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Abstract We introduce a new technique proving formula size lower bounds based on the linear programming
bound originally introduced by Karchmer, Kushilevitz and Nisan [11] and the theory of stable set polytope. We
apply it to majority functions and prove their formula size lower bounds improved from the classical result by
Khrapchenko [13]. Moreover, we introduce a notion of unbalanced recursive ternary majority functions motivated
by a decomposition theory of monotone self-dual functions and give integrally matching upper and lower bounds
of their formula size. We also show monotone formula size lower bounds of balanced recursive ternary majority
functions improved from the quantum adversary bound of Laplante, Lee and Szegedy [15].
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anced recursive ternary majority functions URecMAJ! :
{0,1)***! — {0,1} as

1. Imtroduction

In this study, we investigate formula size of three

‘ ) URecMAJ: (21, - , Tany1) =
kinds of monotone self-dual Boolean functions MAJ241,

BRecMAJ% and URecMAJ! defined as follows.

Definition 1.1. A majority function MAJ214, : {0,1}2+! —
{0, 1} outputs 1 if the number of 1’s in the input bits is greater
than or equal to l + 1 and O otherwise. We define unbal-

MAJs(URecMAJf,"l (%1, yT2h-1), T2h, T2h41)

with URecMAJ} = MAJs. We also define balanced recur-
sive ternary majority functions BRecMAJ} : {0, 1}3" —
{0,1} as

BRecMAJ}(z1,--- ,z3n) =
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MAJ3(BRecMAJ: ™ (21, -+ , Zan-1),
BRecMAJ; ™ (Z3h-1,1,"+ , Tg.5n-1),

BRecMAJ; ™ (z3.30-141, -+ , Tgn))

with BRecMAJ} = MAJs. Through the paper, n means
the number of input bits. Formula size and monotone for-
mula size of a Boolean function f are denoted by L(f) and
L(f), respectively.

Proving formula size lower bounds is a fundamental prob-
lem in complexity theory and also an extremely tough prob-
lem to resolve. A super-polynomial lower bound of a function
in NP implies NC; & NP. There are a lot of techniques to
prove formula size lower bounds, e.g.[7], (8], [11], [13]~(15].
Laptente, Lee and Szegedy [15] introduced a technique based
on the quantum adversary method [1] and gave a compari-
son with known techniques. In particular, they showed that
their technique subsumes several known techniques such as
Khrapchenko [13] and its extension [14]. The current best
formula size lower bound is n®~°¢") by Hastad (7] and a key
lemma used in the proof is also subsumed by the quantum
adversary bound [15]. Karchmer, Kushilevitz and Nisan [11]
introduced a technique proving formula size lower bounds
called the linear programming (or LP) bound and showed
that it cannot prove a lower bound larger than 4n? for non-
monotone formula size in general. Lee[16] proved that the
LP bound [11] subsumes the quantum adversary bound [15]
and Hoyer, Lee and Spalek [8] introduced a stronger version
of the quantum adversary bound.

Motivated by the result of Lee [16]), we devise a stronger
version of the LP bound [11] by using an idea from the the-
ory of stable set polytope, known as clique constraints[19].
Suggesting a stronger technique compared to the original LP
bound [11] has possibilities to improve the best formula size
lower bound because it subsumes many techniques including
the key lemma of Hastad [7]. Moreover, our technique has
various possibilities of extensions such as rank constraints
discussed in Section 6. and orthonormal constraints [6], each
of which subsume clique constraints. Due to this extendabil-
ity, it is difficult to show the limitation of our new technique.
To study the relative strength of our technique, we apply it
to some families of Boolean functions. For each family, we
have distinct motivation to investigate their formula size. Al-
though our improvements of lower bounds seem to be slight,
it breaks a stiff barrier of previously known proof techniques.

The best monotone upper and lower bounds of majority
functions are O(n%3)[25] and |n/2)n[22], respectively. In
the non-monotone case, the best formula size upper and
lower bounds of majority functions are O(n%%")[20] and
[n/2] (= (1 +1)? when n = 2! + 1), respectively, which can

be proven by the classical result of Khrapchenko [13]. In this
paper, we slightly improve the non-monotone formula size
lower bound while no previously known techniques has been
able to improve it since 1971. In Section 4., we will prove
a lower bound %‘f—:&; < L(MAJ241) where €(l) = %f—l%.
We here note that our argument is also applicable for ma-

- jority functions with even input bits.

