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Recently Kamiyama, Katoh, and Takizawa have shown a theorem on packing
arc-disjoint arborescences that is a proper extension of Edmonds’ theorem on disjoint
spanning branchings. We show a further extension of their theorem, which makes
clear an essential role of a reachability condition played in the theorem. The right
concept required for the further extension is “convexity” instead of “reachability.”

1. Introduction: a theorem of Kamiyama, Katoh, and
Takizawa

Recently Kamiyama, Katoh, and Takizawa [3] have shown a theorem (KKT theorem
for short in the sequel) on packing arc-disjoint arborescences that is a proper extension
of Edmonds’ theorem [2] on disjoint spanning branchings, which is described as follows.
(The precise definitions of terms used here will be given later.)

Let G = (V, A) be a directed graph with a vertex set V and an arc set A. For any vertex
v € V we denote by RZ(v) the set of vertices reachable from v by directed paths in G.
Given a set of roots ; (¢ € I'), KKT theorem gives a characterization of the existence of a
set of arc-disjoint arborescences H; (i € I) such that for each 7 € I arborescence H; has
aroot r; and exactly spans RE(r;).



In this note we show a further extension of KKT theorem, which makes clear an essen-
tial r6le played by a reachability condition in the theorem. The right concept required for
the further extension is “convexity” instead of “reachability.”

For more information about disjoint arborescences, their extensions, and related topics
see [4, Part V] and [1].

2. An extension of KKT theorem

Let G = (V, A) be a directed graph with a vertex set V' and an arc set A. Each arc
a € A has a tail denoted by 0" a and a head denoted by 0~ a. For any vertex v the in-
degree of v is equal to the number of arcs that have v as their heads. A branching in
G is a subgraph H = (U, B) of G without any cycle such that every vertex v in U has
in-degrees at most one in H. Each connected component of branching H has a unique
vertex, called a root, that has the in-degree equal to zero in H. A connected branching is
called an arborescence, which has a single root.

For any vertex v € V we denote by RZ(v) the set of vertices reachable from v by
directed paths in G and by R (v) the set of vertices from which v is reachable by a
directed path in G. Also define forany W C V/

REW) = {RE() [v e W}, Rg(W)=HRz(w) lve W} (.1

A vertex subset W is called a convex set in G if we have W = RE(W) N Rg(W), i.e., for
every directed path P from a vertex in W to a vertex in W all the intermediate vertices
of P also lie in W. The concept of convexity plays an essential rdle in our result, which
replaces the r6le of reachability from roots in KKT theorem [3]. It should be noted that
for any convex set U in G and the vertex set W of any strongly connected component of
G that satisfy U N W # (), we must have U D W.

Suppose that we are given a finite index set I and, for each i € I, a specified vertex
r; € V. Here we may allow r; = r; for some distinct 4, j € I. For each i € I we are also
given a convex set U; C V such that r; € U;. For any v € V define

Iv)={iel|veU}. (2.2)

We assume that I(v) # () forallv € V.

Now we are ready to state our main theorem, which is an extension of KKT theorem.
It should be noted that replacing U; by R&(r;) for all i € I in our theorem yields KKT
theorem. Our proof employs KKT theorem recursively. For any vertex subset Z C V
denote by G[Z] the subgraph of G induced by Z.



Theorem 2.1: The following two statements are equivalent.

(a) There exist arc-disjoint arborescences H; = (U;, B;) (i € I) such that for each
i € I arborescence H; has a root r;.

(b) For eachv € V there exist arc-disjoint directed paths P; (i € I(v)) such that for
eachi € I(v) path P; is from r; to v.

(Proof) ((a) = (b)): This implication is easy.

((b) = (a)): Suppose (b) holds.

Consider the decomposition of graph G into strongly connected components, which
defines a partial order < on the set of strongly connected components as follows. For two
strongly connected components / and H' we have H < H’ if and only if there exists
a directed path from H' to H. Let W C V be the vertex set of a strongly connected
component that is minimal with respect to the partial order <. In other words, W is the
vertex set of a strongly connected component in G such that R (W) = W.

