On Orthogonal Ray Graphs

Anish Man Singh Shrestha, Yohei Kobayashi, Satoshi Tayu, and Shuichi Ueno

Department of Communications and Integrated Systems Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

Abstract. This paper introduces the orthogonal ray graphs, a new class of intersection graphs. An orthogonal ray graph is an intersection graph of horizontal and vertical rays (half-lines) in the plane. We first show that the class of orthogonal ray graphs is a proper subset of the class of unit grid intersection graphs. We next show a characterization of 2-directional orthogonal ray graphs. We also show a characterization of 2-directional orthogonal ray trees, which implies a linear time algorithm to recognize such trees. We finally show that the class of convex bipartite graphs is a proper subset of the class of 2-directional orthogonal ray graphs.

1 Introduction

Motivated by defect tolerance schemes for nanotechnology circuits, the orthogonal ray graphs, a new class of grid intersection graphs, are introduced and investigated.

A bipartite graph G with a bipartition (U,V) is called a *grid intersection graph* if there exist a family of non-intersecting line segments $L_u, u \in U$, parallel to the x-axis in the xy-plane, and a family of non-intersecting line segments $L_v, v \in V$, parallel to the y-axis such that for any $u \in U$ and $v \in V, (u,v) \in E(G)$ if and only if L_u and L_v intersect. Hartman, Newman, and Ziv [5] and de Fraysseix, de Mendez, and Pach [4] independently showed that every planar bipartite graph is a grid intersection graph. Kratochvil [8] showed that the recognition problem for grid intersection graphs is NP-complete.

Let G be a bipartite graph with a bipartition (U,V). A (0,1)-matrix $M=[m_{ij}]$ is called a bipartite adjacency matrix of G if the rows of M are corresponding to the vertices of U, the columns of M are corresponding to the vertices of V, and $m_{ij}=1$ if and only if $(u_i,v_j)\in E(G)$, where $u_i\in U$ is a vertex corresponding to row i and $v_j\in V$ is a vertex corresponding to column j. Let A and B be matrices. A is said to be B-free if A does not contain B as a submatrix. For a set S of matrices, A is said to be S-free if A is M-free for every $M\in S$. A is said to be S-freeable if there exist a permutation of rows of A and a permutation of columns of A such that the

permuted matrix is S-free. Let

$$\Gamma \ = \ \left\{ \left[\begin{array}{ccc} w & 1 & x \\ 1 & 0 & 1 \\ y & 1 & z \end{array} \right] \middle| w, x, y, z \in \{0, 1\} \right\},$$

and let

$$\gamma \ = \ \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right] \right\}.$$

It is shown in [5] that a bipartite graph G is a grid intersection graph if and only if a bipartite adjacency matrix of G is Γ -freeable.

A grid intersection graph is said to be *unit* if all the line segments corresponding to the vertices have the same length. Otachi, Okamoto, and Yamazaki [10] showed that a bipartite graph G is a unit grid intersection graph if a bipartite adjacency matrix of G is γ -freeable.

This paper introduces orthogonal ray graphs which are a special kind of grid intersection graphs. A bipartite graph G with a bipartition (U,V) is called an orthogonal ray graph if there exist a family of non-intersecting rays (half-lines) $R_u, u \in U$, parallel to the x-axis in the xy-plane, and a family of non-intersecting rays $R_v, v \in V$, parallel to the y-axis such that for any $u \in U$ and $v \in V$, $(u,v) \in E(G)$ if and only if R_u and R_v intersect. We show in Section 3 that the class of orthogonal ray graphs is a proper subset of the class of unit grid intersection graphs.

be S-freeable if there exist a permutation of rows of A and a permutation of columns of A such that the A such that A such that

ray graph with a bipartition (U,V). G is called a 2-directional orthogonal ray graph if $R_u = \{(x,b_u) \mid x \geq a_u\}$ for each $u \in U$, and $R_v = \{(a_v,y) \mid y \geq b_v\}$ for each $v \in V$, where a_w and b_w are real numbers for any $w \in U \cup V$.

We show in Section 4 that a bipartite graph G is a 2-directional orthogonal ray graph if and only if a bipartite adjacency matrix of G is γ -freeable. We also show that the class of convex bipartite graphs is a proper subset of 2-directional orthogonal ray graphs.