It is known that the class of monotone self-dual Boolean
functions is closed under compositions (equivalently, in
so-called Post’s lattice[5],[21]). Any monotone self-dual
Boolean functions can be decomposed into compositions of
3-bits majority functions[9).
proofs is that a communication matrix (defined in the next

A key observation for our

section) of a monotone self-dual Boolean function contains
those of the 3-bits majority function as its submatrices.
Ibaraki and Kameda[9] developed a decomposition theory
of monotone self-dual Boolean functions in the context of
mutual exclusions in distributed systems. The theory has
been further investigated by [3], [4]. Given a monotone self-
dual Boolean function f, we can decompose it as f =
MAJs(z, f1, (MAJs(z, f2, MAJs(- -- MAJs(z, fi-1, fr)))))
after decomposing g = f(z = 0) into a conjunction of mono-
tone self-dual functions g = fi A f2 A--- A fi. It holds
URecMAJ} in its internal structure. To determine its for-
mula size is of particular interest because it is related with
efficiency of the decomposition scheme. In Section 5., we will
prove 4h+5.27* < L(URecMAJ}) < L (URecMAJS) <
4h+ 1. Since formula size takes an integral value, this shows
an optimal lower bound in the sense.

Balanced recursive ternary majority functions have been
studied in several contexts(10],[15],[17],[18],[23],[24], see
[15] and [23] for details. Ambainis et al. [2] showed a quantum
algorithm which evaluates a monotone formula of size N' (or
called AND-OR formula) in N'/2+°() time even if it is not
balanced. This result implies BRecMAJ} can be evaluated
in 0(\/5") time by the quantum algorithm because we have
a formula size upper bound L,,(BRecMAJ%) < 5" as noted
in [15]. Improving this result, Reichardt and Spalek [23] gave
a quantum algorithm which evaluates BRecMAJ% in O(2")
time. From this context, seeking the true bound of the mono-
tone formula size of BRecMAJ} is a very interesting re-
search question. The quantum adversary bound [15] has a
quite nice property written as ADV(f - g) 2 ADV(f) -
ADV(g). It directly implies a formula size lower bound
4" < L(BRecMAJ}). In Section 6., we prove 20 £
Lm(BRecMAJ3) and 4" + 12 . (8)* < Ln(BRecMAJ}).
This gives a slight improvement of the lower bound and
means that the exact 4" lower bound is at least not opti-
mal in the monotone case.
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2. Preliminaries

We define a total order 0 < 1 between the two Boolean
values. For Boolean vectors £ = (z1,-::,%n) and ¥ =
(W1, y¥n), we define F L Fif zs S yi forall i € {1,---n}.
A Boolean function f is called monotone if & £ ¥ im-
plies f(Z) £ f(¥) for all Z,§ € {0,1}™
tone Boolean function f, a Boolean vector & € {0,1}" is
called minterm if f(£) = 1 and (¥ £ Z) A (Z F §) im-
plies f(§) = 0 for any ¥ € {0,1}" and called maxterm if
f(@@ =0and (F £ § A (Z ¥ §) implies f(§) = 1 for
any ¥ € {0,1}". Sets of all minterms and maxterms of a

For a mono-

monotone Boolean function f are denoted by minT'(f) and
mazT(f), respectively. A Boolean function f is called self-
dual if f(z1,--- ,&n) = f(Z1, - ,Tn) where T is the negation
of z. Remark that, if a Boolean function f is self-dual, its
communication matrix (see below) has some nice properties,
eg. | X|=1Y]

A formula is a binary tree with leaves labeled by literals
and internal nodes labeled by A and V. A literal is either
a variable or the negation of a variable. A formula is called
monotone if it does not have negations. It is known that
all (monotone) Boolean functions can be represented by a
(monotone) formula. The size of a formula is its number of
leaves. We define the (monotone) formula size of a Boolean
function f as the size of the smallest formula computing f.

