarantee
identifiability in the limit.

This paper is based on the master’s thesis of the
first author [5], and therefore see it for more details
including omitted proofs.

2 Preliminaries

We introduce basic definitions and notation needed
in the sequel of this paper. We mainly employ those
of Hopcroft and Ullman [6].

2.1 Finite Automata

An alphabet ¥ is a fixed, nonempty finite set of sym-
bols. The set of all finite strings over ¥ is denoted
by £*. Any subset of ¥£* is called a language over
Y. The empty string is denoted by X ¢ ¥, which is
contained in ¥*. We denote the length of a string
w by |w|. Let S be a set. The cardinality of S is
denoted by card(S).

Let z,y be elements of ¥*. The string = is a
prefiz of y if there exists a string z € £* such that
zz = y. A prefix w’ of w is proper if w’ # w. Let
L be a language over . We define Pr(L) = {u €
¥ | 3w € ¥*st. wv € L}. If Ly and Ly are lan-
guages over X, then it is clear that L; C Lo implies
Pr(L1) C Pr(Ly). Let u be an element in £*. We
define Ty (u) = {v € Z* | uv € L}. It is also clear
that, for any u,v,w € ¥*, Tr(u) = T1(v) implies
Tr,(vw) = T (vw).

A finite automaton is a five-tuple A = (Q, %, 6, qo,
F') such that @ is a nonempty finite set of states, &
is an alphabet, J is a state transition function from
Q%X to 29, go(€ Q) is an initial state, and F(C Q)
is a set of final states. If §(g,a) contains at most
one element for any ¢ € @Q and any a € 3, then A is
deterministic, otherwise A is nondeterministic. We
sometimes write d(p,a) = ¢ for §(p,a) = {q}. Let
W = a182 - ap, (a; € X) be an element in £*, and
4,9',q1, ... ,qn—1 be states in Q. We write §(¢, w) =
¢ if6(g,a1) = q1,0(q1,02) = g2, ... ,8(qn—1,0n) =
¢'. If ¢ € §(p,a), then we say that g is an a-successor
of p. Let g be a state in Q. The state q is called use-
less if there exist no u,v € £* such that 6(go,u) = ¢

and 6(q,v) N F = (. A finite automaton that con-
tains no useless states is called reduced. The lan-
guage accepted by A, denoted by L(A), is defined
as L(A) = {w € * | §(g0,w)NF =0 }. We say that
a language is regular if it is accepted by a finite au-
tomaton. We denote the class of regular languages
by REG.

Let A1 = (Q], E, (51, qu,Fl) and A2 = (Q2, E, 62,
do,, F2). The automaton A; is isomorphic to A, if
there exists a bijection h: Q; — Qs satisfying the
following;:

h(q01) = qoy; h(Fl) = F2;
Vg € Q1,Ya € ¥ h(d1(g,a)) = 02(h(q),a) .

If A; is isomorphic to A, then it is clear that L(A;)
= L(A) holds.

A partition m of a set Q is a set of mutually
disjoint nonempty subsets of @ such that (Jg., B =
Q. An element of a partition is called a block. Let
p,q be in Q. We denote the block in 7 containing
p by B(p, 7). We write p =, ¢ if B(p,7) = B(q, 7).
Let A = (Q,%,6,q0, F), and 7 be a partition of Q.
The 7-quotient automaton of A is defined as A/m =

v (le EaélaqévF,), where

def def
Q =m ¢ = B(qo,7);

FY{BeQ |BNF#0}
VB,Bo€Q (By€&(Bi,a) ¥
3g1 € B1,3g2 € By 2 € 6(q1,0)) -

It is clear that L(A) C L(A/w) holds.

Let L be a nonempty regular language. The
canonical automaton of L is defined as A(L) = (Q, %,
4, 9o, F), where

QY (Tr(u) [ue Pr(L)};

0 LT\ FY {To(u)|uelL);

Vu € Pr(L), Va € ¥ with ua € Pr(L)
0(Tr(u),a) e Ty (ua) .

It is known that A(L) is the minimum-state DFA
accepting L ([6, pp. 65-68]).

