BN LS SRS 2008—AL—118 (1)
IPSJ SIG Technical Report 2008,75,727

HREE CASHOCZET T F U T %
B A< —7FIH Ul

Py BT+, B REET, KR fR
Frili S5, A1 R, e Fpe

* KBRS KEEBEIARLEMZER 22— 291 T2 AEHR
VKBRS K¥EBE L#AMZeR R LA HIR
RSB TR KB TSR R HIK

HOZEZ A P VIZEROBO—RHIED 5OV AT LOBRAEREZRH T 5. SRS CADEC
ZETO P DVRECRERL LI, NEEBERIC LT, WEOBEOIKZ @B L AN, VAT
LAWHEICERS 2 L 2T 5. AR TR, #EHUADOUERREFELLEX, HEHLAHED
ZETO LIV RERT HFERRETS. BEFERE (1) THUICREIN TV 3 ERFEOER IR %
BAIL, K02 OWBEHCAHECEES T P UCHEATZZ LA TES.

Timer-based composition technique for self-stabilizing protocols
preserving the fault-containment property

Yukiko Yamauchi*, Sayaka Kameif, Fukuhito Ooshita*,
Yoshiaki Katayama!, Hirotsugu Kakugawa* , Toshimitsu Masuzawa*

* Graduate School of Information Science and Technology, Osaka University
 Department of Information Engineering, Hiroshima University
 Graduate School of Computer Science and Engineering, Nagoya Institute of Technology

Self-stabilizing protocols provide autonomous recovery from finite number of transient faults. Fault-
containing self-stabilizing. protocols promise not only self-stabilization but also quick recovery and
small effect from small scale of faults. In this paper, we introduce a timer-based composition of fault-
containing self-stabilizing protocols that preserves the fault-containment property of source protocols.
Our framework can be applied to a larger subclass of fault-containing self-stabilizing protocols than
existing compositions [1].

1 Introduction

Large scale networks that consist of a large number of processes communicating with each other have
been developed in these years. It is necessary to take measures against faults (e.g. memory crash at
processes, topology change, etc.) when we design distributed protocols for large scale networks.

A self-stabilizing protocol converges to a legitimate configuration from any arbitrary initial configu-
ration. Self-stabilization was first introduced by Dijkstra [2]. Since then, many self-stabilizing protocols
have been designed for many problems [3, 4, 5]. The stabilization property provides autonomous adapt-
ability against any number of transient faults that corrupt memory contents at processes. In practice,
the adaptability to small scale faults is important because catastrophic faults rarely occur. However,
self-stabilization does not promise efficient recovery from small scale faults and sometimes the effect of a
fault spreads over the entire network.

When a fault corrupts f processes by changing their memory contents arbitrarily in a legitimate
configuration, the obtained configuration is called an f-faulty configuration. An f-fault-containing self-
stabilizing protocol promises self-stabilization and fault-containment [6, 7, 8]: starting from an f’-faulty
configuration (f’ < f), it reaches a legitimate configuration in the time and with the number of processes
affected proportional to f or less.

Executing two different self-stabilizing protocols in parallel is well known as fair composition [5].
Fair composition provides hierarchical composition of two (or more) self-stabilizing protocols such that
the output of one protocol (called the lower protocol) is used as the input to the other (called the
upper protocol), and guarantees self-stabilization of the obtained protocol. However, fair composition

1

cannot preserve the fault-containment property of source protocols when composing fault-containing
self-stabilizing protocols.

Related work. Global neighborhood synchronizers are often used as a fundamental component in the
context of fault-containment. Global synchronization is used for each process to measure time to correct
some informations or to keep its state unchanged for some period of time. Ghosh et al. proposed
a technique to transform a non-reactive self-stabilizing protocol to a corresponding 1-fault-containing
protocol [7]. Their transformer utilizes a global neighborhood synchronizer that provides synchronization
from 1-faulty configuration. An obtained 1-fault-containing protocol guarantees that the output of the
protocol recovers quickly. However, the effect of a fault spreads over the entire network in the global
neighborhood synchronizer. This is because the global neighborhood synchronizer involves all processes in
the network into the synchronization. However, the expected property for fault-containment is temporal
and spatial containment of the effect of faults: the recovery actions are taken when and where it is
necessary.