Karchmer and Wigderson [12] characterize formula size of
any Boolean function in terms of a communication game
called the Karchmer-Wigderson game. In the game, given a
Boolean function f, Alice gets an input & such that f(Z) =1
and Bob gets an input § such that f(7) = 0. The goal of
the game is to find an index % such that z; + y;. They also
characteriz monotone formula size by a monotone version of
the Karchmer-Wigderson game. In the monotone game, Al-
ice gets a minterm Z and Bob gets a maxterm %. The goal
of the monotone game is to find an index 7 such that z; = 1
and y; = 0. The number of leaves in a best communication
protocol for the (monotone) Karchmer-Wigderwon game is
equal to the (monotone) formula size of f. From these char-
acterizations, we consider communication matrices derived

from the games.

Definition 2.1 (Communication Matrix). Given a Boolean
function f, we define its communication matriz as a matriz
whose rows and columns are indezed by X = f~(1) and
Y = f71(0), respectively. Each cell of the matriz contains
indices i such that z; + yi. In a monotone case, given a
monotone Boolean function f, we define its monotone com-
munication matriz as ¢ matric whose rows and columns are
indezed by X = minT(f) and Y = mazT(f), respectively.

Each cell of the matriz contains indices i such that z; = 1
and y; = 0. A combinatorial rectangle is a direct product
X' xY' where X'CX and Y'CY. A combinatorial rectangle
X' xY" is called monochromatic if every cell (Z,7) € X' xY’
contains the same indez i. We call a cell singleton if it con-

tains just one indez.

The minimum number of disjoint monochromatic rectan-
gles which exactly cover all cells in the (monotone) com-
munication matrix gives a lower bound for the number of
leaves of a best communication protocol for the (monotone)
Karchmer-Wigderson game. Thus, we obtain the following
bound.

Theorem 2.2 (Rectangle Bound [12]). The minimum size of
an ezact cover by disjoint monochromatic rectangles for the
tone co

commaunication matriz (or ication matriz)

associated with a Boolean function f gives a lower bound of

L(f) (or Lm(f))-

3. A Stronger Linear Programming Bound
via Clique Constraints

In this study, we devise a new technique proving formula
size lower bounds based on the LP bound [11] with clique con-
straints. We assume that readers are familiar with the basics
of the linear and integer programming theory. Karchmer,
Kushilevitz and Nisan [11] formulate the rectangle bound as
an integer programming problem and give its LP relaxation.
Given a (monotone) communication matrix, it can be writ-
ten as min ), z, such that 3 . . = 1 for each cell ¢ in
the matrix and z, 2 0 for each monochromatic rectangle r.
The dual problem can be written as max ) w. such that
Y cerwe < 1 for each monochromatic rectangle r. Here,
each variable w, is indexed by a cell ¢ in the matrix. From
the duality theorem, showing a feasible solution of the dual
problem gives a formula size lower bound.

Now, we introduce our stronger LP bound using clique con-
straints from the theory of stable set polytope. We assume
that each monochromatic rectangle is a node of a graph.
We connect two nodes by an edge if the two corresponding
monochromatic rectangles intersect. If a set of monochro-
matic rectangles ¢ compose a clique in the graph, we add
req Tr < 1 to the primal problem of the LP
relaxation. This constraint is valid for all integral solutions

a constraint Y

since we consider the disjoint cover problem. That is, we
can assign the value 1 to at most 1 rectangle in a clique for
all integral solutions under the condition of disjointness. The
dual problem can be written as max }°_ wc+3", zq such that
2cer We + 245, 29 < 1 for each monochromatic rectangle r
and zq < 0 for each clique g. Intuitively, this formulation can
be interpreted as follows. Each cell c is assigned a weight w,.
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The summation of weights over all cells in a monochromatic
rectangle is limited to 1. This limit is relaxed by 1 if it is
contained by a clique. Thus, the limit of the total weight for
a monochromatic rectangle contained by k distinct cliques is
k+1.

