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Abstract.

This paper introduces the orthogonal ray graphs, a new class of intersection

graphs. An orthogonal ray graph is an intersection graph of horizontal and vertical rays
(half-lines) in the plane. We first show that the class of orthogonal ray graphs is a proper
subset of the class of unit grid intersection graphs. We next show a characterization of
2-directional orthogonal ray graphs. We also show a characterization of 2-directional or-
thogonal ray trees, which implies a linear time algorithm to recognize such trees. We finally
show that the class of convex bipartite graphs is a proper subset of the class of 2-directional

orthogonal ray graphs.

1 Introduction

Motivated by defect tolerance schemes for nanotech-
nology circuits, the orthogonal ray graphs, a new
class of grid intersection graphs, are introduced and
investigated.

A bipartite graph G with a bipartition (U, V) is
called a grid intersection graph if there exist a fam-
ily of non-intersecting line segments L,,u € U,
parallel to the z-axis in the zy-plane, and a family
of non-intersecting line segments L,,v € V, par-
allel to the y-axis such that for any v € U and
v € V, (u,v) € E(G) if and only if L,, and L, inter-
sect. Hartman, Newman, and Ziv [5] and de Frays-
seix, de Mendez, and Pach [4] independently showed
that every planar bipartite graph is a grid intersection
graph. Kratochvil [8] showed that the recognition
problem for grid intersection graphs is NP-complete.

Let G be a bipartite graph with a bipartition
(U,V). A(0,1)-matrix M = [my;] is called a bi-
partite adjacency matrix of G if the rows of M are
corresponding to the vertices of U, the columns of M
are corresponding to the vertices of V, and m;; = 1
if and only if (u;,v;) € E(G), where u; € U is a
vertex corresponding to row 4 and v; € V is a vertex
corresponding to column j. Let A and B be matri-
ces. A is said to be B-free if A does not contain B as
a submatrix. For a set S of matrices, A is said to be
S-free if A is M-free for every M € S. A is said to
be S-freeable if there exist a permutation of rows of
A and a permutation of columns of A such that the

permuted matrix is S-free. Let
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It is shown in [5] that a bipartite graph G is a grid
intersection graph if and only if a bipartite adjacency
matrix of G is I'-freeable.

A grid intersection graph is said to be unit if all the
line segments corresponding to the vertices have the
same length. Otachi, Okamoto, and Yamazaki [10]
showed that a bipartite graph G is a unit grid inter-
section graph if a bipartite adjacency matrix of G is
~-freeable.

This paper introduces orthogonal ray graphs
which are a special kind of grid intersection graphs.
A bipartite graph G with a bipartition (U, V) is called
an orthogonal ray graph if there exist a family of
non-intersecting rays (half-lines) R,,,u € U, parallel
to the z-axis in the xy-plane, and a family of non-
intersecting rays R,,v € V, parallel to the y-axis
such that forany v € U andv € V, (u,v) € E(G) if
and only if R, and R, intersect. We show in Sec-
tion 3 that the class of orthogonal ray graphs is a
proper subset of the class of unit grid intersection
graphs.

We also introduce 2-directional orthogonal ray
graphs defined as follows. Let G be an orthogonal
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ray graph with a bipartition (U, V). G is called a 2-
directional orthogonal ray graph if R, = {(z,b,) |
x> ay} foreachu € U, and R, = {(ay,y) | y >
b, } for each v € V, where a,, and b,, are real num-
bers foranyw e UU V.

We show in Section 4 that a bipartite graph G is a
2-directional orthogonal ray graph if and only if a bi-
partite adjacency matrix of G is y-freeable. We also
show that the class of convex bipartite graphs is a
proper subset of 2-directional orthogonal ray graphs.

The 3-claw is a tree obtained from a complete bi-
partite graph K 3 by replacing each edge with a path
of length 3. We show in Section 5 that a tree T is
a 2-directional orthogonal ray graph if and only if 7'
does not contain 3-claw as a subtree. It follows that
we can decide in linear time whether a given tree is a
2-directional orthogonal ray graph.