The 3-claw is a tree obtained from a complete bipartite graph $K_{1,3}$ by replacing each edge with a path of length 3. We show in Section 5 that a tree T is a 2-directional orthogonal ray graph if and only if T does not contain 3-claw as a subtree. It follows that we can decide in linear time whether a given tree is a 2-directional orthogonal ray graph.

2 Preliminaries

A bipartite graph G with bipartition (U,V) is said to be *convex* if there exists an ordering $(v_1,v_2,\ldots,v_{|V|})$ of V such that, for every $u\in U$ and integers i,j $(1\leq i< j\leq |V|),$ $(u,v_i)\in E(G)$ and $(u,v_j)\in E(G)$ imply that $(u,v_k)\in E(G)$ for every integer k $(i\leq k\leq j)$. It is mentioned in [3] that convex bipartite graphs can be recognized in linear time using PQ-trees.

A graph G with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ is called a *permutation graph* if there exists a pair of permutations π_1 and π_2 on $N = \{1, 2, \ldots, n\}$ such that for all $i, j \in N$, $(v_i, v_j) \in E(G)$ if and only if

$$(\pi_1^{-1}(i) - \pi_1^{-1}(j))(\pi_2^{-1}(i) - \pi_2^{-1}(j)) < 0.$$

A bipartite graph G with bipartition (U,V) is said to be $strongly \ orderable$ if there exist an ordering $(u_1,u_2,\ldots,u_{|U|})$ of U and an ordering $(v_1,v_2,\ldots,v_{|V|})$ of V such that for any integers i,i',j,j' $(1 \leq i < i' \leq |U|, 1 \leq j < j' \leq |V|), (u_i,v_{j'}) \in E(G)$ and $(u_{i'},v_{j}) \in E(G)$ imply $(u_i,v_j) \in E(G)$ and $(u_{i'},v_{j'}) \in E(G)$. Spinrad, Brandstadt, and Stewart [11] showed that a bipartite graph G is a permutation graph if and only if G is strongly orderable, and gave a linear time recognition algorithm for bipartite permutation graphs based on this characterization. It follows from the characterization that the class of bipartite permutation graphs is a proper subset of the class of convex bipartite graphs

as mentioned by Haiko [9]. Let

$$\beta \ = \ \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \right\}.$$

It also follows from the characterization that a bipartite graph G is a permutation graph if and only if a bipartite adjacency matrix of G is β -freeable as shown by Chen and Yesha [2].

3 Orthogonal Ray Graphs

The following theorem is implicit in [6], and can be seen without difficulty.

Theorem 1 A cycle C_{2n} of length 2n is an orthogonal ray graph if and only if 2 < n < 6.

Theorem 2 The class of orthogonal ray graphs is a proper subset of the class of unit grid intersection graphs.

Proof. Let G be an orthogonal ray graph with bipartition (U, V). Let S be a square on the xy-plane such that all the cross points of rays R_w , $w \in U \cup V$, lie in S. Let l be the length of a side of S. Each ray intersects with at least one side of S. If a ray R_w intersects with both the opposite sides of S, let L_w be the line segment such that the endpoints of L_w are the two crossing points where R_w intersects with the sides of S. If a ray R_w intersects with only one side of S, let L_w be the line segment such that the endpoints of L_w are the endpoint of R_w and the point on R_w at a distance l from the endpoint of R_w . Since all the line segments have length l, and L_u and L_v intersect if and only if R_u and R_v intersect, G is a unit grid intersection graph for line segments $\{L_u \mid u \in U\} \cup \{L_v \mid v \in V\}$. Thus the class of orthogonal ray graphs is a subset of the class of unit grid intersection graphs.

It is easy to see that C_{2n} is a unit grid intersection graph for any $n \geq 2$. Thus we conclude by Theorem 1 that the class of orthogonal ray graphs is a proper subset of the class of unit grid intersection graphs.

4 Two-Directional Orthogonal Ray Graphs

Theorem 3 C_{2m} is a 2-directional orthogonal ray graph if and only if m = 2.

