BN LS SRS 2008—AL—119 (10
IPSJ SIG Technical Report 2008,79,712

EOEHEEEE LIEFADFIZ
KEBA, WHTAT, FEFR—

*BBERE T2 ERITER T 376-8515 FEE A T RAHET 1-5-1.
P BERIBEERERER FHHRS R T LR T 182-8585 FILERFRAT HsH4T » & 1-5-1.

BME AXTE, br)HEnflORL kEOEL LOIEFARZIIETIEERT LTI X 5%
525, BERROTALIY XLL, Z0OL52KE 1 20%72Y O(n — k) RHETIET 3. =
ncxtL, ek, ZETH 124720 O(1) R THET AT LTy X252 5.

F—O—F: 757, TAIY X5, JBFR, FIZ, FRA

Efficient Enumeration of Ordered Trees
with k Leaves
Yota Otachi*, Katsuhisa Yamanaka' and Shin-ichi Nakano*

*Department of Computer Science, Gunma University,
1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
tGraduate School of Information Systems, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.

Abstract In this paper, we give a simple algorithm to generate all ordered trees with
exactly n vertices including exactly k leaves. The best known algorithm generates such
trees in O(n — k) time for each, while our algorithm generates such trees in O(1) time for
each in worst case.

Keywords: graph, algorithm, ordered tree, enumeration, family tree.

1 Introduction

It is useful to have the complete list of objects for a particular class. One can use such a list to search for
a counter-example to some conjecture, to find the best object among all candidates, or to experimentally
measure an average performance of an algorithm over all possible inputs.

Many algorithms to generate all objects in a particular class, without repetition, are already known
[1, 2, 8,9, 10, 12, 13, 14, 15, 16, 17, 20]. Many excellent textbooks have been published on the subject
(3, 5, 7, 19].

Trees are the most fundamental models frequently used in many areas, including searching for keys,
modeling computation, parsing a program, etc. From the point of view, a lot of enumeration algorithms
for trees are proposed (2, 8, 12, 14, 15, 17, 20], and a great textbook has been published by Knuth [6].
Also, enumeration algorithms for some subclasses of trees are known [4].

A rooted tree means a tree with one designated “root” vertex. Note that there is no ordering among
the children of each vertex. Beyer and Hedetniemi [2] gave an algorithm to generate all rooted trees with
n vertices. Their algorithm is the first one to generate all rooted trees in O(1) time per tree on average,
and based on the level sequence representation. Li and Ruskey [8] also gave an algorithm to generate
all such trees, and showed that it was easily modified to generate restricted classes of rooted trees. The
possible restrictions are (1) upper bound on the number of children, and (2) lower and upper bounds on
the height of a rooted tree.

A tree without the root vertex is called a free tree. Due to the absence of the root vertex, the
generation of nonisomorphic free trees is a more difficult problem. Wright et al. [20], and Li and Ruskey
[8] gave algorithms to generate all free trees in O(1) time per tree on average, then Nakano and Uno [14]

A AL

Figure 1: All rooted ordered trees with 5 vertices including 3 leaves.

improved the running time to O(1) time in worst case. Also they generalized the algorithm to generate
all “colored” trees [15], where a colored tree is a tree in which each vertex has a color.

An ordered tree means a rooted tree with a left-to-right ordering specified for the children of each
vertex. An algorithm to generate all ordered trees has been proposed by Nakano [12]. Sawada [17]
handled enumeration problem for similar but different class of trees, called circular-ordered trees. A
circular-ordered tree is a rooted tree with a circular ordering specified for the children of each vertex.
Sawada [17] gave algorithms to generate circular-ordered trees and non-rooted ones in O(1) time per tree
on average.

In this paper, we wish to generate all ordered trees with exactly n vertices including exactly k leaves.

Let Sy, be the set of ordered trees with exactly n vertices including exactly k leaves. The number of
trees in S, i is known as the Narayana number [18] as follows.

G=D) G2)

|Sn,k| = k’

For instance there are |S5 3| = 6 ordered trees with exactly 5 vertices including exactly 3 leaves, as shown
in Fig. 1, in which the root vertices are depicted by white circles. Such trees are one of the most natural
subclasses of trees and are researched extensively, including enumeration [12], counting [18] and random
generation [11]. Nakano [12] gave an algorithm to generate all trees in S, ; in O(n — k) time for each. In
this paper, we give more efficient algorithm. Our algorithm is simple and generates all trees in Sy in
O(1) time for each in worst case.

The main idea of our algorithms is as follows. For some graph enumeration problems (biconnected
triangulations [9], triconnected triangulations [13] and ordered trees [12]) we can define a simple tree
structure among the graphs, called the family tree, in which each vertex corresponds to each graph to be
enumerated. In this paper, we design more clever family tree than the one in [12].