Contributions. Yamauchi et al.[l] defined composition of fault-containing self-stabilizing protocols,
which they call fault-containing composition and proposed the first composition technique for fault-
containing composition. Recovery Waiting Fault-containing Composition (RWFC) strategy is to pre-
vent the execution of the upper protocol until the lower protocol recovers. In [1], RWFC strategy is
implemented as follows: each process evaluates a local predicate to check local consistency of the current
configuration of the lower protocol whenever the process wants to execute the upper protocol. If the pro-
cess finds the lower protocol locally consistent, then the process executes the upper protocol. Otherwise,
the process cannot execute the upper protocol. However, each process has to communicate with distant
processes to evaluate the local predicate. Moreover, they put many restrictions on source protocols and
it regulates the application of the composition framework.

In this paper, we present a novel timer-based technique for fault-containing composition. Though
we adopt RWFC strategy, the proposed composition utilizes recovery time of fault-containing protocols.
Recovery time is the maximum time for the system to recover from a target faulty configuration. We
force the upper protocol to stop during the recovery time of the lower protocol. After that, the upper
protocol can execute on the correct input from the lower protocol. Thus, the upper protocol can recover
with its fault-containment property and the composite protocol promises fault-containment as a whole.

Our framework does not need communications among distant processes and relaxes the restrictions
on source protocols: in [1] it is necessary that each process has to keep detecting the inconsistency of the
lower protocol during the recovery of the lower protocol by communicating with distant processes while
in this paper each process has to detect the inconsistency of the lower protocol in the initial configuration
by communicating direct neighbors.

We use local timers at processes to measure the recovery times of the source protocols. Global neigh-
borhood synchronizers are often used to implement local timers. However, a fault-containing protocol
bounds the effect of faults with contamination radius: the maximum (worst) distance from any faulty
process to any process affected by the faulty process is smaller than or equals to the contamination ra-
dius. We introduce a local neighborhood synchronizer that emulates M synchronized rounds among the
k-neighbors of the initiator that initiates the synchronization.

2 Preliminary

A system is a network which is represented by an undirected graph G = (V, E) where the vertex set V
is a set of processes and the edge set E is a set of bidirectional communication links. Each process has a
unique identity. Process p is a neighbor of process g iff there exists a communication link (p,q) € E. A set
of neighbors of p is denoted by N,. Let NJ = {p}, Nj = N, and for each i > 2, N} = quN;-l Ng\ {p}.
The set of processes denoted by N, is called i-neighbor of p. The distance between p and q (g # p) is
denoted by dist(p,q) and dist(p,q) = j iff ¢ & Ng_l ANg€N).

Each process p maintains local variables and the values of all local variables at p define the local
state of p. Local variables are classified into three classes: input, output, and inner. The input variables
indicate the input to the system and they are not changed by the system. The output variables are the
output of the system for external observers. The inner variables are internal working variables used to
compute output variables.

We adopt locally shared memory model as a communication model: each process p can read the value
of the local variables at ¢ € N, U{p}. A protocol at each process p consists of a finite number of guarded
actions in the form of (guard) — (action). A (guard) is a boolean expression involving the local variables
of p and Np, and an (action) is a statement that changes the value of p’s local variables (except input
variables). A process with a guard evaluated true is-called enabled. We adopt distributed daemon as a
scheduler: in a computation step, distributed daemon selects a nonempty set of enabled processes and

these processes execute the corresponding actions. The evaluation of guards and the execution of the
corresponding action is atomic: these computations are done without any interruption. A configuration
of a system is represented by a tuple of local states of all processes. An ezecution is an infinite sequence
of configurations £ = 09,071,032, -+ such that 0,41 is obtained by applying one computation step to o;
or 0,41 is the final configuration.

Distributed daemon allows asynchronous executions. In an asynchronous execution, the time is mea-
sured by computation steps or rounds. Let E = ¢, 01,09,--+ be an asynchronous execution. The first
round 0, 01,02, ,0; is the minimum prefix of F such that for each process p € V if p is enabled in
00, either p’s guard is disabled or p executes at least one step in og, 01, 09, - - - 0;. The second and latter
rounds are defined recursively by applying the definition of the first round to the remaining suffix of the
execution E' = 041,040, .