Figure 1: Rays R_{u_i} and R_{v_j} intersect at (j, |U| - b(j) + 1).

Proof. It is easy to see that C_4 is a 2-directional orthogonal ray graph.

We show that C_{2m} is not a 2-directional orthogonal ray graph for any $m \geq 3$. Suppose to the contrary that C_{2m} is a 2-directional orthogonal ray graph for some $m \geq 3$. Let $V(C_{2m}) = \{0,1,\ldots,2m-1\}$ and $E(C_{2m}) = \{(i,i+1\pmod{2m}) \mid 0 \leq i \leq 2m-1\}$. Suppose without loss of generality that $R_0 = \{(a_0,y) \mid y \geq b_0\}$, for some real numbers a_0 and b_0 . Since $(0,1) \in E(C_{2m})$, R_1 intersects with R_0 at some point. Similarly, R_2 intersects with R_1 at some other point. We distinguish two cases.

Case 1 When R_2 intersects with R_1 such that R_2 is to the left of R_0 : Then R_3 must intersect with R_2 such that R_3 lies below the endpoint of R_0 . Similarly R_4 must intersect with R_3 such that R_4 lies to the left of the endpoint of R_1 . Continuing in this manner, R_i ($5 \le i \le 2m-1$) must lie below(to the left of) the endpoint of R_{i-3} for odd(even) i. Therefore R_{2m-1} lies in the region below the endpoint of R_4 . However, R_0 is in the region right of R_2 and above R_3 , making it impossible for R_0 to intersect with R_{2m-1} without intersecting with $R_3, R_5, \ldots, R_{2m-3}$, a contradiction.

Case 2 When R_2 intersects with R_1 such that R_2 is to the right of R_0 : We further distinguish two cases.

Case 2-1 When R_3 intersects with R_2 such that R_3 is below R_1 : Then R_4 must lie to the left of the endpoint of R_1 . This confines R_0 within the region left of R_2 and above R_3 , making it impossible for ray R_{2m-1} to intersect with R_0 without intersecting with R_2 , a contradiction.

Case 2-2 When R_3 intersects with R_2 such that R_3 is above R_1 : This case may be further broken down into two cases depending on whether R_4 is to the left of R_2 or right of R_2 . In the former case, R_4 gets confined within the region left of R_2 and above R_1 making it impossible for R_5 to intersect with R_4

without intersecting with R_2 , a contradiction. In the latter case, R_5, \ldots, R_{2m-1} must lie in the region right of R_2 and above R_3 , making it impossible for R_{2m-1} to intersect with R_0 without intersecting with $R_2, R_4, \ldots, R_{2m-2}$, a contradiction.

Thus we conclude that C_{2m} is not a 2-directional orthogonal ray graph for any $m \geq 3$. \square

The following is immediate from Theorems 1 and 3.

Theorem 4 The class of 2-directional orthogonal ray graphs is a proper subset of the class of orthogonal ray graphs.

The following is obvious from the definition of γ .

Lemma 1 An $m \times n$ matrix $M = [m_{ij}]$ is γ -free if and only if for any integers i, j, i', j' $(1 \le i < i' \le m, 1 \le j < j' \le n)$, $m_{ij} = 1$ and $m_{i'j'} = 1$ imply $m_{ij'} = 1$.

We can characterize the 2-directional orthogonal ray graphs as follows.

Theorem 5 A bipartite graph G is a 2-directional orthogonal ray graph if and only if a bipartite adjacency matrix of G is γ -freeable.

Proof.

Let G be a bipartite graph with a bipartition (U,V). Suppose that a bipartite adjacency matrix of G is γ -freeable, and let $M=[m_{ij}]$ be a bipartite adjacency matrix of G which is γ -free. We denote by $u_i \in U$ the vertex corresponding to row i, and by $v_j \in V$ the vertex corresponding to column j. For each row i, suppose the leftmost 1 is at column l(i). Then define ray $R_{u_i} = \{(x, |U| - i + 1) \mid x \geq l(i)\}$.