By using clique constraints, we obtain the following match-
ing lower bound for the formula size of the 3-bits majority
function while the original LP bound cannot prove a lower
bound larger than 4.5. In our proofs, we utilize the follow-
ing property of combinatorial rectangles which is trivial from
the definition. If a rectangle contains two cells (a1, 81) and
(a2, B2), it also contains both (ai,f2) and (a2,81). A no-
tion of singleton cells also occupies an important role for our
proofs because there are no monochromatic rectangles which
contain different kinds of singleton cells.

Theorem 3.1. L(MAJ3) = L,,(MAJ3) =5

Proof. We have a monotone formula (z1 A z2) V ((z1 V
z3) A z3) for MAJs. From the definition, L(MAJ3) <
Lm(MAJ3). To prove L(MAJ3) 2 5, we consider a commu-
nication matrix of the 3-bits majority function whose rows
and columns are restricted to minterms and maxterms, re-

spectively.
100 | 010 | 001
10| 2 1 |1,23
100 3 (1,23]| 1
o11{1,23| 3 2

1 The Communication Matrix of MAJ3

In the dual problem, we assign weights 1 for all singleton
cells and 0 for other cells. There are 6 singleton cells and
hence the total weight is 6. We take a clique ¢ composed
of monochromatic rectangles containing two singleton cells.
It is clear that every pair of monochromatic rectangles con-
tained by q intersect at some cell. We assign 2, = —1. Then,
the objective function of the dual problem becomes 5 = 6—1.

Now, we show that all constraints of the dual problem
are satisfied. First, we consider a monochromatic rectan-
gle which contains at most one singleton cell. In this case,
the constraint is clearly satisfied because the summation of
weights in the monochromatic rectangle is less than or equal
to 1. Then, we consider a monochromatic rectangle which
contains two singleton cells. In this case, the summation of
weights in the monochromatic rectangle is 2. However, it is
contained by the clique g. It implies that the limit of the
total weight is relaxed by 1. Thus, the constraint is satis-
fied. There are no monochromatic rectangles which contain
more than 3 singleton cells because a rectangle which con-
tains more than two kinds of singleton cells is not monochro-

matic. [m]

4. Formula Size of Majority Functions

In this section, we show a non-monotone formula size lower
bound of majority functions improved from the classical re-
sult of Khrapchenko [13].

Theorem 4.1.

(t+1)? Pl+1)
L(MAJ > s \vTo)
( ) 2 1—¢(l) 6-2141C

Proof. We consider a communication matrix of a major-

where (1) =

ity function with 2/ 4 1 input bits whose rows and columns
are restricted to minterms and maxterms, respectively. Let
m = 21+1C14+1 = 21+1C1, which is equal to both the number
of rows and columns. Then, the number of all cells is m?.
The number of singleton cells is ({+ 1)m and hence the num-
ber of singleton cells for each index is %)12 The number
of cells with 3 indices is ;41C2 - 1C1 - m = ﬂ”T‘)ﬂ because
we can obtain a maxterm by flipping two bits of 1’s to 0’s
and one bit of 0 to 1 for each minterm.

‘We consider 3 x 3 submatrices in the following way. From
2l + 1 input bits, we fix arbitrary 2 — 2 bits and assume
that they have the same number of 0’s and 1’s. Then, we
consider the remaining 3 bits. If the 21 + 1 input bits com-
pose a minterm, the 3 bits are 110 or 101 or 011. If the
2l + 1 input bits compose a maxterm, the 3 bits are 100 or
010 or 001. Thus, we have a 3 x 3 sumatrix, which has the
same structure as the communication matrix of the 3-bits
majority function as Figure 1. The number of sumatrices is
24103 21-2C1-1 = i(H'Tlm. Each submatrix has 6 singleton
cells and 3 cells each of which has 3 indices corresponding to
the remaining 3 bits. Remark that each cell with 3 indices
in any submatrix is not contained by other submatrices. In
other words, all the ﬂHTl)ﬁ cells with 3 indices are exactly
partitioned into the ﬂH'Tlm submatrices.

