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Abstract

A bipartite graph is said to be symmetric if it has symmetry of reflecting two vertex sets.
This paper investigates matching structure of symmetric bipartite graphs. We first apply the
Dulmage-Mendelsohn decomposition to a symmetric bipartite graph. The resulting components,
which are matching-covered, turn out to have symmetry. We then decompose a matching-
covered bipartite graph via an ear decomposition, which is a sequence of subgraphs obtained by
adding an odd-length path repeatedly. We show that, if a matching-covered bipartite graph is
symmetric, an ear decomposition can retain symmetry by adding no more than two paths.

As an application of these decompositions to combinatorial matrix theory, we present a
natural generalization of Pélya’s problem. We introduce the problem of deciding whether a
rectangular matrix has a signing that is totally sign-nonsingular or not, where a rectangular
matrix is totally sign-nonsingular if the sign of the determinant of each submatrix with row size
is uniquely determined by the signs of the nonzero entries. We show that this problem can be
solved in polynomial time with the aid of the matching structure of symmetric bipartite graphs.
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Let G = (U,V;E) be a simple bipartite graph
with two disjoint vertex sets U = {u1,...,um},
V = {vi,...,vn}, and edge set E C U x V. A
bipartite graph G = (U,V;E) with |U| = |V] is
said to be symmetric if (u;,v;) € E holds for any
(ui,vj) € E. A symmetric bipartite graph is associ-
ated with a combinatorially symmetric matrix [16],
where a square matrix A = (a;;) of order n is
said to be combinatorially symmetric if a;; # 0

implies aj; # 0 for any two distinct indices 4, .
Combinatorially symmetric matrices were studied
in the contexts of matrix completion problems 7]
and qualitative matrix theory [8, 10, 24, 26]. An-
other work related to symmetric bipartite graphs is
given by Gabow [5]. He discussed an upper degree-
constrained partial orientation of graphs, which can
be viewed as the problem of finding a maximum
subgraph G’ with degree constraints in a symmet-
ric bipartite graph such that G’ has at most one
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edge of (u;,v;) and (u;,v;) for any indices 4, j.

For a bipartite graph G = (U, V; E), an edge sub-
set M C FE is a matching if no two edges in M share
a common vertex incident to them. A matching is
perfect if M| = |U| = |V|. For an edge subset
F C E, we denote by FT = {(uj,v) | (u,v;) € F}
the transpose of F. The matching structure of a
symmetric bipartite graph has symmetry, since M
is a matching if and only if so is M. This paper
aims at investigating decompositions related to the
matching structure of symmetric bipartite graphs.

We first deal with the Dulmage-Mendelsohn de-
composition (DM-decomposition) [3, 4]. We say that
a connected graph is matching-covered if every edge
is contained in some perfect matching. The DM-
decomposition is a unique decomposition of a bi-
partite graph with respect to the maximum match-
ings, which yields the matching-covered subgraphs
and the remaining subgraphs. The subgraphs ob-
tained by the DM-decomposition are called the DM-
components. We show that, if a bipartite graph is
symmetric, then each DM-component is the trans-
pose of some DM-component, where the transpose
of a subgraph H = (U, V; F) is the subgraph H' =
(U,V;FT). A subgraph H = (U,V;F) is called
symmetric if F = FT. Our result means that a
symmetric bipartite graph can be assembled from
symmetric matching-covered subgraphs and pairs of
subgraphs whose union is symmetric.

Each of DM-components, i.e., a matching-covered
bipartite graph, is characterized by the ear decom-
position[15]. An elementary path P of odd length
is an ear of a subgraph G’ if G’ contains both of the
end vertices of ‘P, but no interior vertices and no
edges. We denote by G’ + P the subgraph obtained
from G’ by adding an ear P. For a subgraph G’ of
a graph G, an ear decomposition starting from G’
is a sequence Gy, G, . . ., Gy, of subgraphs such that
Gy = G', Gy =G, and G; = G;_1 + P, for some
ear P, of G;—y for i = 1,...,k. It is known that a
bipartite graph has an ear decomposition starting
from an edge if and only if it is matching-covered.