A problem (task) T is defined by a legitimate predicate on configurations. A configuration o is
legitimate iff o satisfies the legitimate predicate. In this paper we treat non-reactive problems: no process
changes its state after the system reaches a legitimate configuration, e.g.. spanning tree construction,
leader election, etc. We say a distributed protocol P(T) solves T in a configuration iff the configuration
satisfies the legitimate predicate L(P(T)). The input (output) of P(T) is represented by the conjunction
of input (output, respectively) variables at each process. We omit 7" if T is clear.

Definition 1 Self-stabilization

Protocol P is self-stabilizing iff it satisfies the following two properties:

Stabilization : starting from any arbitrary initial configuration, it eventually reaches a legitimate con-
figuration.

Closure : once it reaches a legitimate configuration, it remains in legitimate configurations thereafter.

A transient fault corrupts some processes by changing the values of their local variables arbitrarily.
A configuration is f-faulty iff the minimum number of processes such that we have to change their local
states (except inner variables) to make the configuration legitimate is f. We say process p is faulty iff we
have to change p’s local state to make the configuration legitimate and otherwise correct.

Definition 2 f-fault-containment

A self-stabilizing protocol is f-fault-containing iff it reaches a legitimate configuration from any f'-faulty
configuration (f' < f) with the number of processes that change their states according to the fault and
the time to reach a legitimate configuration depending on f (not |V|).

We denote an f-fault-containing self-stabilizing protocol as an f-fault-containing protocol. The perfor-

mance of an f-fault-containing protocol is measured by stabilization time, recovery time, and contami-

nation radius:

Stabilization time : the maximum (worst) number of rounds to reach a legitimate configuration from

an arbitrary initial configuration.

Recovery time : the maximum (worst) number of rounds to reach a legitimate configuration from an

f'-faulty configuration (f’ < f).

Contamination radius : the maximum distance from any faulty process to the process that changes its

local state according to the faulty process during the recovery from an f’-faulty configuration (f’ < f).
A hierarchical composition of two protocols P; and P, is' denoted by (Py * P2) where the variables of

Py and those of P are disjoint except that the input to P, is the output of P,. We define the output

variables of (P, * P,) is the output variables of P;. A legitimate configuration of (P * P) is defined by

L((Py * P;)) where L(P; x P,) = L(P;) A L(P,).

Definition 3 Fault-containing composition

Let Py be an f1-fault-containing protocol and Py be an fo-fault-containing protocol. A hierarchical com-

position (P x Py) is a fault-containing composition of P1 and Py iff (Py * Py) is an fi o-fault-containing

protocol for some f1 3 such that 0 < f1 o < min{f1, fo}.

In a hierarchical composition, the input to P; can be corrupted by a fault when the fault corrupts the

output variables of P1. However, the input to P; can be seen as the system parameters, e.g. topology,

ID of each process, etc.

Assumption 1 For any hierarchical composition (Py x Py), the input to Py is not corrupted by any fault.
We consider a subclass of fault-containing protocols I such that each f-fault-containing protocol

P € II satisfies Assumption 2, 3, and 4. Many existing fault-containing protocols [6, 8] satisfy Assumption

2, 3, and 4.

Assumption 2 The legitimate configuration of P is uniquely defined by the input variables.

Consider a composition (P * P;) of an f;-fault-containing protocol P; and an fa-fault-containing protocol
P,. Starting from an f’-faulty configuration (f’ < min{fi, f2}), it the output of P; after P; reaches a
legitimate configuration is different from what it was before the fault, then the input to P, changes and
the output of P, may change drastically to adopt it. Then, P, cannot guarantee fault-containment.
Because the input to P; is not changed by any fault (Assumption 1), Assumption 2 guarantees that P;
recovers to the unique legitimate configuration and ensures the possibility of fault-containment of P, in
the composite protocol.

Assumption 3 The legitimate predicate L(P) for P is represented in the form L(P) = Vp € V :
consp(P). The predicate cons,(P) involves the local variables at p and its neighbors, and it is defined
over the values of output, inner, and input variables.

We say process p is inconsistent iff cons,(P) is false, otherwise consistent. Because we work on non-
reactive problems, the predicate consy(P) is evaluated false when process p is enabled.

Assumption 4 In an f'-faulty configuration (f' < f), if a faulty process p is a neighbor of correct
process(es), at least one correct process q neighboring to p or p itself evaluates consqg(P) (or consy(P))
false.