We assign weights a for all singleton cells, 0 for cells with 3
indices and b for other cells, which have more than 3 indices.
Note that there are no cells with 2 indices. We consider
ﬂ”Tlm clique constraints assigned weights ¢ (< 0) for all
the ﬂ‘isl)ﬂ‘_ submatrix. That is, we have a clique constraint
for each submatrix similar to the proof of Theorem 3.1. More
precisely, a clique associated with a submatrix is composed of
monochromatic rectangles which contain two singleton cells
in the submatrix.

Then, the objective function of the dual problem is written

as

2 2
max(l-+1)m-a+ (m’ —(+1)m— ‘-(“;ﬂ) -b+u’“;ﬂ-a
a,b,c

)
Now, we fix ¢ = 2b £ 0. Then, we have

max(l + 1jm - a+ (m2 —(+)m— lziielﬂ) b (2)
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We assume that a monochromatic rectangle contains k sin-
gleton cells and consider all possible pairs of 2 singleton cells
taken from the k singleton cells. If a pair is in the same
submatrix, the monochromatic rectangle is contained by a
clique associated with the submatrix. If a pair is not in the
same submatrix, the monochromatic rectangle contains two
cells which are assigned weights b because they have more
than 3 indices. Thus, if the following inequality is satisfied

k-a+ (K —k)-b<1 3)

for any integer k (1 < k< ﬁ%‘iilm), all constraints of the dual

problem are satisfied when ¢ = 2b.
We can maximize (2) by assuming that the inequality

2
is saturated when k = 4 - £ as it satisfies £k =
2_(141ym— 20 Dm . -
%%i. In this case, we have (2) = T-i';—'; =
2 .
,—n{% and obtain the lower bound. [m]

5. Formula Size of Unbalanced Recursive
Ternary Majority Functions

In this section, we show the following upper and lower
bounds of formula size for unbalanced recursive ternary ma-
jority functions.

Theorem 5.1.

4h+g~2"' < L(URecMAJ}) < L,(URecMAJY) < 4h+1

Proof. First, we look at the monotone formula size upper
bound. Recall that a monotone formula of the 3-bits major-
ity function can be written as (z1 A z2) V ((z1 V z2) A z3).
The important point here is that the literal z3 appears only
once. We construct (z2n A Zan+1) V ((Z2n V Zah+1) A T2n-1)
and replace zzp—1 by a monotone formula representing
URecMAJ!™!. A recursive construction yields a 4h + 1
monotone formula for URecMAJ.

Then, we show the non-monotone formula size lower
bound. Before using clique constraints, we consider the orig-
inal LP bound. We restrict the communication matrix of
URecMAJQ‘ to a submatrix Sr, whose rows and columns
are minterms and maxterms, respectively. We can interpret

it in the following recursive way as Figure 2.

00 10 01
11| 2h,2h+1|2h+1| 2h
01 2h+1 Th-1 | Sh—1
10 2h Sh—1 | Th—1

2 Recursive Structure of Sj, for URecMAJg (h22)

In the figure, “11” denotes a minterm which has 1 in the
2h-th and (2h + 1)-th bits and 0 in other (2h — 1) bits.
Minterms denoted by “01” has 0 in the 2h-th bit and 1 in

the (2h + 1)-th bit and other (2h — 1) bits of them are deter-
mined by a recursive way from minterms of URecMAJ; ™.
Minterms denoted by “10” has 1 in the 2h-th bit and 0 in
the (2h + 1)-th bit and other (2h — 1) bits of them are also
determined by the recursive way. “00”, “10” and “01” de-
note maxterms which are similarly defined as minterms. A
submatrix Th-1 does not contain singleton cells because all
cells in Th—) contains indices {2h,2h + 1} with indices of
corresponding cell in Sh—1. Sk contains two Sp_1. Thus, the
number of singleton cells duplicate in each recursion.