Assume that a matching-covered bipartite graph
G is symmetric. The symmetry of G motivates us
to find an ear decomposition having symmetry. Un-
fortunately, G does not always have an ear decom-
position in which every subgraph is itself symmet-
ric. In fact, the complete bipartite graph with two
vertex sets of size three has no such ear decompo-
sition. Thus we may have to add more than one
ears to maintain symmetry in an ear decomposi-
tion. We will see, however, that we can retain sym-
metry by adding no more than two ears. An ear
decomposition Gy, Gy, ..., Gy starting from Gy is

said to be symmetric if one of two consecutive sub-
graphs is symmetric, i.e., Gi—1 or G| is symmetric
for l =1,...,k. We show that, if G is symmetric,
G has a symmetric ear decomposition starting from
an edge or a crossing pair, where a crossing pair
is a pair of edges (u;,v;) € F and (uj,v;) € E
for some distinct i,j € N. In addition, we de-
scribe a linear-time algorithm for finding a symmet-
ric ear decomposition of a matching-covered sym-
metric graph with a perfect matching.

As an application of these decompositions to com-
binatorial matrix theory, we discuss a generalization
of Pélya’s problem. A square matrix is said to be
term-nonsingular if the determinant has a nonzero
expansion term. A term-nonsingular matrix is sign-
nonsingular if all nonzero expansion terms of the
determinant have the same sign. For a {0,1}-
matrix A, a signing of A is a {0,+1}-matrix ob-
tained from A by replacing some ones with minus
ones. Pdlya’s problem is the problem of deciding
whether a given square {0,1}-matrix has a sign-
nonsingular signing or not. Such a sign-nonsingular
signing is called a Pdlya matriz. Polya’s problem
has a plenty of polynomial-time equivalent prob-
lems (1, 11, 15, 17, 21]. Robertson, Seymour, and
Thomas [20] devised a polynomial-time algorithm
for Pélya’s problem. Excellent surveys on Pdlya’s
problem can be found in [18, 25].

An m X n matrix with m < n is said to be to-
tally sign-nonsingular if each term-nonsingular sub-
matrix of order m is sign-nonsingular. Totally
sign-nonsingular matrices play an important role
in the sign-solvability of linear systems of equa-
tions[2, 12, 13, 23], linear programming[6], and
linear complementarity problems[9]. Total sign-
nonsingurality can be recognized in polynomial time
by testing sign-nonsingularity of the related sym-
metric matrix [6].

In this paper, we introduce the problem of decid-
ing whether a rectangular {0,1}-matrix has a to-
tally sign-nonsingular signing or not. If a matrix
is term-nonsingular, this problem is in fact Pélya’s
problem. It follows from [6] that this problem can
be reduced to the problem of deciding whether the
related symmetric matrix has a symmetric Pélya
matrix with positive diagonals or not. We show
that a symmetric Pélya matrix with a nonzero di-
agonal entry can be obtained in polynomial time
with the aid of the DM-decomposition and ear de-
composition for symmetric bipartite graphs. Thus
a totally sign-nonsingular signing can be found in
polynomial time.

Before closing this section, we give some defini-
tions and notations. For an m xn matrix A = (a;;),



we define the associated bipartite graph G(A4) =
(U,V; E) with vertex sets U = {u1,...,um}, V =
{vly"'vvn}v and edge set B = {(u’z:v7) | (%] 7&
0,u; € U,v; € V}. Then A is combinatorially sym-
metric if and only if G(A) is symmetric. A matrix A
is term-nonsingular if and only if G(A) has a perfect
matching.

Let G = (U, V; E) be a bipartite graph. For ver-
tex subsets I C U and J C V, we denote by G[I, J]
the subgraph induced by vertex subsets I and J.
For a subgraph H, we denote by U(H) and V(H)
the sets of vertices in H belonging to U and V),
respectively, and by E(H) the set of edges in H.
Let G\ H be the graph obtained from G by delet-
ing U(H) and V(H) together with edges incident
to them. For an edge subset F' C E, we denote
by U(F) and V(F') the set of the end vertices of F'
which belong to U and V, respectively. For a match-
ing M, we say that a path P of G is M -alternating if
the elements of P alternate between elements of M
and E\ M along P. For two edge subsets F} and F,
the symmetric difference (Fy \ F3) U (Fy \ F}) is de-
noted by FiAF;. Notice that, for an M-alternating
path P with a matching M, the symmetric differ-
ence MAE(P) is also a matching.