Let S be a finite language over ¥. The prefiz
tree automaton (PTA) of S is defined as PT(S) =
(Q,%,9,q0, F), where

QEPr(s); ¥ F¥s;
Yu € Pr(S), Va € £ with ua € Pr(S)
def

6(u,a) = ua .
It is clear that PT'(S) exactly accepts S.
Let g be a grammar. By L(g) we denote the
language generated by g.



2.2 Total Order

Let S be a set, a and b be elements of S, and < be a
relation on S. The relation < is called an order if it
is reflexive, antisymmetric and transitive. We write
a <bifa<banda#bhold. Let < be an order on
a set S. The order < is total if a < b or b < a holds
for any distinct @ and b in S.

Let X be a subset of a set S, m be an element
of X, and < be a total order on S. The element m
is the greatest one of X for <, denoted by max<(X)
(respectively, the least one of X for <, denoted by
min< (X)), if X m (respectively, m < z) holds for
any z € X. Let < be a total order on ¥*, and =
be an element in ¥*. We define ip<(z) = z,,, where
zp in ¥*, x, < x, and there is no y in ¥* such that
T, <Yy <2

Let < be a total order on ¥*, and let B; and By
be subsets of ¥*. We write By < By if u < v holds
for any u € By and any v € B,. Let 7 be a partition
of a set, and B; and B; be blocks in m. The new
partition obtained by merging B; with By, denoted
by J(m, By, Bz), is defined as J(m, B1,Bs) = (7 —
{Bl,Bg}) U {Bl U B2}

2.3 IIL Framework

Let L be a language over . A sample of L is de-
noted by a pair S = (S4,S5_) that satisfies S, C
Land S- C ¥* — L. Wecall S; and S_, re-
spectively, a positive sample and a negative sam-
ple of L. Let S4,5_,8’, and S’ be sets. We say
that S’ = (5/,5") is a superpair of S = (S4,S_),
which we denote by S E §’, if S C 8} and S_ C
S’ hold. Let L be a language over ¥, and 0 =
(w1,11), (we,12), ... be an infinite sequence such that
w; € ¥* and [; € {0,1} (i =1,2, ...). An infinite
sequence o is a complete presentation of L if the
following conditions hold:

L=

1. {w,ws,

A learning machine M is an algorithmic device
which receives a complete presentation of a target

language L and outputs an infinite sequence g1, g, ...

of grammars. We say that M identifies L in the limit
if, for any complete presentation o of L, M with an
input o outputs an infinite sequence gi,gs, ... of
grammars such that

dng € Ns.t. Vn>ng L(gs) =L .

Let C be a class of languages. We also say that M
identifies C in the limit if M identifies any L in C in
the limit.

3 k-state Infinite Languages

In this section, we introduce a new interesting lan-
guage class related to finite automata and their states.
It plays an important role in characterizing SMSs
that guarantee identifiability in the limit.

Let A = (Q,%,4,q0,F) be a reduced DFA, and
L be a regular language over ©. We define

Q¥(L,A) = {q€ Q| card{w € L |
6(go,w) =q}) =00 }.
We say that L is k-state infinite for A if card(Q> (L, A))
=k, and that L is k-state infinite if L is k-state in-
finite for any reduced DFA. Moreover, we say that
L is up-to-k-state infinite if

—-3A s.t. 3K’ with ¥’ > k s.t. L is k-
state-infinite for A .

Let < be a total order on ¥*, and u be an element
in ¥*. We define S(=,u) ={veX*|v=u}. The
following lemma and its corollary hold.

Lemma 1. Let < be a total order on ¥*, u and v
be in %, and A = (Q, %, 4, qo, F) be a reduced DFA.
We have

Q*(S(%,u),4) = Q*(S(Z,v),4) .
O

Corollary 1. Let < be a total order on ¥*, u and
v be elements in ¥*, and A = (Q,%,0,q0,F) be a
reduced DFA. We have

S(=X,u) is up-to-k-state infinite for A <
S(=X,v) is up-to-k-state infinite for A .

4 Revision of RPNI

We propose Algorithm 1 by generalizing the orig-
inal RPNI. Oncina and Garcia have inputted the
length-lexicographic total order on ¥* into RPNI
for choosing a state w; to be merged on the i-th “of
the for-loop” [1], while we can input any total or-
der (SMS) on ¥* into our algorithm. Moreover, the
original RPNI choose a state to be merged “in if-
statements” in the length-lexicographic order, while
our algorithm can choose any state which can be
merged.