For a faulty process p and a neighboring correct process g, consy,(P) (consg(P), respectively) involves the
local variables at ¢ and p. Because p is faulty, there can be some inconsistency between the local state of
p and that of q.

3 The Composition Framework

Let P, be an fi-fault-containing protocol and P, be an fp-fault-containing protocol. Our goal is to

produce f1 o-fault-containing protocol (P x P;) for fi o = min{f1, f2}. In the rest of the paper, we use
the notations shown in Table 1.

Table 1: Notations for the source protocols and the composite protocol

protocol [number of maximum faults recovery time contamination number inconsistency range
Py f T1 c1 k1
Py f2 T2 c2 k2

(P x Pp) f1,2 = min{f1, fo} 1,2 c12 k12

Fair composition of fault-containing protocols cannot preserve the fault-containment property of
source protocols. 'When a fault corrupts the output variables of P, at f processes (f < fi2), during
the recovery of P;, P, can be executed in parallel to adopt the changes in the output variables of P;.
The number of contaminated processes in P, may become larger than f, and this causes the number of
processes that change their local states in P, becomes larger than f. These processes can change its
state repeatedly until P recovers. If more than f, processes change their states repeatedly in P,, then P,
cannot guarantee fault-containment even though f (the number of the processes that the original fault
corrupts) is smaller than fo.

We implement RWFC strategy with local timers at processes. We implement timers at processes with
a local neighborhood synchronizer that synchronizes the processes in max{ci, ¢z }-neighbors for each faulty
process for (r; 4+ r2) rounds.. We first define the specification of the local neighborhood synchronizer in
Section 3.1 and show our composition framework in Section 3.2. Finally, we present an implementation
of the local neighborhood synchronizer in Section 3.3.

3.1 Specification of the Local Neighborhood Synchronizer

In this section we define a specification of our local neighborhood synchronizer for fault-containing com-
position (P; x P).

Specification 1 Each process p € V maintains a counter variable t,, that takes an integer in [0..(r1+72)].
The local neighborhood synchronizer is self-stabilizing and in a legitimate configuration, t, = 0 holds at
VpeV.

The local neighborhood synchronizer should be implemented with a typical technique of synchronizers [7].
We say a process is s-consistent iff its counter variable differs at most one with those at all its neighbors
involved in the synchronization. Synchronization is realized by making each counter variable s-consistent
and then decrementing it with preserving the s-consistency.

Synchronization radius is the maximum distance from any faulty process and a process involved in the
synchronization caused by the faulty process. From Assumption 4, the distance between a process that
finds inconsistency in the source protocols and any contaminated process is at most k1 2 = max{ci,co} +
max{f1, fo}+1. It is necessary to involve all k; o-neighbors for each faulty process into the synchronization
so that all max{c, co}-neighbors of each faulty process are involved in the synchronization.

A counter sequence of process p is the sequence of the value of ¢, from an initial configuration.

Specification 2 Starting from an f-faulty configuration (f < fi2), the local neighborhood synchronizer
should provide the following five properties:

Containment: synchronization radius is O(ky 2).

Synchronization: each processes involved in the synchronization decrements its counter variable with
keeping s-consistency.

Correct sequence: a counter sequence vg , U},, -+ of any correct process p involved in the synchronization
0,1 i1 i . 0,1 .. _ i=1_ i_
has a prefiz vy, vy, v, vy, for some i such that v, = v, = - - =v,7 =0 and v, =ri+r2.
Faulty sequence: a counter sequence vf]’, vé, --- of any faulty process q has a suffix Vg v}]“, BRI ug, e
or some i and j such that vF —v**t1 <1 fori<k<j and vi =0t =... = 0.
J 7 " Y J 7 = Vg

Termination: the local neighborhood synchronizer reaches a legitimate configuration in (r1 + 19 + O(1))
rounds.

We do not assume that faulty processes decrement their counter variables from (r;+72). From Assumption
4, when a faulty process is surrounded by other faulty processes, it cannot determine whether it is correct
or not.