We consider the minimum submatrix ALL-S; in Sy
which contains all three kinds of singleton cells {1}, {2} and
{3}. Note that ALL—S; does not contain any other kinds
of singleton cells because it only contains cells in S; and T}
(2 £1< h—1). A submatrix S is equivalent to a commu-
nication matrix of the 3-bits majority function. The total
number of singleton cells {1}, {2} and {3} is 3 - 2". Both
the number of rows and columns of ALL-S, is equal to
3. 27! because Si’s duplicate (h — 1)-times and does not
have any common rows and columns. Hence, the number of
all cells in ALL—S; is 9 - 4", We assign weights a for all
singleton cells in ALL—S,; and weights b for all other cells
in ALL—S;. Then, the total weight of all cells in ALL-S,

is written as follows:
n:jabx3-2"-a+(9~4"'l—3'2")-b. )

We consider constraints of the dual problem as k - a + (k% —
k)b < 1 for all integer k (1 £ k £ 2"). We assume this
inequality is saturated if and only if k = 3 - 2"~2. Then, we
get a = 2420216 ond b= — 16 In this case, (4) = 4.

Next, we consider singleton cells {21} and {2l + 1} (2 £
1 £ h). We partition singleton cells {2} into two sets named
vertical cells Xo; and horizontal cells Y2; which are in (10,00)
and (11,01) of each S; in Sy, respectively. Similarly, we par-
tition singleton cells {2[ + 1} into two sets named vertical
cells Xo;+1 and horizontal cells Y2;41 which are in (01,00)
and (11,10) of each S; in S, respectively. We restrict these
sets to the minimum subsets X3 C Xa, X341 C Xaiy1,
Yy, C Y and Y§y,, C Yai41 so as to satisfy the following
condition: If a monochromatic rectangle contains all cells
in X3 U X914, UY3 UY;,,,, it also contains all cells in
ALL-S,. Note that rows and columns of singleton cells
{2} and {2l + 1} dominate those of singleton cells {1}, {2}
and {3}. So, we have |X3;| = |X3| = [Ya| = Yol =
3282 We assign weights 3= for all singleton cells in
X5 U X541 UY5 UY,, and O for other cells at (11,00) of
each S; and cells outside ALL—S;. A monochromatic rect-
angle which contains z cells in X}, and y in from Yy, also
contains z - y cells in ALL—S,; which are assigned weights

b. The same thing is true for the case of X3, and Yg,,.
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100 010 001
100 | 010 [ oo1 | 100 | o010 | oo1 | 100 | 010 | oot
10| 5 4 4,5 2 1 12 | 25 14 [1,245
110|101 6 46 4 3 1,3 1 36 |1,346| 14
011 56 6 5 2,3 3 2 [2356] 36 | 25
110 8 7 7,8 2,8 1,7 [1278] 2 1 1,2
101101 9 7.9 7 39 (1,379| 17 3 13 1
o11| 89 9 8 [2389] 39 | 28 | 23 3 2
10| 58 | 47 [4578| 8 7 78 5 4 45
o101 69 [4679]| 47 9 7.9 7 6 4,6 4
011]5689] 69 | 58 | 89 9 8 5,6 6 5

BI 3 A Submatrix of the Communication Matrix for BRecMAJ3

Because we have

16

4
(@+e) gop — o ggp =1

)

for all 0 < z,y < 3-2"~2, all constraints of the dual prob-
lem are satisfied. The total weight of singleton cells {2I}
and {2l + 1} is 4. So, the total weight of all cells in S, now
becomes 4h.

Now, we incorporate clique constraints. The number of S;
in Sy is 2"~1. We change weights of all non-singleton cells
in submatrices S; from b to 0. On behalf of them, we add a
clique constraint for each S; in S4. Then, (4) becomes

max3-2".a+ (9 4t 3.9k 3. 2""‘) b4281c. (6)

a,b,c

where c is a weight assigned for each clique constraint. If we

take a = %‘,,—16, b= —3% and c = 2b, all constraints of
the dual problem are satisfied and (6) = 4 + & - 27", Cose-
quently, the total weight is 4h + § - 27" O

6. Monotone Formula Size of Balanced
Recursive Ternary Majority Functions

In this section, we show monotone formula size lower
bounds of balanced recursive ternary majority functions. For
this purpose, we consider rank constraints, which are gener-
alizations of clique constraints. Similarly to the case of clique
constraints, we consider a graph composed of monochromatic
rectangles and its induced subgraph g. We consider a con-

straint 3°,.c
g. This constraint is valid because we can assign 1 at most

z» £ a(g) where a(g) is the stability number of

a(g) rectangles in g for any integral solution. The dual prob-
lem can be written as max 3, we + 35, 2q + 32, @(9)2g such
that 3=, We + X5, Zg + 295, Zg < 1 for each monochro-
matic rectangle r, z; < 0 for each clique ¢ and 2, < 0 for
each subgraph g.