5 Correctness of RPNI and
Road to Characterization of
SMSs

We will now introduce a special class of SMSs. By
ORr we denote the class of total orders < on * such
that



Algorithm 1 RPNI algorithm (revised)

Input: A sample S = (S4,S5-) of a target regular
language L over ¥, and a total order < on ¥*
Output: Ay/m,

Let Pr(Sy) = {wo, w1, ... ,w,} and suppose that
wo < wy < - < w, holds;
A(] = PT(S+),

// constructs the PTA of S
o = {{w0}7 {wl}a . 7{w1‘}};
for i =1tor do // chooses a state {w;}
if HBa,Bﬂ € mi—1, dJa € X s.t. (Bﬂ < {’wz})
A (Bg and {w;} are a-successors of B,)
A (8- N L(Ao/J(mi—1, Bg, {w;})) = 0) then
i i= J(mi—1, Bg, {ws});
// merges Bg with {w;}
else if 3B, € m;_; s.t. (By < {w;})
A (8- NL(Ao/J(mwi—1, By, {w;})) = 0) then
T = J(ﬂ-i—lv B’77 {wl})9
// merges B, with {w;}

else
g 2= Ti—1;
// doesn’t merge a pair of states
end if
end for

return Ay/7y;
// outputs the state-merged automaton

1. S(=, ) is up-to-1-state infinite,

2. Jw, € ¥* st. Vw € T* with wp <X w
(3w, € T* st. (w < wp) A (Ja € T st
wpa = w))

In the definition above, an element w, satisfying the
condition 2 is called a boundary of <, denoted by
bd<.

5.1 Definitions and Notation

Let L be a regular language over X, A(L) = (Q, %, 4,
qo, F) be the canonical automaton of L, and < be a
total order on ¥*. Let pp = ip<(min<(PSP<(L))).
We define some sets as follows:

PSP<(L) ={w € Pr(L) | -3v € &* s.t.

Tp(v) =Tp(w) AN v<w};
PSP<(L) if (a) holds
SP<(L) = ¢ PSP<(L)U{pp} if (b) holds
undefined otherwise,
where

(a) S(=,]) is O-state infinite for A(L),
(b) S(=, ) is 1-state infinite for A(L);

N<(L) ={wa € Pr(L) | we SP<(L) A
a€X}U{\}L

SN<(L) = SP<(L)U N<(L);
ESN<(L) = {w € ¥* | min<(SN<(L))
< w < max<({max<(SN<(L)),bd<}) } .
The following holds:

=2 €0Or = SP<(L)is defined and
PSP<(L) C SP<(L);
SN<(L) € ESN<(L) .
Let S = (54,5_) be a sample of a regular lan-
guage L over ¥ and let < be a total order on X*.

The sample S is complete for < if the following con-
ditions hold:

1. Yu € SN<(L)
(wePr(Sy)) A (WeL = uesly),
2. Yu € SP<(L), Yv € ESN<(L)
(To(w) # To(v) =

either (Ju’ € * s.t. uu’ € Sy Avu' € S_) or
(' € T* st v’ € Sy Awv’ € S_) holds) .

Let S; and Sz be samples of a regular language L
such that S; C S holds. It is clear that, if Sy is
complete for <, then S; is also complete for <. In
other words, the completeness for < has a monotonic
property.

5.2 Proof of Sufficiency

In the end of this subsection we will prove the fol-
lowing theorem:

Theorem 1. For any <X in O, Algorithm 1 iden-
tifies REG in the limit (later proved).

O

Let < be a total order in Og, S = (S+,5-)
be a sample of a regular language L over X, Ay =
PT(54), A(L) = (Q,%,d,po, F) be the canonical
automaton of L, and let Pr(Sy) = {wo, w1, ... ,w,}
where we assume that wy < w; < -+ < w, holds.
Let mo, 7y, ... , 7 be the partition sequence pro-
duced by Algorithm 1 with the inputs S and <.
These are assumed in this entire subsection.