Specification 3 The following APIs are available at each process p € V' for the application of the local
neighborhood synchronizer:

call_start_synch_NS: when this function call is executed at process p, it starts the synchronization
inwvolving ki o-neighbors of p. These processes decrements their counter variables from (r1 + r3) to 0 with
keeping s-consistency and the system reaches the legitimate configuration in O(ry + r3) rounds.
call_exec_NS: when this function call is executed at process p, if p is enabled in the local neighborhood
synchronizer, then it executes one of the corresponding actions and if p decrements ty,, this function call
returns true, otherwise false. If p is not enabled, then p does nothing and this function call returns L.

3.2 The Framework FC-LNS

Our composition framework FC-LNS (Fault-containing Composition with the Local Neighborhood Syn-
chronizer) is shown in Figure 1. Process p executes the guarded actions of the local neighborhood
synchronizer by executing call_exec_NS, and whenever it decrements t,, p executes the source protocols
by executing the procedure A(t,) that selects which source protocol is executed at p. If p finds inconsis-
tency in P, when 0 < t, < rp orin P, or P, when t, = 0, then it initiates the synchronization of the local
neighborhood synchronizer by executing call_start_synch_NS. Thus, p and its k; 2-neighbors execute Py
untill P, reaches the legitimate configuration. After that, they executes P, on the correct output from
P, and P; reaches the legitimate configuration with its fault-containment property.

Procedure A(ty) for process p
if (rg <tp <ri+r2) then execute P,
else execute Py;

Actions for any process p
true —
if call_exec.NS = true then A(tp);
if {(0 <tp <r2) A-consp(P1)}V{(tp =0)A (mconsp(P1) V —consp(P2))}
then call_start_synch_NS

Figure 1: FC-LNS

Theorem 1 FC-LNS provides a min{ f1, f2}-fault-containing protocol (Py*Py) for an fi-fault- containing
protocol Py and fa-fault-containing protocol Py. The contamination radius of the obtained protocol is
O(max{cy, ¢} + max{f1, fo}) and the recovery time is O(ry -+ r9).

Proof. For each faulty process p, each process ¢ € N, max{enca} ounts down tq from (r1 + r2) to

0. Thus, P, first reaches the legitimate configuration with its fault-containment property and then P
reaches the legitimate configuration with its fault-containment property. Each process involved in the
synchronization can execute P» on the correct input from P; in O(ry + r2) rounds and the recovery time
of the obtained protocol is O(r1 + 72).

Starting from an f-faulty configuration (f < fi2), call_start_synch_NS is executed at faulty processes
and some correct processes neighboring a faulty process. Thus, contamination radius of the obtained
protocols is O(max{c1, c2} + max{f1, f2}).]

3.3 Local Neighborhood Synchronizer

In this section we present an implementation of the local neighborhood synchronizer LNS that meets the
specifications in Section 3.1.

For any given M and k, LNS provides the synchronization of M rounds among k-neighbors of the
initiator. The synchronization consists of three phases. In the first phase, an initiator arises and the
shortest path tree rooted at the initiator is constructed to involve all the k-neighbors of the initiator into
the synchronization. Then, in the second phase, the synchronized count-down of counter variables takes
place among k-neighbors of the initiator. In the third phase, the shortest path tree is released from the
root to the leaves.

Each process p has two variables, t, and d,: t, is the counter variable and d, is the depth variable
which is used to construct the shortest path tree In a legitimate configuration, ¢, = 0 A d, = 0 holds at
VpeV.

Let p be an initiator. Each process q € Nz’f constructs the shortest path tree by setting dy =
k — dist(p, q) where dist(p, q) denotes the distance between p and ¢q. The parent(s) of ¢ is any neighbor
r € Ny where d, = dy + 1. A process s € N, is a child of ¢ iff d; = dq — 1.