2 Preliminaries

A bipartite graph G with bipartition (U, V') is said to
be convex if there exists an ordering (v1, va, . . ., v)y)
of V such that, for every u € U and integers 7, j (1 <
i < j < |V]), (u,v%) € E(G) and (u,v;) € E(G)
imply that (u,v;) € E(G) for every integer k (i <
k < j). It is mentioned in [3] that convex bipartite
graphs can be recognized in linear time using PQ-
trees.

A graph G with vertex set V(G) = {v1,vs,...,
vp} is called a permutation graph if there exists a
pair of permutations 71 and moon N = {1,2,...,n}
such that foralli,j € N, (v;,v;) € E(G) if and only
if

(w71 (0) = 77 () (my ! (i) — 31 (4)) < 0.

A bipartite graph G with bipartition (U,V) is
said to be strongly orderable if there exist an
ordering (u1,us,...,uy|) of U and an ordering
(v1,v2,...,vy)) of V such that for any integers
1,5, A < i <d <JU,L,1 <5<y <
fVD, (ui,vj/) (S E(G) and (ui/,vj) (S E(G) im-
ply (ui,v;) € E(G) and (uy,vy) € E(G). Spinrad,
Brandstadt, and Stewart [11] showed that a bipartite
graph G is a permutation graph if and only if G is
strongly orderable, and gave a linear time recognition
algorithm for bipartite permutation graphs based on
this characterization. It follows from the characteri-
zation that the class of bipartite permutation graphs is
a proper subset of the class of convex bipartite graphs

as mentioned by Haiko [9]. Let
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It also follows from the characterization that a bipar-
tite graph G is a permutation graph if and only if a bi-
partite adjacency matrix of G is 3-freeable as shown
by Chen and Yesha [2].
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3 Orthogonal Ray Graphs

The following theorem is implicit in [6], and can be
seen without difficulty.

Theorem 1 A cycle Coy, of length 2n is an orthogo-
nal ray graph if and only if2 < n < 6.

Theorem 2 The class of orthogonal ray graphs is a
proper subset of the class of unit grid intersection
graphs.

Proof. Let G be an orthogonal ray graph with bi-
partition (U, V). Let S be a square on the zy-plane
such that all the cross points of rays R,,, w € UUV,
lie in S. Let [ be the length of a side of S. Each
ray intersects with at least one side of S. If a ray
R,, intersects with both the opposite sides of .S, let
L,, be the line segment such that the endpoints of
L,, are the two crossing points where R,, intersects
with the sides of S. If a ray R,, intersects with only
one side of S, let L,, be the line segment such that
the endpoints of L,, are the endpoint of R,, and the
point on R,, at a distance ! from the endpoint of R,,.
Since all the line segments have length [, and L,
and L, intersect if and only if R,, and R, intersect,
G is a unit grid intersection graph for line segments
{Ly | vwe UyU{L, | v € V}. Thus the class of
orthogonal ray graphs is a subset of the class of unit
grid intersection graphs.

It is easy to see that Cs, is a unit grid intersec-
tion graph for any n > 2. Thus we conclude by
Theorem 1 that the class of orthogonal ray graphs is
a proper subset of the class of unit grid intersecion
graphs. ]

4 Two-Directional Orthogonal Ray
Graphs

Theorem 3 Co,, is a 2-directional orthogonal ray
graph if and only if m = 2.
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Figure 1: Rays R, and R, intersect at (j, |U| — b(j) + 1).

Proof. It is easy to see that Cy is a 2-directional
orthogonal ray graph.

‘We show that Cy,,, is not a 2-directional orthogonal
ray graph for any m > 3. Suppose to the contrary
that Cy,y, is a 2-directional orthogonal ray graph for
some m > 3. Let V(Cay,) = {0,1,...,2m — 1}
and E(Cop,) = {(i,7+1 (mod 2m)) |0 < ¢ <
2m — 1}. Suppose without loss of generality that
Ry = {(a0,y) | y > bo}, for some real numbers ag
and by. Since (0,1) € E(Cap,), R; intersects with
Ry at some point. Similarly, R, intersects with R; at
some other point. We distinguish two cases.