The rest of the paper is organized as follows. Section 2 gives some definitions. Section 3 defines the
family tree among trees in Sy, . Section 4 gives a simple algorithm to generate all trees in Sy, .

2 Definitions

In this section, we give some definitions. Let G be a connected graph with n vertices. The degree of a
vertex v, denoted by d(v), is the number of neighbors of v in G. A tree is a connected graph with no
cycle. A rooted tree is a tree with one vertex r chosen as its root. For each vertex v in a rooted tree, let
UP(v) be the unique path from v to . If UP(v) has exactly k edges then we say the depth of v is k. The
parent of v # r is its neighbor on UP(v), and the ancestors of v # r are the vertices on UP(v) except v.
The parent of r and the ancestors of r are not defined. We say if v is the parent of u then u is a child of
v, and if v is an ancestor of u then u is a descendant of v. A leafis a vertex having no child. If a vertex
is not a leaf, then it is called an inner vertex.

An ordered tree is a rooted tree with a left-to-right ordering specified for the children of each vertex.
For an ordered tree T with the root r, let LP(T) = (lo(= r),l1,12,...,lp) be the path such that I; is
the leftmost child of I,_; for each 4, 1 < ¢ < p, and I, is a leaf of T. We call LP(T) the leftmost
path of T, and l, the leftmost leaf of T. |LP(T)| is the number of edges in LP(T). Similarly, let
RP(T) = (ro(= r),r1,72,...,7¢) be the path such that r; is the rightmost child of r;_; for each 3,
1 <4< gq, and rq is a leaf of T. We call RP(T) the rightmost path of T, and rq the rightmost leaf of T'.

Figure 2: The root tree Rz 4.

Tg-1 1g-1
L, L,
lp I Iy -> lpl Tq —
P P
T T

P(T) P(T)
(@) (b)

Figure 3: Examples of the parents in (a) Case 1 and (b) Case 2.

3 The Family Tree

Let Sy,x be the set of all ordered trees with exactly n vertices including exactly k leaves. In this section,
we define a tree structure among the trees in Sy 1 in which each vertex corresponds to a tree in Sy, k.

We need some definitions.

The root tree, denoted by Ry x, of Sy i is the tree consisting of the leftmost path (lo(=7),11,...,lh—%)
and k — 1 leaves attaching at vertex l,—x. See Fig. 2 for an example.

Then we define the parent tree of each tree T' in S, x \ { Rn i} as follows. Let I, and ry be the leftmost
leaf and the rightmost leaf in 7. We have two cases.

Case 1: r4_; has two or more children.

P(T) is the tree obtained from T by (1) removing 74, then (2) attaching a new leaf to l,—; as the
leftmost child of /,_;. See Fig. 3(a) for an example. The removed and attached vertices are depicted by
boxes.

Case 2: 741 has only one child 7.
P(T) is the tree obtained from T by (1) removing ry, then (2) attaching a new leaf to I,. See Fig.
3(b) for an example.

We have the following lemma.
Lemma 3.1 For any T € Sp i \ {Rn,k}, P(T) € Snk holds.

T is called a child tree of P(T). If T is a child tree in Case 1, then T is called Type 1 child, otherwise,
T is Type 2 child.

Given a tree T in S,k \ {Rn,x}, by repeatedly finding the parent tree of the derived tree, we can
have the unique sequence T, P(T'), P(P(T)), ... of trees in Sy which is called the removing sequence of
T. See Fig. 4 for an example, in which each solid line corresponds to the relation with Case 1, and each
dashed line corresponds to the relation with Case 2.

Lemma 3.2 The removing sequence ends up with the root tree Ry, .

Proof. Let T be a tree in S, x — {Rnx}. Let LP(T) = (lg,l4,...,1,) be the leftmost path of 7. We
define two functions f(T') and g(T') as follows. We define that f(T) = |LP(T)|. Let ci,ca,...,cq be the
children of I, from left to right. Note that a is the number of children of /,—;. We choose the minimum
i such that ¢; is an inner vertex. Then we define that g(T) = ¢ — 1. For convenience, if there is no such
inner vertex, then we define that g(T') = a. Note that 1 < f(T) <n—k and 1 < g(T) < k for any T in
S k-

b b o]

P(T) P(P(T)) P(P(P(T))) P(P(P(P(T)))) Ry

Figure 4: The sequence of trees.

Now we define a potential function p(T) = (f(T), g(T)). It is not difficult to see that p(T) = (n—k, k)
if and only if T = R, x. Suppose that T; and T3 are two distinct trees in S, x. We denote p(T1) < p(T2)
if (1) £(T1) < £(T2) or (2) f(T1) = £(Ty) and g(Ty) < g(T:).