Predicates
safe_dp—{d,,=k}v{d,,=0}v{(0<d,,<k)/\(3qu,,:dq—dp=1)}
OK_dp = safedy A (Vg € Np : |dp —dg| <1
safety = {tp =0} V {tp = M} V{39 eN,: ftp —tq] <A
(Vg€ Np: (tg=0A(ty = MV dy = 0)) v (t —tq|
OK_tp = safe-ty A [{t —O}V()(d,,>0)/\ quN,, ﬁ:
dpy = 0) A (3g € Np:dg = 1A Jtp - tg] SV}
initp = Ip(1) VIp(2) VIp(3)
(1)-{(tp>0) (dp>1 }Aﬁ(t,,_M/\d,, k)YA{Yg € Np:tg =0Adg =0}
IP)={(0<dp <k)A (Vg€ Np:dp >dy)A(3g € Np:dg >0)}
I,(3) = {—safety A (tp # M Vdp # k)N (Vg€ Np : tp > tq)}
7'aisep E Ry(1) A Rp(2)
Rp(1) = (tp # M)
Rp(2)~{3q€Np'(tq=M)/\(dq>0)/\—a((tp=M—1)/\(dp:dq—1))/\(VTENP:dT<dp—>tT=M)}
mazdy = Mp(1) A Mp(2
My(1) = (tp > 0) A (dp # k)
Mp(2) = (maxgen, {dg} # 0) A (maxgen, {dg} — 1> dp)
decp = OK_dp A OK_t, A Dp(1) A Dp(2)
Dp(1) = (tp > 0) A (Vg € Np : tp > tq)
Dp(2) = (Vg € Np : tp = tqg — dp > dg)
crdy = Cp(l)/\Cp(Q)
Cp(1) = (tp =0) A{Vg € Np : (tg = 0)
Cp(2) = (dp > 0) A {Va € Ny : (dp > dg) V (dg = 0)}

Actions for any process p

Sy initp V Predicatei® — t,=M;d, =k

Sy raisep — tp = M if (~((maxqen, {dg} =k — 1) A(dp # k))) then dp = maxgen, {dg} — 1
S3 mazdp — dp =maxgen,{dq} —1

Sy decy — tp=1tp—1; Actiong“

S5 crdp — dp=0

Figure 2: LNS (Predicatei™, Actionge)

The protocol LNS is shown in Figure 2. Parameter Predicate;)”” is a predicate that involves local

variables at p and all its neighbors and parameter Actionz“ is a set of actions that changes the value of
local variables at p except t, and dp.

To distinguish process p’s state, we introduce the four predicates: safe_d,, OK_dy, safe_t,, and OK_t,,.
The predicate safe_d, is evaluated true when p has at least one parent iff p is an internal process (0 <
d, < k). The predicate OK_d, is evaluated {rue when p is an internal process and it has at least one
parent and other neighbors are its children or when p is not an internal process and d, differs at most
one with all its neighbors. The predicate safe_t, is evaluated true iff p has at least one neighbor that
[tp — tq] < 1 and other neighbors wait to join the shortest path tree. The predicate OK_t, is evaluated
true when p is an initiator or an internal process (d, > 0) and Vg € N, : |t, — t4| < 1 holds or when p is
not a leaf process (d, = 0) and it has at least one parent ¢ where [t, — t4] < 1 holds. OK_t, represents
the consistency of t, and OK_d, represents the consistency of d,. If OK_t, and OK_d, hold at process p,
p attended the shortest path tree correctly and ¢, is synchronized with all its neighbors. i

The first phase starts when some process, called initiator, executes S;. Process p that satisfies one
of the following conditions executes S; and sets t, = M and d, = k: (a) it finds its variables corrupted
and other neighbors are correct (I,(1) = ture), (b) it was involved in a shortest path tree but there is no
correct parent (I,(2) = ture), (c) it finds counter variables at itself and at neighbors not s-consistent and
the value of ¢, is larger than those at all neighbors (I,(3) = ture). Note that in a 1-faulty configuration,
a faulty process p cannot find its corruption with Ip,(1) if £, = 0 A d, = 1 holds. This is because, when
the shortest path tree is released after the synchronized count-down, t, = 0 A d, = 1 holds just before p
sets dj, to 0.

After p executes S1, each process ¢q € N;f executes Sy (and S; if necessary) and ¢ is involved in the
shortest path tree by setting t; = M and dq = k — dist(p,q). When t; # M (R,(1) = true), if process ¢
finds that ¢, = M holds at some neighbor r that is not its parent (R4(2) = true), then g executes Sy and
becomes a child of r by setting t{; = M and dy = d, — 1. However, d, does not always takes the value
k — dist(p, 1) after it executes Sa. Then, ¢ updates dg by executing S3 whenever it finds a neighbor s
where dg > dy + 1 (My(2) = true). After t; = M Ndgq = k — dist(p, g) holds at g and all its neighbors get
involved in the shortest path tree, ¢ goes into the second phase.