Lemma 2. Suppose that S is complete for <, that w
be a partition of Pr(S;), and that S_ N L(Ay/m) =
0. Consider w € ESN<(L) and v € SP<(L) such
that u =, v. We have

TL(U) = TL(’U) .
O

Lemma 3. Let w be a partition of Pr(Sy) such that,
for any u and v in Pr(S4), u 2, v implies Ty, (u) =
Tr(v). Consider any w and w' in Pr(S,) such that
Tr(w) = Tr(w'). We have



S_NL(Ao/J(m, B(w,7), B(w',7))) =0 .
O

Lemma 4. Suppose that S is complete for <. It
holds that ws = min<(SP<(L)) (0 < s <r). For
any i (0 < i <r), we have

Va,b <1 (wa = wp € Tr(we) =Tr(ws)), (1)

i>s = Vj(j<i) Blwj,m) contains

exactly one element of SP<(L) . (2)

Proof. We will prove the claims by mathematical
induction on .

(Base Step) Consider the case i = 0.

The equation (1) clearly holds.

Suppose that ¢ > s. Hence, s = 0. Note that
wo = ws = min<(SP<(L)) € SP<(L). Hence the
block B(wg,m9) = {wop} contains exactly one ele-
ment wo in SP<(L).

(Induction Step) Suppose that (1) and (2) hold
fori=k—1. Notethat k =7+1> 1.

(I) Suppose that the condition of the first
if-statement holds on the k-th run of the for-loop.
There exist By, € mx—1, Bg € my—1 and a € &
such that

Bg and {wy} are a—successors of By, (A)
Bg < {w}, (B)
S- N L(Ao/J(mk-1, Bs,{wr})) =0 . (C)

(Claim I-i) The equation (1) holds for i = k.

Proof of Claim I-i. 1t suffices to prove that, for
any w; € Pr(S;) (0 <j <k), w; € B(wg,mk)
if and only if T (w;) = T (wk). The condition
(A) implies that there exist w,w’ € B, such
that wa = wy and w’a € Bg. The inductive hy-
pothesis (IH) (1) implies that T, (w’) = TL(w).
Hence, Ty (w'a) = Tr(wa) = Tr(wg). Consid-
ering w; € Pr(Sy) for 0 < j < k. Ifw; €
{wr}, then it is clear that T (w;) = Ty (wg). If
w; € Bg, then the IH (1) implies that T (w;) =
Tr(w'a) = Tr(wk). Hence, if w; € Bwg, mx) =
Bﬁ U {wk}, then TL(wj) = TL(wk). If wj ¢
B(wg, m) = BgU{we}, then it holds that w; ¢
Bg, which means that Tp(w;) # Tr(w'a) =
Tr(wg). Now it follows that, for any w; €
Pr(S;) (0 < j < k), wj € B(wg,my) if and
only if Tt (w;) = Tr (wk)-

[End of Claim I-i]

(Claim I-ii) The equation (2) holds for i = k.

Proof of Claim I-ii. First, suppose that k = s.
Note that k = s > 1 and w, = min<(SP<(L)).
Hence, S(=X, ) is 1-state infinite for A(L). We
deduce from the definition of 1-state-infiniteness
that TL(wo) = = TL(wk) = TL(’U)S) holds.
We deduce from the IH (1) that wo &, _, -+
=1 Wk—1. The condition (B) implies that
Bg € {B(wo, Tk-1), - - - , B(wg—1,mk—1)}. Hence,
after {wy} is merged with Bpg, it holds that
wo =y, - =5, wg. Hence, the block B(wyg, 7k)
= ... = B(wy,Tt) contains exactly one element
of SP<(L), wr = ws = min<(SP<(L)).
Secondly, suppose that k > s. It holds that
k—1 > s, which together with the IH (2) implies
that, for any j (j < k — 1), B(wj,mk—1) con-
tains exactly one element of SP<(L). Hence,
with the condition (B), It holds that there exists
wsp € Bg such that ws, € SP<(L). Suppose
that wy, € SP<(L). We deduce from the defini-
tion of SP<(L) that T (wsp) # Tr(wk). Note
that S is complete for <, wy, € SP<(L), wi €
SP<(L) € ESN<(L) and (C) hold. By using
Lemma 2, we obtain T (wsp) = T (wg), which
is a contradiction. Hence wy ¢ SP<(L), which
implies that the block B(wg,m) = Bg U {w}
contains exactly one element of SP<(L), wgp.
[End of Claim I-ij)

(IT) Suppose that the condition of the first if-
statement does not hold and that of the second
holds on the k-th run of the for-loop. There exists
B, € mp_y such that

By < {ws}, (D)
S0 L(Ao/T(mi1, By, fun)) =0 . (E)

(Claim II-i) The equation (1) holds for i = k.