Case 1 When Rj intersects with R; such that Ry
is to the left of Ry: Then R3 must intersect with Ry
such that R3 lies below the endpoint of Ry. Similarly
R4 must intersect with R3 such that Ry lies to the left
of the endpoint of R;. Continuing in this manner, R;
(5 <1 < 2m — 1) must lie below(to the left of) the
endpoint of R;_3 for odd(even) i. Therefore Ron,—1
lies in the region below the endpoint of R4. However,
Ry is in the region right of Ry and above R3, making
it impossible for Ry to intersect with Ry, without
intersecting with R3,Rs, ..., Ro;—3, a contradiction.

Case 2 When Ry intersects with Ry such that Ry is
to the right of Ry: We further distinguish two cases.

Case 2-1 When Rj intersects with Ry such that
Rg3 is below R;: Then R4 must lie to the left of the
endpoint of R;. This confines Ry within the region
left of Ry and above R3, making it impossible for ray
Ropm—1 to intersect with Ry without intersecting with
Ry, a contradiction.

Case 2-2 When Rj intersects with Ry such that
R3 is above R;: This case may be further broken
down into two cases depending on whether Ry is to
the left of Ry or right of R,. In the former case, Ry
gets confined within the region left of Ry and above
R; making it impossible for R to intersect with R4

without intersecting with Ry, a contradiction. In the
latter case, Rs, ...,Rom,—1 must lie in the region right
of Ry and above R3, making it impossible for Ra,,—1
to intersect with Ry without intersecting with Rg, Ry,
...,Rom—9, a contradiction.

Thus we conclude that Cs,, is not a 2-directional
orthogonal ray graph forany m > 3. O O

The following is immediate from Theorems 1 and
3.

Theorem 4 The class of 2-directional orthogonal
ray graphs is a proper subset of the class of orthogo-
nal ray graphs.

The following is obvious from the definition of .

Lemma 1 Anm x n matrix M = [my;) is y-free if
and only if for any integers 1,5, ,5' (1 < i < i <
m, 1 < j<j <n)my=1and myy = 1imply
mijr =1

We can characterize the 2-directional orthogonal
ray graphs as follows.

Theorem 5 A bipartite graph G is a 2-directional
orthogonal ray graph if and only if a bipartite ad-
Jjacency matrix of G is ~y-freeable.

Proof.

Let G be a bipartite graph with a bipartition
(U, V). Suppose that a bipartite adjacency matrix of
G is y-freeable, and let M = [m;;] be a bipartite ad-
jacency matrix of G which is y-free. We denote by
u; € U the vertex corresponding to row ¢, and by
v; € V the vertex corresponding to column j. For
each row i, suppose the leftmost 1 is at column ().
Then define ray R, = {(z,|U| —i+1) | z > 1(¢)}.



Similarly for each column j, suppose the bottommost
1 is at row b(j), then define ray R,;, = {(j,v) |
y > |U| — b(j) + 1}. Note that from this defini-
tion, if two rays R, and R, intersect, they must do
so at (4,|U| — ¢ + 1). It is also obvious that two
rays Ry, and R,, intersect if and only if (i) < j
and b(j) > . (See Figure 1.) We are now ready
to show that R,, and R,; intersect if and only if
(ui,vj) € E(G). Suppose first that (u;, v;) € E(G).
Then m;; = 1, which means that /() < j and
b(j) > 4. Therefore, rays R,, and R,, intersect.
Suppose next that (u;,v;) ¢ E(G). Then m;; = 0.
Since M is ~y-free, we have my; = 0 for every ¢/ < ¢
or m; = 0 for every 5/ > j, by Lemma 1. This
means that [(i) > j or b(j) < 4, which implies that
Ry, and R, do not intersect. Thus we conclude that
G is a 2-directional orthogonal ray graph for rays
{Ruglui € UYU {Ryylo; € V.