This paper is organized as follows. Section 2 dis-
cusses the DM-decomposition of symmetric bipar-
tite graphs. In Section 3, we present the ear de-
composition of matching-covered symmetric bipar-
tite graphs. Sections 4 and 5 describe applications
of results in Sections 2 and 3. Section 4 discusses
Pélya matrices of combinatorially symmetric ma-
trices. In Section 5, we introduce the problem of
a totally sign-nonsingular signing of a rectangular
matrix.

2 DM-Decomposition of Symmetric
Bipartite Graphs

In this section, we discuss the symmetry of the DM-
components of a symmetric bipartite graph.

We first review the Dulmage-Mendelsohn decom-
position of a bipartite graph following the exposi-
tion in [19]. Let G = (U, V; E) be a bipartite graph
with W =UUV. Apair (I,J)of ICUand JCV
is said to be a cover if no edges exist between U \ I
and V' \ J. The size of a cover (I,J) is defined to
be |I| + |J]. It is well-known that the maximum
size of matchings is equal to the minimum size of
covers. For convenience, we define the cut function
k:2W — ZU {400} as k(X) = |U\ X| +|V n X]| if
(U\X,VNX) is acover, and k(X ) = +o00 otherwise.
Note that £(X) is finite if and only if (U\ X,V NX)
is a cover. The function k satisfies submodularity,

ie.,
K(X)+6Y) > k(XNY)+r(XUY), VX,)Y CW.

The set of minimizers of a submodular function
forms a distributive lattice. Hence there exist
unique minimal and maximal minimizers.

Let £ be the set of minimizers of x. Take a max-
imal ascending chain Xo C X1 € -+ € X in L,
where k is a nonnegative integer, and X, and X}
are the unique minimal and maximal minimizers,
respectively. We put

Wo = Xo,
‘/I/l:Xl\Xl—ly l:17~"7k) (1)
Weo =W\ Xg.
The family of the difference sets {W; | | =
0,1,...,k,00} is uniquely determined indepen-

dently of the choice of the chain by a Jordan-
Holder type theorem. Define a partial order < on
{W,|l=1,...,k} by

W W= W, CXeLl=>W,CX]

Moreover, we extend this partial order
{Wo,Woo }U{Wi |l =1,...,k} by defining

Wo W, 2 Wy, I=1,...k

The pair of {W; |l =0,1,...,k, 00} and < defined
above is called the Dulmage-Mendelsohn decompo-
sition of G. Let Uy = W;NU and V; = W; NV
for ! =0,1,...,k,00. The subgraphs G[U;,Vi] (I =
0,1,...,k,00) are called the DM-components. Note
that the subgraph G[Up,V;] has no edges for 0 <
l<h<oo.

We say that a bipartite graph with nonempty ver-
tex set is DM-irreducible if it cannot be decomposed
into more than one nonempty component via the
DM-decomposition. Suppose that a bipartite graph
with no vertices is DM-irreducible. Assume that
|U| < |V]. Since the DM-irreducibility means that
L contains no proper subsets of W, the graph G
is DM-irreducible if and only if x(X) > |U| + 1
for any nonempty proper subset X C W. Thus
a bipartite graph G = (U,V; F) with |U| = |V| is
DM-irreducible if and only if it is matching-covered.

We now obtain the following theorem for a sym-
metric bipartite graph. For a vertex subset X C W,
we denote X' ={v; € V |u; e XNUYU{u; €U |
v, € XN V}

Theorem 2.1. Let G = (U,V; E) be a symmetric
bipartite graph, and ({W; | | = 0,1,...,k,00},=
) be the DM-decomposition obtained by a mazimal
ascending chain Xo C X1 € --- C Xi in L. Then
the DM-decomposition satisfies the followings.
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(1) For each of DM-component G|U,Vi](I =
0,1,...,k,00), there exists a DM-component
G[Un, V3] which is the transpose of G[U;, Vi].

(2) Wi =W," and Wy, = W, then there exists
no partial order between W; and Wy,.