Next we show that p(T) < p(P(T)). Suppose T is a Type 1 child of P(T) (see Fig. 3(a)). In this
case, we have f(T) = f(P(T)) and g(T) + 1 = g(P(T)). Thus p(T) < p(P(T)) holds. If T is a Type 2
child of P(T), we always have f(T) + 1 = f(P(T)). Thus p(T) < p(P(T)) holds.

Therefore, by repeatedly finding the parent of the derived tree, we eventually obtain R, ; on which
the potential is maximized. This completes the proof. Q.£.D.

By merging removing sequences we can have the family tree Tp, i of S, 1 such that the vertices of Ty,
correspond to the trees in S, and each edge correspond to the relation between some T and P(T'). See
Fig. 5 for an example.

4 Algorithm

Let Sy, 1 be the set of ordered trees with exactly n vertices including exactly k leaves. This section gives
our algorithm to generate all trees in S, 1 by traversing T, x.

Given Sy, 1 we can construct T}, x by the definition, possibly with huge space and much running time.
However, how can we construct T}, j efficiently only given two integers n,k? Our idea [9, 12, 13] is by
reversing the procedure finding the parent tree as follows.

If k = 1, Sy x includes only one element which is the path with n — 1 edges, then generation is
trivial. Also if kK = n — 1, Sy, includes only the star of n vertices. Therefore, from now on we assume
1<k<n-1

Let T € Sy k. Let LP(T) = (lo(=1),l,...,1p) be the leftmost path of T, and I, the leftmost leaf of
T. Let RP(T) = (ro(=1),71,...,7q) be the rightmost path of T, and r, the rightmost leaf of T. We
denoted by T'[r;], 0 < i < g, the tree obtained from T by (1) removing the leftmost leaf and (2) attaching
a new leaf to r; as the rightmost child of r;.

Now we explain an algorithm to generate all child trees of the given tree T in Sy, . We have the
following two cases.

Case 1: T is the root tree Ry, x.

Each T[r;], 0 < i < g — 2, is a child of T, since P(T[r;]) = T Since T'[rq—1] is isomorphic to the root
tree Ry i in Spk, T'[rg—1] is not a child tree of T. Since P(T'[rq]) # T, T[ry] is not a child of T.

Thus T has ¢ — 1 of Type 1 children and no Type 2 child.

Case 2: T is not the root tree.

If I,—1 has two or more children, and the second child of l,_; from left is not a leaf, then T has no
child tree, since if T is the parent of some tree then the second child of I,_; from left is a leaf (Case 1),
or l,—1 has only one child and it is a leaf (Case 2). See Fig. 3. Now we assume otherwise. We have the
following two subcases.

Case 2(a): lp—1 has two or more children.
Let T be the tree obtained from T by removing l,. Then T has k — 1 leaves. Thus we should add

a new vertex to T so that in the resulting graph the number of leaves increases by one. The detail is as
follows.

| s
LG = G =G A.If.&a..r\m&a:

Mg

Each T[r;], 0 < i < ¢ — 1, is a child tree of T, since P(T'[r;]) = T. On the other hand, T'[r,] is not a
child tree of T, since P(T'[ry]) # T.
Thus T has g of Type 1 children and no Type 2 child.

Case 2(b): l,—1 has only one child, which is ,.
Any T'[r;], 0 <i < g—1, is not a child tree of T. T[ry] is the child tree of 7. Thus T has exactly one
Type 2 child.

The above case analysis gives the following algorithm.

Procedure find-all-child-trees(T)
begin
01 Output T {Output the difference from the previous tree.}
02 Let I, and 74 be the leftmost leaf and the rightmost leaf of 7.
03 Let RP(T) = (ro(=r),r1,72,...,7q) be the rightmost path of T
04 if [,—; has two or more children and the second child of /,_; from left is not a leaf then
05 return
06 if I,_; has two or more child then
07 fori=0tog—1

08 find-all-child-trees(T'[r;]) {Case 2(a)}

09 else

10 find-all-child-trees(T'[ry]) {Case 2(b)}
end

Algorithm find-all-trees(n, k)

begin
01 Output R,
02 T =Rnk

03 Let RP(T) = (ro(=7),71,72,...,7q) be the rightmost path.
04 fori=0toqg—2
05 find-all-child-trees(T'[r;]) {Case 1}

end

We have the following theorem.

Theorem 4.1 The algorithm uses O(n) space and runs in O(|Sp x|) time, where |Sy k| is the number of
ordered trees with exactly n vertices including exactly k leaves.

Proof. To construct T[r;] from T, our algorithm needs the references to the leftmost leaf I, and
the rightmost path of 7. Each can be updated as follows. In Case 2(a) the second child of I,_; from
left becomes the leftmost leaf of T'[r;]. In Case 2(b) the parent l,_1 of l, becomes the leftmost leaf of
T[ri]. In both cases the rightmost path is updated to the path from the newly added vertex to the
root, and the new rightmost path is derived from the old one by cutting off the subpath 751, 7i42,...,74
then appending the new vertex. Thus we can maintain in O(1) time the leftmost leaf and the rightmost
path. Q.£.D.