Conversely, suppose that G is a 2-directional or-
thogonal ray graph, and {R,, |u € U} U{R, | v €
V'} is the set of rays corresponding to the vertices.
Let (u1,us, .. .,uy)) be the ordering of U such that
for any integers 4,7’ (1 < i < ¢’ < |U|), Ry, is above
Ry, in the zy-plane. Similarly, let (v1,v2,...,v)y|)
be the ordering of V' such that for any integers j, 5’
(1 <j <j |V, Ry is to the left of R,,. Con-
struct a bipartite adjancency matrix M = [m;;] of G
such that m; = 1 if and only if (u;,v;) € E(G).
We shall show that M is y-free. Let i,4’, j, j/ be any
integers such that 1 < ¢ < ¢ < |U]and1 < j <
J' < |V|. Suppose m;; = 1 and m; ;7 = 1. Since ray
Ry, is above ray R,,, and R, is to the left of R,,j,,
R,,, must intersect with Rvj, implying that m;; = 1.
Thus from Lemma 1, M is ~-free. g

A bipartite graph G with bipartition (U,V) is
said to be weakly orderable if there exist an or-
dering (v1,v2,...,vy|) of V and an ordering
(u1,ug,...,uy) of U such that for every i,’, j, j'
A<i<id <UL1<j<g <V, (ug,v5) €
E(G) and (uy,v;) € E(G) imply (u;,v;) € E(G).
The following corollary is immediate.

Corollary 1 A bipartite graph G is a 2-directional
orthogonal ray graph if and only if G is weakly or-
derable.

Theorem 6 The class of convex bipartite graphs is a
proper subset of the class of 2-directional orthogonal
ray graphs.

Proof. Let G be a convex bipartite graph with
bipartition (U, V). Let (v1,v2,...,vy|) be an or-

dering of V such that for every v € U and inte-
gers i,j (1 < i < j < [V]) (u,v) € B(G) and
(u,v5) € E(G) imply that (u,v;) € E(G) for every
integer k (1 < k < j). LetU = {ul,uz,...,u|m},
and let M = [m;;] be a bipartite adjacency matrix
of G such that row ¢ corresponds to u; and column 7
corresponds v;. It is easy to see that the 1’s in each
row of M are consecutive. We will show that M is
~-freeable. Let B = [b;;] be a matrix obtained by
permuting the rows of M such that for any two rows
1,7 (i <) of B,rp(i) > rp(i), where rp(i) is de-
fined as the column containing the rightmost 1 in row
1 of B. Note that the 1’s in each row of B are also
consecutive. We claim that B is y-free. Let 4,7, 7, 5
be any integers such that 1 < ¢ < ¢ < |U| and
1<j<j < |V] Suppose bjj = 1 and byj = 1.
Since ¢ < ¢/, we have 7g(z) > j'. Since the 1’s in
row ¢ are consecutive, by, = 1 for every integer k
(j < k < r(i)). This means that b;;; = 1. Thus
we conclude from Lemma 1 that B is ~y-free, and so
M is ~y-freeable. Hence G is a 2-directional orthog-
onal ray graph by Theorem 5. Therefore the class
of convex bipartite graphs is a subset of the class of
2-directional orthogonal ray graphs.

Let G be a graph obtained from a complete bipar-
tite graph K3 3 by adding a new vertex v’ and an edge
(v,v'), for each vertex v of K3 3. It is easy to see that
G is a 2-directional orthogonal ray graph, but not a
convex bipartite graph. Thus we conclude that the
class of convex bipartite graphs is a proper subset of
the class of 2-directional orthogonal ray graphs. [

5 Two-Directional Orthogonal Ray
Trees

Lemma 2 The 3-claw is not a 2-directional orthog-
onal ray graph.

Proof.  Assume to the contrary that the 3-claw is
a 2-directional orthogonal ray graph. Let the vertices
of the 3-claw be named as in Figure 2(a). We shall
refer to the endpoint of the ray corresponding to a
vertex v as (ay, b,). Without loss of generality, sup-
pose Ry, = {(z,by;) | * > ay,} for arbitrary real
numbers a,, and b,,. Also, without loss of general-
ity, suppose R,,, R,,, R,, intersect with R,,, such
that R,, lies to the right of R, and to the left of R,
as shown in Figure 2(b). It is easy to observe that
by; > by, > by, or else it is not possible to define
R,; and R,,. Since R,; has to be defined such that
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Figure 3: Rays corresponding to the vertices of T'. Each ray is labelled with the vertex it corresponds to.
(a) shows the rays corresponding to the vertices in P and the region in which rays corresponding to the
remanining vertices of T; (1 < 7 < p) will be placed. The actual placement of rays corresponding to the

vertices of T and 75 is shown in (b).