In the second phase, ¢ decrements t4 by executing S;. The synchronization is realized by decrementing
tq with keeping the s-consistency (Dg4(2) = true). To keep the s-consistency among counter variables at
all the neighbors, we force g to decrement its counter variable iff the value of t, is locally maximum
(Dg(1) = true). Thus, after ¢ decrements tg, |t — t.| < 1 holds for Vr € Ny. Process g decrements t,
after each s € Ny where dg > dg decremented its counter variable. Thus, the execution of S4 starts from
the initiator and each process q € N”f U{p} counts down t4 from M to 0. The second phase finishes when
tq reaches 0.

In the third phase, after all the neighbors finish the count-down (C4(1) = true), g executes S5 and
sets d, = 0. However, g waits its parent to execute S5 (Cq(2) = true). So, the execution of S also starts
from the initiator to the leaf and the shortest path tree is released. Eventually, the third phase ends and
tq=0Ady; =0holds at Vg € V.

APIs of LNS defined in Specification 3 is given as its parameters. We should set Predicate}" and
Actiong“ as follows:

Predicatei,"“ ={(0 < t, < r9) A consp(Pr)} V{(t, = 0) A =(cons,(Pr) A consp(Ps))}
Actiong*® =A(ty)
The following theorem holds for LNS .
Theorem 2 Protocol LNS is self-stabilizing.

Lemma 1, 2, 3, 4, and 5 holds for LNS and LNS provides the five specification in Specification 1 and
2 with M =71 4+ ro and k = k1 2. (Due to space limitation, we omit proofs for these lemmas.)

Lemma 1 (Containment)
Starting from an f-faulty configuration (f < f12), LNS provides the containment property.

Lemma 2 (Synchronization)
Starting from an f-faulty configuration (f < f12), LNS provides the synchronization property.

Lemma 3 (Correct sequence
Starting from an f-faulty configuration (f < f12), LNS provides the correct sequence property.

Lemma 4 (Faulty sequence)
Starting from an f-faulty configuration (f < f12), LNS provides the faulty sequence property.

Lemma 5 (Termination)
Starting from an f-faulty configuration (f < f12), LNS provides the termination property.

4 Conclusion

We proposed a novel timer-based fault-containing composition. To implement timers, we designed a
local neighborhood synchronizer protocol. Local neighbor synchronizers are very useful in the field of
fault-containment, e.g. adding fault-containment property to self-stabilizing protocols by using a local
neighborhood synchronizer. Some specific implementation of local neighborhood synchronizers should be
developed for each application.

Our next goal is to establish a composition framework for various types of source protocols preserving
their fault-tolerance.)

Acknowledgement. This work is supported in part by JSPS Research Fellowships for Young Sci-
entists, Global COE (Centers of Excellence) Program of MEXT, Grant-in-Aid for Scientific Research
((B)19300017, (B)17300020, (B)20300012, and (C)19500027)) of JSPS, Grand-in-Aid for Young Sci-
entists ((B)18700059 and (B)19700075) of JSPS, and Kayamori Foundation of Informational Science
Advancement. '

References

[1] Y. Yamauchi, S. Kamei, F. Ooshita, Y. Katayama, H. Kakugawa, and T. Masuzawa. Composition
of fault-containing protocols based on recovery waiting fault-containing composition framework. In
Proceedings of SSS52006, pages 516-532, 2006.

[2] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of ACM,
17(11):643-644, 1974.

[3] N. S. Chen, H. P. Yu, and S. T. Huang. A self-stabilizing algorithm for constructing spanning trees.
Information Processing Letters, 39:147-151, 1991.

[4] S. T. Huang and N. S. Chen. Self-stabilizing depth-first token circulation on networks. Distributed
Computing, 7(1):61-66, 1993.

[5] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems. In Proceedings of WSS
1989, 1989.

[6] S. Ghosh and A. Gupta. An exercise in fault-containment: self-stabilizing leader election. Information
Processing Letters, 59(5):281-288, 1996.

[7] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-stabilizing algorithms.
In Proceedings of PODC 1996, pages 45-54, 1996.

[8] S. Ghosh and X. He. Fault-containing self-stabilization using priority scheduling. Information Pro-
cessing Letters, 73:145-151, 2000.