Define

IW)=U{Iv) [ve WH={ie I|W C U}), 23)
Ui(W)=UinRg(W) (i€ I(W)), (2.4)
V(W) = {U:(W) i e I(W)}. (2.5)

Then consider the subgraph G = G[V(W)] of G induced by V(W). Because of the
convexity of U; (i € I), definitions (2.3)~(2.5), and assumption (b) we can show the
following two facts.

Fact 1: For each i € I(W) U;(W) is exactly the set of vertices that can be reached from
r; by directed paths in G, i.e., RL(r:) = Uy(W).

Fact 2: For any v € V(W) and any directed path P in G from r; (i € I(W)) to v all the
intermediate vertices of P lie in U;(WW).

It follows from these two facts that assumption (b) (appropriately modified) also holds for
graph G with index set I(1) and convex (reachable) sets Ri(ri) = Uy(W) (i € I(W)).
More precisely, the following (*) holds.

(*) for each v € V() there exist arc-disjoint directed paths P; (: € I(v) N I(W))
such that for each i € I(v) N I(W) path P, is from r; to v in G.

Hence from KKT theorem there exist arc-disjoint arborescences H; = (U;(W), B;) (i €
I(W)) such that each arborescence H; (i € I(W)) has a root r;.



Define
BY =B,nd W (i€ I(W)), (2.6)

where 6~ W is the set of arcs a € A with 0-a € W. (Here note that we may have
dta € W.) Foralli € I\ I(W) define B} = (). Then put

G — G\W, 2.7
I—I\{iel|r,eW}, (2.9)

where G\ W is the graph obtained by removing from G the vertices of W and the arcs
incident to W. Note that if G'\ W has desired arc-disjoint arborescences H; = (U;\W, B)
(i € I) restricted on G \ W, then H; = (U;, Bi U B¥) (i € I) are desired ones for G.
It should also be noted that U; \ W (¢ € I) are convex sets in the original graph G' and
hence in the new G as well. Since U; \ W (i € I) are convex sets in the original graph G,
directed paths within U; \ W in the original G are also directed path in the new G. Hence
assumption (b) also holds for the new G, I, U; (< € I),and r; (i € I).

Repeat this process until G becomes empty. Let Wi, - - -, W}, be the sequence of W's
chosen in the repeated above-mentioned process.

Define for each i € I

Bi=UB" | t=1,--,k}, (2.10)

where B;"* is defined to be BYY for W = W,. We can easily see that H; = (U;, B;)
(¢ € I) are desired arborescences with roots r; (i € I), one for each corresponding H;.
0

We can also show the following. Define I'(v) = {i € I(v) | 7; # v} forallv € V.

Theorem 2.2: The following two statements are equivalent to (a) (and (b)) in Theo-
rem 2.1.

(c) For any vertex subset ZZ C 'V
AZ| =2 {ie I(2) | r:i & Z}, (2.11)
where A~ Z denotes the set of arcs a € A such that 0ta ¢ Z and 9~ a € Z.

(d) There exist spanning trees T; = (U;, E;) of G[U;] (i € I) such that E; (i € I) are
pairwise disjoint and every vertex v € V has in-degree equal to |I'(v)| in the union
of T; (¢ € I) (as a subgraph H = (V, U E;) of G).



(Proof) We show the implications (c) = (b) ((a)) = (d) = (c).

((c) = (b)): Let v be any vertex in V. Consider any Z C V withv € Z in (c). Then it
follows from (c) (with any such Z) and the max-flow min-cut theorem that (b) for v holds.

((b) = (d)): This is easy since (a) and (b) are equivalent.

((d) = (c)): Let Z be any subset of V. Denote by Ag[Z] the set of arcs a in H with
O0%a,0"a € Z. Then we have

|A™Z| > Y |[I'(0)] = |Au[Z]| > [{i € 1(2) | s & Z}], (2.12)

veZ
where the second inequality follows from the fact that |E; N Ay[Z]| < |U; N Z| — 1 for
all i € I(Z). Hence (2.11) holds. O
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