Proof. Since G is symmetric, (U \ X,V N X) is a
cover if and only if sois (UN X7,V \ XT). Hence
k(X) = K(W\ XT) holds for any X C W. This im-
plies that X € £ if and only if W\ X" € £. Hence
Xo C X1 € -+ € Xy is a maximal ascending chain
inLifandonly if W\ XJ CWT\X/] , C--- C
WT\ X{ is that.in £. As (1), this ascending chain
in L yields the partition {W} |l =0,1,...,k;00} of
w:

Wi=w],
Wi =W\X)\W\X")=w,
W =W\(W\X])=W,.

By a Jordan-Holder type theorem, this coincides
with {W; |l = 0,1,...,k,00}. Therefore, for each
DM-component G[U;, V] (I = 0,1,...,k,00), the
subgraph G[V,,U;'] is also a DM-component of G,
where V,T = VV,T NU and U;" = WlT NV. Thus the
statement (1) holds.

To prove (2), we may assume that [ < h. The set
X in the ascending chain satisfies that W; C X; and
XiNWx=0by (1). By W =W, and W), = W],
it holds that the minimizer W\ X, does not include
Wi, but includes W},. Hence there exists no partial
order between W, and W}, by the definition of the
partial order. O

The concept of the DM-decomposition is applied
to matrices. Let A be a matrix and G(A) be the
associated bipartite graph. The DM-decomposition
of .a matriz A is the partition of rows and columns
obtained by the DM-decomposition of G(A4). For
I CU and J C V, the submatrix corresponding to
G[I, J] is denoted by A[I, J]. Since A[Ux,Vi] = O
for 0 <! < h < oo, the matrix A can be rearranged
into the block triangular matrix by row and col-
umn permutations. Thus the DM-decomposition of
a matrix can be depicted as in Fig. 1.

Let A be a combinatorially symmetric ma-
trix. It follows from Theorem 2.1 that the
DM-decomposition of A can maintain symmetry.
That is, for each DM-component A[U;,Vj](I =
0,1,...,k,00), the block submatrix A[Uj, V] is sym-
metric, or A[U; UUy, Vi UV}] is symmetric for some
h € {0,1,...,k,00}. Thus a combinatorially sym-
metric matrix A has a permutation matrix S such
that STAS is a block triangular matrix depicted

Vo iooi Vi Vo
Uo
U %k
Ul O
Us

Figure 1: The DM-decomposition of a matrix

as in Fig. 2. The DM-decomposition can be com-
puted efficiently with the aid of bipartite matching
algorithms. Hence such a block triangular form of a

l=1,...,kcombinatorially symmetric matrix can be obtained

in polynomial time.

Voo Vie W
Uy
Uy *
[0
[0]
(o)
U

Figure 2; The DM-decomposition of a combinato-
rially symmetric matrix

3 Ear Structure of Matching-
Covered Symmetric Graphs

In this section, we discuss ear decomposition of a
matching-covered symmetric bipartite graph. Let
G = (U,V;E) be a matching-covered symmetric
bipartite graph. Recall that an ear decomposition
Go, Gy, ..., Gy is symmetric if Gy or G4 is sym-
metric for [ =0,1,...,k — 1. A diagonal edge is an
edge (u;,v;) € E for some i € N. The main purpose
of this section is to prove the following theorem.

Theorem 3.1. Let G = (U,V; E) be a matching-
covered symmetric bipartite graph. Then G has a
symmetric ear decomposition starting from an edge
or a crossing pair. In particular, if G has a diago-
nal edge, G has a symmetric one starting from the
diagonal edge.



We say that a subgraph G’ is central if G\ G’
has a perfect matching. In order to prove Theorem
3.1, we first show that, for any central symmetric
subgraph G’, there exist an ear P of G’ and an ear
Q of G’ + P such that G’ + P+ Q is symmetric and
central, where Q may be empty.

Let G’ = (U’,V’; E’) be a central symmetric sub-
graph. If U’ = U and V' = V, then any diago-
nal edge and any crossing pair are the desired ears.
Hence we may assume that U’ C U and V' C V.
Let G’ = G[U\U’,V\V’] be the remaining symmet-
ric subgraph. Since G’ is central, G’ has a perfect
matching M.