The algorithm generates all trees in Sy, 1, in O(|Sp x|) time. Thus the algorithm generates each tree
in O(1) time “on average.”

Note that after generating a tree corresponding to the last vertex in a large subtree of T, i, we have
to merely return from the deep recursive call without outputting any tree. This may take much time.
Therefore, the next tree cannot be generated in O(1) time in worst case.

However, a simple modification [14] improves the algorithm to generate each tree in O(1) time in
worst case. The algorithm is as follows.

Procedure find-all-children2(T', depth)
{ T is the current tree, and depth is the depth of the recursive call.}

begin
01 if depth is even then
02 Output T {before outputting its child trees.}
03 Generate child trees by the method in the first algorithm, and recursively call find-all-
children2 for each child tree.
04 if depth is odd then
05 Output ' {after outputting its child trees.}
end

One can observe that the algorithm generates all trees so that each tree can be obtained from the
preceding one by tracing at most three edges of T), . Note that if tree T corresponds to a vertex v in
T,,x with odd depth, then we may need to trace three edges to generate the next tree. Otherwise we
need to trace at most two edges to generate the next tree. Note that each tree is similar to the preceding
one, since it can be obtained with at most three operations. Therefore we have the following theorem.

Theorem 4.2 One can generate ordered trees with exactly n vertices including ezactly k leaves in O(1)
time for each in worst case.

5 Conclusion

In this paper, we have given an efficient algorithm to generate all ordered trees with exactly n vertices
including exactly k leaves. Our algorithm define more clever family tree than the one in [12].
References

(1] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21-46, 1996.

[2] T. Beyer and S. Hedetniemi. Constant time generation of rooted trees. SIAM J. Comput., 9(4):706—
712, 1980.

3

L. Goldberg. Efficient algorithms for listing combinatorial structures. Cambridge University Press,
New York, 1993.

[4] Y. Kikuchi, H. Tanaka, S. Nakano, and Y. Shibata. How to obtain the complete list of caterpillars.
Proc. The 9th Annual International Computing and Combinatorics Conference, (COCOON 2003),
LNCS 2697:329-338, 2003.

[5] D. Knuth. The art of computer programming, volume 4, fascicle 2, generating all tuples and permu-
tations. Addison-Wesley, 2005.

[6] D. Knuth. The art of computer programming, volume 4, fascicle 4, generating all trees, history of
combinatorial generation. Addison-Wesley, 2006.

[7] D. Kreher and D. Stinson. Combinatorial algorithms. CRC Press, Boca Raton, 1998.

[8] G. Li and F. Ruskey. The advantages of forward thinking in generating rooted and free trees. Proc.
10th Annual ACM-SIAM Symp. on Discrete Algorithms, (SODA1999), 939-940, 1999.

[9] Z. Li and S. Nakano. Efficient generation of plane triangulations without repetitions. Proc. The
28th International Colloquium on Automata, Languages and Programming, (ICALP 2001), LNCS
2076:433-443, 2001.

[10] B. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306-324, 1998.

[11] T. Muramatsu and S. Nakano. A random generation of plane trees with exactly k leaves. IEICE
Transaction on Fundamentals, J90-A(12):940-947, 2007. (in Japanese).

[12] S. Nakano. Efficient generation of plane trees. Inf. Process. Lett., 84(3):167-172, 2002.

[13] S. Nakano. Efficient generation of triconnected plane triangulations. Comput. Geom. Theory and
Appl., 27(2):109-122, 2004.

[14] S. Nakano and T. Uno. Constant time generation of trees with specified diameter. Proc. the 30th
Workshop on Graph-Theoretic Concepts in Computer Science, (WG 2004), LNCS 3353:33-45, 2004.

[15] S. Nakano and T. Uno. Generating colored trees. Proc. the 30th Workshop on Graph-Theoretic
Concepts in Computer Science, (WG 2005), LNCS 3787:249-260, 2005.

[16] R. Read. Every one a winner or how to avoid isomorphism search. Annuals of Discrete Mathematics,
2:107-120, 1978.

[17] J. Sawada. Generating rooted and free plane trees. ACM Transactions on Algorithms, 2(1):1-13,
2006.

[18] R. Stanley. Enumerative combinatorics, volume 2. Cambridge University Press, 1999.
[19] H. Wilf. Combinatorial algorithms: An update. SIAM, 1989.

[20] R. Wright, B. Richmond, A. Odlyzko, and B. McKay. Constant time generation of free trees. SIAM
J. Comput., 15(2):540-548, 1986.