Similarly for each column j, suppose the bottommost 1 is at row b(j), then define ray $R_{v_i} = \{(j, y) \mid$ $y \ge |U| - b(j) + 1$. Note that from this definition, if two rays R_{u_i} and R_{v_i} intersect, they must do so at (j, |U| - i + 1). It is also obvious that two rays R_{u_i} and R_{v_i} intersect if and only if $l(i) \leq j$ and $b(j) \ge i$. (See Figure 1.) We are now ready to show that R_{u_i} and R_{v_j} intersect if and only if $(u_i, v_i) \in E(G)$. Suppose first that $(u_i, v_i) \in E(G)$. Then $m_{ij} = 1$, which means that $l(i) \leq j$ and $b(j) \geq i$. Therefore, rays R_{u_i} and R_{v_j} intersect. Suppose next that $(u_i, v_i) \notin E(G)$. Then $m_{ij} = 0$. Since M is γ -free, we have $m_{i'j} = 0$ for every i' < ior $m_{ij'} = 0$ for every j' > j, by Lemma 1. This means that l(i) > j or b(j) < i, which implies that R_{u_i} and R_{v_i} do not intersect. Thus we conclude that G is a 2-directional orthogonal ray graph for rays ${R_{u_i}|u_i \in U} \cup {R_{v_i}|v_j \in V}.$

Conversely, suppose that G is a 2-directional orthogonal ray graph, and $\{R_u \mid u \in U\} \cup \{R_v \mid v \in V\}$ V} is the set of rays corresponding to the vertices. Let $(u_1, u_2, \ldots, u_{|U|})$ be the ordering of U such that for any integers i, i' $(1 \le i < i' \le |U|)$, R_{u_i} is above $R_{u_{s'}}$ in the xy-plane. Similarly, let $(v_1, v_2, \dots, v_{|V|})$ be the ordering of V such that for any integers j, j' $(1 \le j < j' \le |V|)$, R_{v_j} is to the left of $R_{v_{j'}}$. Construct a bipartite adjancency matrix $M = [m_{ij}]$ of Gsuch that $m_{ij} = 1$ if and only if $(u_i, v_j) \in E(G)$. We shall show that M is γ -free. Let i, i', j, j' be any integers such that $1 \le i < i' \le |U|$ and $1 \le j < i'$ $j' \leq |V|$. Suppose $m_{ij} = 1$ and $m_{i'j'} = 1$. Since ray R_{u_i} is above ray $R_{u_{i'}}$ and R_{v_j} is to the left of $R_{v_{i'}}$, R_{u_i} must intersect with $R_{v_{i'}}$ implying that $m_{ij'}=1$. Thus from Lemma 1, M is γ -free.

A bipartite graph G with bipartition (U,V) is said to be *weakly orderable* if there exist an ordering $(v_1,v_2,\ldots,v_{|V|})$ of V and an ordering $(u_1,u_2,\ldots,u_{|U|})$ of U such that for every i,i',j,j' $(1 \leq i < i' \leq |U|, 1 \leq j < j' \leq |V|), (u_i,v_{j'}) \in E(G)$ and $(u_{i'},v_j) \in E(G)$ imply $(u_i,v_j) \in E(G)$. The following corollary is immediate.

Corollary 1 A bipartite graph G is a 2-directional orthogonal ray graph if and only if G is weakly orderable.

Theorem 6 The class of convex bipartite graphs is a proper subset of the class of 2-directional orthogonal ray graphs.

Proof. Let G be a convex bipartite graph with bipartition (U, V). Let $(v_1, v_2, \dots, v_{|V|})$ be an or-