Proof of Claim II-i. It suffices to prove that, for
any w; € Pr(Sy) (0 <j <k), w; € B(wg, k)
if and only if Ty (w;) = Tr(wy).

First, suppose that k¥ < s. Note that k =
s > 1 and w, = min<(SP<(L)). Hence, S(=
,A) is l-state infinite for A(L). We deduce
from the definition of 1-state-infiniteness that
Tr(wo) = -+ = T (wg) = - - = Tr(ws) holds.
This and the IH (1) implies that wo &, _, ---
& re_1 Wk—1. The condition (D) implies that
B, € {B(wo,Tk—1), ... s B(wg—1,7k_1)}. Hence,
after {wy} is merged with B,, it holds that
wo =x, o+ Zn, Wk, which implies that (1)
holds for ¢ = k.

Secondly, suppose that k& > s.

To prove that wr, € ESN<(L), let us sup-
pose the opposite and see what happens. We
deduce from N<(L) C ESN<(L) that wy ¢
N<(L). Hence wy, # A, which means that there



exist w € X*, B’ € mk_1, and a € ¥ such
that w' € B’ and w'a = wg. Suppose that
w’ € SP<(L). It holds that w'a = wy, € N<(L),
which is a contradiction. Hence w' ¢ SP<(L).
The condition k¥ > s implies that £k — 1 > s,
which together with the IH (2) that, for any
J (4 £k-1), B(wj,mk—1) contains exactly one
element of SP<(L). We want to know whether
wg < mmj(ESNj(L)) or maxj(ESNj(L)) <
wg. If wpy < ming(ESN<(L)), then w;
mmj(SPj(L)) < wi < mmj(ESNj(L))
min<(SN<(L)), which contradicts SP<(L) C
SN<(L). Hence, it holds that max<(ESN<(L))
= max<({max<(SN<(L)),bd<}) < wg, which
means that bd< < wg. We want to show w' <
wy, = w'a. Note that bd< < wy = w'a. We de-
duce from the definition of Or that w’ < w'a =
wg. This and the IH (2) implies that there
exists wgp, € B(w',mp—1) such that wsy, €
SP<(L). The IH (1) implies that T (wsp,) =
Tr(w'). Hence, Tt (wspoa) = Tr(w'a) = Tt (wi).
Because wi € Pr(S4) C Pr(L), it holds that
Tr(wspoa) = Tr(wi) # 0. Hence wsp,a € Pr(L),
which together with wsp, € SP<(L) implies
Wspoa € N<(L) € SN<(L). By using the com-
pleteness for < of S, we obtain wsp,a € Pr(S;).
Because wgp,a € SN<(L) € ESN<(L) and
max<(ESN<(L)) < wg, it holds that wsp,a <
wg. Note that T (wspoa) = Tr(wk) and the
IH (1) holds. By using Lemma 3, we have
S_ﬂL(AQ/J(ﬂ'kﬁl, B(wspoa,wk,l), {wk})) =0.
This means that the condition of the first if-
statement is satisfied, which is a contradiction.
Hence wy, € ESN<(L).

The condition (D) implies there exists wep,
€ B, such that ws,, € SP<(L). Note that
S is complete for =X, wsp, € SP<(L), wy €
ESN<(L), wsp, =r, wg, and (E) holds. By
using Lemma 2, we obtain T, (wsp, ) = Tr(wk).
In a similar way as in the proof of Claim I-i, we
deduce that, for any w; € Pr(S;) (0 < j <k),
w; € B(wg,mx) if and only if Tp (w;) = Ty, (wg).

[End of Claim II-i]

(Claim II-ii) The equation (2) holds for i = k.