Qyz > Gy, and by, < by, , it is not possible to define
R, such that it intersects with R,, but not with R,,,,
a contradiction. O

A path P in a tree T is called a spine of T if every
vertex of T is within distance two from at least one
vertex of P.

Theorem 7 A tree T has a spine if and only if T does
not contain 3-claw as a subtree.

Proof. The necessity is obvious. To prove the suf-
ficiency, assume 7" does not contain a 3-claw. Let P
be a longest path in 7. We claim that P is a spine.
Assume it is not. Let V(P) = {v1,v2,...,v}, and
(vi,vig1) € E(P),1 <i <p—1. Let F be a forest
obtained from 7" by deleting the edges in E(P). Let

T; be a tree in F' containing v;, 1 < 7 < p. Since
P is a longest path in 7', T} consists of only one
vertex, v1, and T, consists of only one vertex, vp.
Also all vertices in T5 and T},_; are within distance
one from v9 and v,_1, respectively; and all vertices
in T3 and T),_, are within distance two from vs and
vp—2, respectively. Since we assumed that P is not
a spine, there exists an integer j (4 < j < p — 3)
such that T} contains a vertex w; whose distance
from v; is three. Let P’ be the path from v; to w;.
Then the subgraph of T' induced by the vertices in
{vi |j—3<i<j+3UV(P)is a3-claw. This
contradicts the assumption that 7" does not contain 3-
claw as a subtree, and therefore P is a spine. O



/ Grid Intersection Graphs

ﬂnit Grid Intersection Graphs

Orthogonal Ray Graphs

2-directional Orthogonal Ray Graphs

Convex Bipartite Graphs

C Bipartite Permutation Graphs

)

N

/)

Figure 4: Relationship between different grid intersection graphs considered in this paper.

We can characterize the 2-directional orthogonal
ray trees as follows.

Theorem 8 A tree T is a 2-directional orthogonal
ray tree if and only if T does not contain 3-claw as a
subtree.

Proof. The necessity follows from Lemma 2. We
will show the sufficiency. Assume 7" does not con-
tain 3-claw as a subtree. Then from Theorem 7, T
contains a spine P. Let V(P) = {v1,v2,...,%},
and (v;,vi41) € E(P), 1 <4 < p—1. Corre-
sponding to each vertex v; in P, define ray R,, =
{({,y) | y > ¢ — 1} if 4 is odd, and define ray
R,, = {(z,i) | x > i—1} if ¢is even. Let F be a for-
est obtained from T by deleting the edges in E(P).
Let T} be a tree in T containing v;, 1 < ¢ < p. Con-
sider T; to be rooted at v;. Let w;1, wig, ... , Wig(s) be
the children of v; in T;, where ¢(%) is the number of
children of v; in T5. Let 2;51, 2ij2, - - - , Z4jr(s5) bE the
children of w;; in Tj, where r(37) is the number of
children of w;; in T;. The rays corresponding to w;;
and zijk, (1 <i <p,1 <5 <q(i), 1 <k <r(ig))
can be added as shown in Figure 3. Thus 7' is a 2-
directional orthogonal ray graph. O

From Theorem 8 and the proof of Theorem 7, we
can see that in order to decide if a given tree T" is a
2-directional orthogonal ray graph, we need only to
verify whether or not a longest path in T is a spine of
T'. Since a longest path in a tree can be obtained in
linear time (see [1], for example), we can recognize
2-directional orthogonal ray trees in linear time.

6 Concluding Remarks

Figure 4 shows the relationship between the classes
of grid intersection graphs considered here.

It is open to characterize the orthogonal ray
graphs. The complexity of the recognition for the
2-directional orthogonal ray graphs is also open. In
this connection, it is interesting to note that the com-
plexity of the problem of deciding if a matrix is -
freeable is an open problem posed by Klinz, Rudolf,
and Woeginger [7] more than ten years ago. It should
be noted that we can decide in polynomial time if a
matrix is M -freeable for every matrix M € ~ [7],
and if a matrix is S-freeable [2, 11].
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