We first assume that M = M holds. Note
that M = M implies that, if a path P is M-
alternating, then so is PT. The graph G has an
edge (u;,v;) for some u; € U’ and v; ¢ V'. Since
G is matching-covered, G has a perfect matching
M’ with (u;,v;) € M'. By taking M U M’, we ob-
tain an M-alternating ear P of G’ from u;. If the
inner vertices in P and PT are disjoint, then PT
is an ear of G/ + P and G’ + P + PT is symmet-
ric. Hence we may assume that P and PT have
a common inner vertex. This implies that P has
an index s € N with u, € U(P) and v, € V(P)
such that all vertices in Ps; have different indices,
where Ps, is the path between u; and vs along P.
Among such s, we choose s such that the length of
P;; is minimum, where P;; is the shorter one of the
path from u; to us along P and the path from u;
to v, along P. Define P = P,UP, U P,I, and Q
to be empty if Py is a diagonal edge and Q = P,
otherwise. Then P is an M-alternating ear of G’,
and, if @ is nonempty, @ is an M-alternating ear
of G’ + P. The subgraph G’ + P + Q has the edge
set E' U E(P;; U P,,) U E((P;; U P,,)T), and hence
G’ + P + Q is symmetric. Moreover, since P and Q
are M-alternating paths of odd length, G’ + P + Q
is central.

Therefore, the following lemma holds. Note that,
if Q is empty, then P has exactly one diagonal edge;
and, otherwise, P and @ have no diagonal edges.

Lemma 3.2. Let G = (U,V;E) be a matching-
covered symmetric bipartite graph, and G' =
(U',V'; E") be a central symmetric subgraph. As-
sume that the remaining subgraph G' = GU\U’,V'\
V’| has a perfect matching M with M = M. Then
there exist an ear P of G’ and an ear Q of G' + P
such that G'+ P+Q is central and symmetric, where
Q may be empty.

We now discuss the case where M may not coin-
cide with MT. For a bipartite graph G = (U, V; E)
with a matching M, we define contracting an M-

alternating circuit C to an edge (z,y) as contract-
ing U(C) and V(C) to vertices x and y, respectively,
deleting resulting multiple edges, and replacing M
with M \ C U{(z,y)}. The converse procedure is
ezpanding an edge to a circuit. Note that, if G is
matching-covered and M is a perfect matching of
G, then the graph obtained by contracting an M-
alternating circuit is also matching-covered.

Assume that M # M. Then consider MUMT,
which consists of diagonal edges, crossing pairs,
pairs of asymmetric circuits, and symmetric cir-
cuits. By M # M, the union MUM " has pairs of
asymmetric circuits, or symmetric circuits. For each
pair of asymmetric circuits C and CT in MU M,
replace M with MAE(C). Moreover, for each sym-
metric circuit C in MUM, contract C to a diago-
nal edge ec. Let F be the set of diagonal edges ob-
tained by the contraction of all symmetric circuits
in M UMT. The resulting graph G, is symmet-
ric and matching-covered, and G’ is a central sym-
metric subgraph of G.. Moreover, M is a perfect
matching in G, \ G’ with M = M.

Therefore, it follows from Lemma 3.2 that G, has
an ear P, of G’ and an ear Q, of G’ + P, such that
G'+P,+Q, is symmetric and central, where Q, may
be empty. If P, and Q. have no edges in F, then
G’ + P, + Q. is also a central symmetric subgraph
of G. Assume that P, has a diagonal edge e in F.
Then Q. is empty. We denote by C' the contracted
circuit corresponding to e. Since P, has exactly one
edge in F, the edge subset P, \ {e}UC forms an ear
P of G’ and an ear Q of G’ + P such that G'4+P+Q
is symmetric and central.

By the above discussion, we obtain the following
theorem.

Theorem 3.3. Let G be a matching-covered sym-
metric bipartite graph, and G’ be a central symmet-
ric subgraph. Then there exist an ear P of G’ and
an ear Q of G' + P such that G' + P+ Q is central
and symmetric, where Q may be empty.

For a symmetric bipartite graph with perfect
matchings, Kakimura and Iwata [10] showed the fol-
lowing proposition.

Proposition 3.4 (Kakimura and Iwata [10]). Let G
be a symmetric bipartite graph with perfect match-
ings. If G is not a disjoint union of symmetric cir-
cuits, then G satisfies the following (a) or (b).

(a) The graph G has a perfect matching with a di-
agonal edge (u;,v;) for somei € N.

(b) The graph G has a perfect matching with a
crossing pair (u;,v;) and (uj,v;) for some dis-
tinct i, € N.