Proof of Claim II-ii. We can prove this claim
in a similar way as in the proof of Claim I-ii.
[End of Claim II-ii]

(III) Suppose that the conditions of the first and
second if-statements do not hold on the k-th run
of the for-loop.

(Claim III-i) The equation (1) holds for i = k.

Proof of Claim IIl-i. Because 7y = mx_1 holds,
the claim also holds.

[End of Claim III-j]

(Claim III-ii) The equation (2) holds for i =
k.

Proof of Claim IIl-ii. First, suppose that k =
s. Because k > 1, there exist wy_1. It holds
that S(=<, \) is 1-state infinite for A(L). We de-
duce from the definition of 1-state-infiniteness
that, for any w with w < w, = min<(SP<(L)),
Tr(w) = Trp(ws) holds. Hence, it holds that
Tr(ws) = Tr(wg) = Tr(wg—1). However, we
deduce from wg—1 %x, wi that Tp(wg—1) #
Tr(wg), which is a contradiction.

Secondly, suppose that k > s. Let B’ be a
block in mx_1 such that B’ < {wg}. It holds
that S_ N L(Ao/J(mk—1, B’, {wi})) # 0. Note
that the IH (1) holds. We deduce from Lemma
3 that there exists no w’ € B’ such that T}, (w')
Tr(wg). This means that there exists no w” €
Pr(Sy) € Pr(L) such that Tt (w") = Tr(wg)
and w” < wg. We deduce from the definition
of PSP<(L) that wy € PSP<(L) C SP<(L).
Hence, the block B(wg,7r) = {wk} contains
exactly one element wy in SP<(L).

[End of Claim III-ii]

The discussions (I), (II) and (III) complete the
induction step.

O

Let S be complete for <, and let Ag/m = (Qr,
%, 0r, qo,., F) be the output of Algorithm 1 with the
input S and <. We define the mapping h: @, — Q
as h(B(w,n,)) = Tr(w). We deduce from Lemma
4(1) that h is well-defined.

Lemma 5. h is a bijection.

Proof. We will first show that h is an injection. Sup-
pose that h(B(w,n,)) = h(B(w',n,)) for any w,
w' € Pr(Sy). We deduce from the definition of
h that Tp(w) = Tr(w’). Suppose that w %, w'.
Lemma 4(1) implies that T (w) # Tr(w’), which
is a contradiction. Hence it holds that w =, w/,
which means that A is an injection.

We will secondly show that h is a surjection. We
deduce from the definition of SP<(L) that, for any
w € Pr(L), there exists ws, € SP<(L) such that
Tp(w) = Tr(wsp). Because S is complete for =<,
SP<(L) € SN<(L) C Pr(S4) holds. Hence, for any
Wsp € SP<(L) C Pr(Sy), there exists B(wgp, 7,) €
Qr. We have, for any w € Pr(L), Tr(w) = Tr(wsp)
= h(B(wsp, mr)) holds, which means that h is a sur-
jection.

O

Lemma 6. L(Ag/n.) = L.



Proof. We now want to show that Ag/7, is isomor-
phic to A(L). The following three claims are needed
(proofs omitted):

1. h(qgr) = Po-
2. h(F,) = F.
3. Let ¢ € Pr(S+), B(g,7r) €EQr,and a € Z. Tt

holds that h(é,(B(g, ), a)) = 8(h(B(g, 7)), a

We deduce from Lemma 5 and the above claims
that Ao/, is isomorphic to A(L).
|

We at last establish the following theorem.

Theorem 1. For any < in Or, Algorithm 1 iden-
tifies REG in the limit.

Proof. Let S be complete for <. Lemma 6 implies
that Algorithm 1 with the inputs < and S out-
puts the canonical automaton of L. Remark that
the completeness for < has a monotonic property.
Hence, Algorithm 1 with the inputs < and any sam-
ple S’ such that S C S’ outputs the canonical au-
tomaton of L.

O

5.3 Road to Proof of Necessity

We want to show that, for any < not in Og, Algo-
rithm 1 can not always identify REG in the limit.
The claim above is half proved (Lemma 10) but is
not completely proved yet.

5.3.1 Proof of Lemma 10

Let Og be the set of total orders on ¥* such that
the first condition of Or does not hold, and let <
be a total order in Og.