dering of V such that for every $u \in U$ and integers i, j $(1 \le i < j \le |V|), (u, v_i) \in E(G)$ and $(u, v_i) \in E(G)$ imply that $(u, v_k) \in E(G)$ for every integer $k \ (i \le k \le j)$. Let $U = \{u_1, u_2, \dots, u_{|U|}\},\$ and let $M = [m_{ij}]$ be a bipartite adjacency matrix of G such that row i corresponds to u_i and column j corresponds v_i . It is easy to see that the 1's in each row of M are consecutive. We will show that M is γ -freeable. Let $B = [b_{ij}]$ be a matrix obtained by permuting the rows of M such that for any two rows $i, i' (i < i') \text{ of } B, r_B(i) \ge r_B(i'), \text{ where } r_B(i) \text{ is de-}$ fined as the column containing the rightmost 1 in row i of B. Note that the 1's in each row of B are also consecutive. We claim that B is γ -free. Let i, i', j, j'be any integers such that $1 \le i < i' \le |U|$ and $1 \le j < j' \le |V|$. Suppose $b_{ij} = 1$ and $b_{i'j'} = 1$. Since i < i', we have $r_B(i) \ge j'$. Since the 1's in row i are consecutive, $b_{ik} = 1$ for every integer k $(j \le k \le r(i))$. This means that $b_{ii'} = 1$. Thus we conclude from Lemma 1 that B is γ -free, and so M is γ -freeable. Hence G is a 2-directional orthogonal ray graph by Theorem 5. Therefore the class of convex bipartite graphs is a subset of the class of 2-directional orthogonal ray graphs.

Let G be a graph obtained from a complete bipartite graph $K_{3,3}$ by adding a new vertex v' and an edge (v,v'), for each vertex v of $K_{3,3}$. It is easy to see that G is a 2-directional orthogonal ray graph, but not a convex bipartite graph. Thus we conclude that the class of convex bipartite graphs is a proper subset of the class of 2-directional orthogonal ray graphs. \square

5 Two-Directional Orthogonal Ray Trees

Lemma 2 The 3-claw is not a 2-directional orthogonal ray graph.

Proof. Assume to the contrary that the 3-claw is a 2-directional orthogonal ray graph. Let the vertices of the 3-claw be named as in Figure 2(a). We shall refer to the endpoint of the ray corresponding to a vertex v as (a_v, b_v) . Without loss of generality, suppose $R_{u_1} = \{(x, b_{u_1}) \mid x \geq a_{u_1}\}$ for arbitrary real numbers a_{u_1} and b_{v_1} . Also, without loss of generality, suppose R_{v_1} , R_{v_2} , R_{v_3} intersect with R_{u_1} such that R_{v_2} lies to the right of R_{v_1} and to the left of R_{v_3} as shown in Figure 2(b). It is easy to observe that $b_{v_3} > b_{v_2} > b_{v_1}$, or else it is not possible to define R_{u_3} and R_{u_4} . Since R_{u_3} has to be defined such that

Figure 2:

Figure 3: Rays corresponding to the vertices of T. Each ray is labelled with the vertex it corresponds to. (a) shows the rays corresponding to the vertices in P and the region in which rays corresponding to the remaining vertices of T_i ($1 \le i \le p$) will be placed. The actual placement of rays corresponding to the vertices of T_1 and T_2 is shown in (b).

a contradiction.

A path P in a tree T is called a *spine* of T if every vertex of T is within distance two from at least one vertex of P.

Theorem 7 A tree T has a spine if and only if T does not contain 3-claw as a subtree.

The necessity is obvious. To prove the sufficiency, assume T does not contain a 3-claw. Let Pbe a longest path in T. We claim that P is a spine. Assume it is not. Let $V(P) = \{v_1, v_2, \dots, v_p\}$, and $(v_i, v_{i+1}) \in E(P), 1 \le i \le p-1$. Let F be a forest obtained from T by deleting the edges in E(P). Let

 $a_{u_3} > a_{v_1}$ and $b_{u_3} < b_{u_1}$, it is not possible to define T_i be a tree in F containing v_i , $1 \le i \le p$. Since R_{v_5} such that it intersects with R_{u_3} but not with R_{u_1} , P is a longest path in T, T_1 consists of only one vertex, v_1 , and T_p consists of only one vertex, v_p . Also all vertices in T_2 and T_{p-1} are within distance one from v_2 and v_{p-1} , respectively; and all vertices in T_3 and T_{p-2} are within distance two from v_3 and v_{p-2} , respectively. Since we assumed that P is not a spine, there exists an integer j ($4 \le j \le p-3$) such that T_j contains a vertex w_j whose distance from v_j is three. Let P' be the path from v_j to w_j . Then the subgraph of T induced by the vertices in $\{v_i \mid j-3 \le i \le j+3\} \cup V(P')$ is a 3-claw. This contradicts the assumption that T does not contain 3claw as a subtree, and therefore P is a spine.