Theorem 3.3, together with Proposition 3.4, implies
Theorem 3.1.

Proof of Theorem 3.1. Tt is not difficult to see that
a symmetric graph consisting of one circuit has a
symmetric ear decomposition starting from an edge.
Hence assume that G is not a circuit. It follows
from Proposition 3.4 that G has a perfect match-
ing with a diagonal edge or a crossing pair. Hence
G has a central subgraph Gy consisting of a diag-
onal edge or a crossing pair. By applying Theo-
rem 3.3 repeatedly, we obtain an ear decomposition
Go,G1y,...,Gr = G such that G; or G141 is sym-
metric for [ =0,1,...,k— 1. O

The proof of Theorem 3.1 also leads to a linear-
time algorithm for finding a symmetric ear decom-
position.

Theorem 3.5. Let G = (U,V; E) be a matching-
covered symmetric bipartite graph, and M’ be a per-
fect matching in G. Then we can find a symmetric
ear decomposition starting from an edge or a cross-
ing pair in O(|E|) time.

4 Symmetric Pélya Matrices with a
Nonzero Diagonal Entry

In this section, we discuss Pélya matrices of combi-
natorially symmetric matrices as an application of
the decompositions described in Sections 2 and 3.

Pélya’s problem is equivalent to the problem of
deciding whether a given bipartite graph has an
orientation called Pfaffian. Let G = (W, E) be a
graph. An orientation 6 of G is a directed graph
obtained froLn G by orienting its edges. For an
orientation G of G, a circuit C of even length in
G is said to be oddly (evenly) oriented in G if an
odd (even) number of its edges are directed in the
same direction along C. For a graph G = (W, E),
we say that an orientation of G is Pfaffian if every
central circuit of even length is oddly oriented. For
a square matrix A, it is known that A has a Pélya
matrix if and only if G(A) has a Pfaffian orienta-
tion. Robertson, Seymour, and Thomas [20] devised
a polynomial-time algorithm to decide whether a
given bipartite graph has a Pfaffian orientation (cf.
McCuaig [18]).

Suppose that a bipartite graph G = (U,V; E)
with perfect matchings has Pfaffian orientations.
We discuss constructing a Pfafian orientation of
G. We may assume that a bipartite graph G =
(U,V;E) is matching-covered, because G has a

Pfaffian orientation if and only if so does each DM-
component. Since G is matching-covered, G has
an ear decomposition starting from an edge [15]. It
is known that the following theorem holds, which
implies a polynomial-time algorithm for finding a
Pfaffian orientation.

Theorem 4.1  (Little[14], Seymour and
Thomassen [22]). Let G be a matching-covered
bipartite graph which has Pfaffian orientations,
and Go,G1,...,Gx, = G be an ear decomposition
starting from an edge with G; = Gi_1 + P, for
l=1,...,k. Then an orientation is Pfaffian if and
only if C1,...,Cx are oddly oriented, where Cy is a
central circuit of G; which uses P, for | =1,... k.

Let G = (U, V; F) be a symmetric bipartite graph
with perfect matchings. Suppose that G has a Pfaf-
fian orientation. We discuss finding a symmetric
Pfaffian orientation in G, where an orientation of
a bipartite graph is symmetric if the two edges of
any crossing pair are oriented in the same direc-
tion. Again, we may assume that G is matching-
covered, because it follows from Theorem 2.1 that
G has a symmetric Pfaffian orientation if and only
if so does each symmetric DM-component and each
non-symmetric DM-component has a Pfaffian ori-
entation. Using Theorem 3.1, we have the following
theorem.

Theorem 4.2. Let G = (U,V; E) be a matching-
covered symmetric bipartite graph with a diagonal
edge. If G has a Pfaffian orientation, then G has a
symmetric one.

Since a symmetric ear decomposition can be ob-
tained in linear time, we can find a symmetric Pfaf-
fian orientation in O(]E|) time.

Theorem 4.2 can be written as the following corol-
lary in terms of a Pdlya matrix. Recall that a square
matrix A is DM-irreducible if G(A) is matching-
covered.

Corollary 4.3. Let A be a DM-irreducible symmet-
ric {0, 1}-matriz with a nonzero diagonal entry. If
A has a Pélya matriz, then A has a symmetric one.