Lemma 7. There erists L € REG such that there
exists an infinite pair sequence (x1,v1), (T2,¥2), ---
that satisfies

x1,Y1 € S(j, minj(PSPj (L))),

Tr(z1) # To(y);

TL((Ijl) = TL(-T2) =y

Tp(yy) =To(y2) =+

< T3 < <Y << Ty <
-<y2—<...<m1_<...-<yl<...
< min<(PSP<(L)) < ---;

[y1] <1l < |y] < |me] <--- .

‘We define

m; = min{m; 1} U{|w| |w e T* A
w=<y AN |w <y} fori>1,
where mg = 0.
Lemma 8. m; <mgyg<mz<--- .
O

Lemma 9. An infinite sequence os enumerated as
). follows is a complete presentation of L in Lemma
7.

fori=1to oo do
enumerate all the elements w € ¥* such that
|lw| < m; and w is not enumerated yet.

enumerate two elements x},y; € X* such that
zi,y; € L and z;,y; are a proper prefiz of zi, yi,
respectively.

end for

o

Lemma 10. For any < in Og, Algorithm 1 can not
always identify REG in the limit.

Proof. Assume that we enumerate elements of X*
by using og and input them into Algorithm 1.

Suppose that we are on the k-th run of the for-
loop in og. The positive and negative samples are
denoted as follows:

Sp={z, ...,z ¥l - YU
{weZ ||w<mi AN weL},

S_={weX||lw<mp Awé¢L}.

It holds that x},y; € S} and hence their prefixes
Tk, Y are in Pr(S;), that is, xg,yx are states of
PT(S,). For any element w such that w < yg, it
holds that |w| > mg. This means that merging w
with w’ such that w < yx and w’ < yy, is successful.
Hence, Algorithm 1 succeeds in merging xx with y.
Because T, (zx) # T1(yx), the output automaton is
different from A(L).
It follows that, Algorithm 1 infinitely merges a
pair of states that must not be merged.
O

We will be able to show the necessity if we can
prove that, for any total order such that the second
condition of Or does not hold, Algorithm 1 can not
always identify REG in the limit.

6 Conclusions

‘We deduce from the discussions in Section 5 that we
can characterize SMSs that guarantee identifiability
in the limit if the following claim is established:
for any total order such that the second condition
of O does not hold, Algorithm 1 can not always
identify REG in the limit.



6.1 Natures of State-Merging Algo-
rithms

‘We consider why RPNI with a SMS in O can iden-
tify REG in the limit. Let < be a total order in Og,
L be a regular language over ¥, S = (S4,S5_) be
a sample of L, and A(L) = (Q,%,9,qo, F) be the
canonical automaton of L.

We will first consider some natures of the first
condition of Or. Because <€ Og holds, SP<(L) is
defined. We deduce from the definition of SP<(L)
and @ that there is a one-to-one correspondence be-
tween SP<(L) and Q. The proof of Lemma 4 im-
plies that an element in SP<(L) serves as a marker
representing a state in @ when RPNI merges com-
patible pairs of states. It follows that PSP<(L) and
SP<(L) may play an important role in RPNI and
other state-merging algorithms.

We will next consider those of the second. Let
w,w’ € ¥* and @ € ¥ such that w'a = w. Ifbd< < w
holds, then w’ < w holds. We deduce from the proof
of Lemma 4 that w’ has nondeterministic transitions
of a, which means that these transitions are removed
in the first if-then statement of the for-loop in RPNI.
In conclusion, by using the second condition of Og,
RPNI can fold up PT(S;) from inside into A(L).

6.2 Future Works

Some of our future works are the following.

‘We must extend our results to characterize SMSs
that guarantee identifiability in the limit. We be-
lieve that Algorithm 1 identifies REG in the limit if
and only if an input total order of Algorithm 1 is in
Or.

One of the other works is to characterize SMSs of
RPNI variants. There exist some variants of RPNI,
one of which (3, 7, 8] gives priority to remove nonde-
terministic transitions generated when merging com-
patible pairs of states. Such a change of an algo-
rithm also changes the characterization of SMSs of
the algorithm. We believe that the characterization
in that algorithm [3, 7, 8] is more sophisticated than
that of our algorithm.
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