Figure 4: Relationship between different grid intersection graphs considered in this paper.

We can characterize the 2-directional orthogonal ray trees as follows.

Theorem 8 A tree T is a 2-directional orthogonal ray tree if and only if T does not contain 3-claw as a subtree.

Proof. The necessity follows from Lemma 2. We will show the sufficiency. Assume T does not contain 3-claw as a subtree. Then from Theorem 7, T contains a spine P. Let $V(P) = \{v_1, v_2, \dots, v_p\}$, and $(v_i, v_{i+1}) \in E(P), 1 \leq i \leq p-1$. Corresponding to each vertex v_i in P, define ray $R_{v_i} =$ $\{(i,y) \mid y \geq i-1\}$ if i is odd, and define ray $R_{v_i} = \{(x, i) \mid x \ge i - 1\}$ if i is even. Let F be a forest obtained from T by deleting the edges in E(P). Let T_i be a tree in T containing v_i , $1 \le i \le p$. Consider T_i to be rooted at v_i . Let $w_{i1}, w_{i2}, \ldots, w_{iq(i)}$ be the children of v_i in T_i , where q(i) is the number of children of v_i in T_i . Let $z_{ij1}, z_{ij2}, \ldots, z_{ijr(ij)}$ be the children of w_{ij} in T_i , where r(ij) is the number of children of w_{ij} in T_i . The rays corresponding to w_{ij} and z_{ijk} , $(1 \le i \le p, 1 \le j \le q(i), 1 \le k \le r(ij))$ can be added as shown in Figure 3. Thus T is a 2directional orthogonal ray graph.

From Theorem 8 and the proof of Theorem 7, we can see that in order to decide if a given tree T is a 2-directional orthogonal ray graph, we need only to verify whether or not a longest path in T is a spine of T. Since a longest path in a tree can be obtained in linear time (see [1], for example), we can recognize 2-directional orthogonal ray trees in linear time.

6 Concluding Remarks

Figure 4 shows the relationship between the classes of grid intersection graphs considered here.

It is open to characterize the orthogonal ray graphs. The complexity of the recognition for the 2-directional orthogonal ray graphs is also open. In this connection, it is interesting to note that the complexity of the problem of deciding if a matrix is γ -freeable is an open problem posed by Klinz, Rudolf, and Woeginger [7] more than ten years ago. It should be noted that we can decide in polynomial time if a matrix is M-freeable for every matrix $M \in \gamma$ [7], and if a matrix is β -freeable [2, 11].

References

- Bulterman, R., van der Sommen, F., Zwaan, G., Verhoeff, T., van Gasteren, A., Feijen, W.: On computing a longest path in a tree. Information Processing Letters 81 93–96 (2002)
- [2] Chen, L., Yesha, Y.: Efficient parallel algorithms for bipartite permutation graphs. Networks 23 29–39 (1993)
- [3] Damaschke, P., Muller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Information Processing Letters 36 231–236 (1990)
- [4] de Fraysseix, H., de Mendez, P., Pach, J.: Representation of planar graphs by segments. Intuitive Geometry Coll. Math. Soc. J. Bolyai 63 109–117 (1994)
- [5] Hartman, I., Newman, I., Ziv, R.: On grid inresection graphs. Discrete Mathematics 87 41–52 (1991)
- [6] Kostochka, A., Nesetril, J.: Coloring relatives of intervals on the plane, i: Chromatic number versus girth. Europ. J. Combinatorics 19 103–110 (1998)
- [7] Klinz, B., Rudolf, K., Woeginger, G.: Permuting matrices to avoid forbidden submatrices. Discrete Applied Mathematics 60 223–248 (1995)

- [8] Kratochvil, J.: A special planar satisfiability problem and a consequence of its np-completeness. Discrete Applied Mathematics 52 233–252 (1994)
- [9] Muller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics 156 291–298 (1996)
- [10] Otachi, Y., Okamoto, Y., Yamazaki, K.: Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs. Discrete Applied Mathematics 155 2383–2390 (2007)
- [11] Spinrad, J., Brandstadt, A., Stewart, L.: Bipartite permutation graphs. Discrete Applied Mathematics 18 279–292 (1987)