If A has no diagonal entries, then it is not nec-
essarily true that A has a Pélya matrix which is
symmetric. For example, consider the symmetric
matrix

[ )
O =
—_ O
O o



Then A has a Pélya matrix

0 +1 +1 +1
+1 0 -1 +1
-1 -1 0 +1
+1 -1 +1 0

However, A has no Pélya matrix which is symmet-
ric. Indeed, if A has a Pélya matrix in the form

of
0 ay az ag
ay 0 a4 as
a a4 0 ag |’
a3 a5 ag O
where ay,...,a6 € {1,—1}, then the determi-

nant has nonzero expansion terms a?a2, —a;aza4as,
—a2a3a4a5, and —ajazasag. Since these terms have
the same sign, a%ag = —aja3a4a6 and —aza3a4a5 =
—aya205a¢ hold, which is a contradiction.

5 Totally Sign-Nonsingular Signing

Recall that an m x n rectangular matrix is totally
sign-nonsingular if each term-nonsingular subma-
trix of order m is sign-nonsingular. In this sec-
tion, we consider the problem of deciding whether
a given rectangular {0, 1}-matrix has a totally sign-
nonsingular signing or not. If a matrix is term-
nonsingular, this problem is equivalent to Pélya’s
problem. We show the following theorem.

Theorem 5.1. The following two problems are
polynomially equivalent.

(1) Deciding whether a given square {0,1}-matriz
has a Pélya matriz or not(Pdlya’s problem).

(2) Deciding whether a given rectangular {0,1}-
matriz has a totally sign-nonsingular signing
or not.

For an m x n matrix A, we denote by A* the
square matrix having the form

. (0 A
v 1)

where I is the identity matrix of order n. We call
A* the augmented matriz of A.

The following proposition asserts the equivalence
between the total sign-nonsingularity of a matrix
A and the sign-nonsingularity of A*. A matrix A
has row-full term-rank if A has a term-nonsingular
submatrix with row size. If A does not have row-full
term-rank A is clearly totally sign-nonsingular.

Proposition 5.2 (Iwata and Kakimura [6]). Let A
be a matriz with row-full term-rank. Then A is to-
tally sign-nonsingular if and only if the augmented
matriz A* is sign-nonsingular.

We say that two matrices A and A’ with same
size are equivalent if A’ can be obtained from A by
multiplying —1 to some rows and columns, that is,
if there exist two {1, —1}-diagonal matrices D, and
D, with A" = D, AD.. It is known in [14] that, if
a square {0,1}-matrix has a Pélya matrix, then all
of Pélya matrices are equivalent. For totally sign-
nonsingular signings, a similar statement holds.

Lemma 5.3. If a {0,1}-matriz A has a totally
sign-nonsingular signing, then all of totally sign-
nonsingular signings are equivalent.

Using Corollary 4.3 and the following lemma, we
prove Theorem 5.1.

Lemma 5.4. Let A be an m xn matriz which is not
block diagonal(m < n), and A* be its augmented
matriz. If two symmetric signings. A* and A* of A*
are equivalent, then A* = A* or A* = —A*.

Pélya’s problem can be solved in polynomial
time [20]. A symmetric Pélya matrix of a symmet-
ric matrix can be found in linear time by Theorem
3.5. Thus we can obtain a totally sign-nonsingular
signing in the same complexity as Pélya’s problem.

Corollary 5.5. Given a rectangular {0,1}-matriz
A, we can test whether A has a totally sign-
nonsingular signing or mnot in polynomial time.
Moreover, if A has a totally sign-nonsingular sign-
ing, we can find such signing in polynomial time.

Testing sign-nonsingularity is polynomially
equivalent to Pélya’s problem[14, 22](see also
[27]). Theorem 5.1, together with Proposition 5.2,
is summarized as the following corollary.

Corollary 5.6. The following problems are polyno-
mially equivalent.

(1) Deciding whether a given square matriz has a
Pdélya matriz or not (Pdlya’s problem).

(2) Deciding whether a givew square matriz is sign-
nonsingular or not.

(3) Deciding whether a given rectangular matriz
has a totally sign-nonsingular signing or not.

(4) Deciding whether a given rectangular matriz is
totally sign-nonsingular or not.
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