First, we consider the case of height 2. By using clique
constraints and rank constraints, we prove the following im-

proved monotone formula size lower bound.

Theorem 6.1. L.,(BRecMAJ3) = 20

Proof. There are 27 minterms and 27 maxterms for the re-
cursive ternary majority function of height 2. Among them,

we choose the following 9 minterms

110,110,000
110,000,110
000,110,110

101,101,000
101,000,101
000,101,101

011,011,000
011,000,011
000,011,011

and 9 maxterms

111,100,100
100,111,100
100,100,111

111,010,010
010,111,010
010,010,111

111,001,001
001,111,001
001,001,111.

From these 9 minterms and 9 maxterms, a submatrix of the
communication matrix can be described as Figure 3. In
101,101,000 by
110 and 101, which represent the second level and the first

the figure, we abbreviate a minterm e.g.

level structure of the 9 bits, respectively. Notice that all
minterms which we choose have the same structure in all 3-
bits minterm blocks at the first level. The same thing is true
for all 9 maxterms.

100 010 001

100 | 010 ( 001 | 100 | 010 (.001 | 100 | 010 | 001

110| 1 2 3 4 5 6 7 8 |9
11010110 | 11 |12 (13 |14 | 15| 16 | 17 | 18
01119 (20 | 21 | 22 (23 |24 | 25 | 26 | 27
110( 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36
101|101 | 37 | 38 [ 39 | 40 | 41 | 42 | 43 | 44 | 45
011 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54
110 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63
011|101 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72
011 (73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81

4 Serial Numbers for 81 cells of the Submatrix

To describe 12 cliques g1, - - ,q12 and a induced subgraph
g whose stability number is 4, we give serial numbers for 81
cells as Figure 4. We take the following 12 cliques each of
which consists of 3 pairs of 2 singleton cells:
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{(5, 15), (4, 24), (13, 23)}, {(35, 45), (34, 54), (43, 53)},
{2, 12), (1, 21), (10, 20)}, {(62, 72), (61, 81), (70, 80)},
{(29, 39), (28, 48), (37, 47)}, {(59, 69), (58, 78), (67, 77)},
{(5, 35), (2, 62), (29, 59)}, {(15, 45), (12, 72), (39, 69)},
{(4, 34), (1, 61), (28, 58) }, {(24, 54), (21, 81) (48, 78)},
{(13, 43), (10, 70), (37, 67)}, {(23, 53), (20, 80), (47, 77)}.

For each combination of 3 pairs, it is easy to verify that rect-
angles each of which contains both of two singleton cells from
one of the 3 pairs compose a clique.

Next, we consider the following 18 pairs of singleton cells

which induce the subgraph g:

(5, 45), (15, 35), (4, 54), (24, 34), (13, 53), (23, 43),
(2, 72), (12, 62), (1, 81), (21, 61), (10, 80), (20, 70),
(29, 69), (39, 59), (28, 78), (48, 58), (37, 77), (47, 67).

If a rectangle contain both of two singleton cells from one of
18 pairs, it also contains 2 cells from 9 cells { 9, 17, 25, 33,
41, 49, 57, 65, 73 }. Thus, we can choose at most 4 pairs
without conflicts from 18 pairs. It implies that the stability
number of g is 4.

Notice that all these 12 cliques and the subgraph cover all
pairs of two singleton cells which have the same index. We
assign 1 for all 36 singleton cells in this submatrix and 0 for
other cells. We take 24, = -+ = zg,, = zg = —1. Then, the
objective value of the dual problem becomes 36 —12—-4 = 20.
If a rectangle contains at most one singleton cell, the con-
straint of the dual problem is trivially satisfied. If a rectangle
contains k (2 £ k < 4) singleton cells, it is covered by k — 1
cliques or k — 2 cliques plus the subgraph g. So, the con-
straint is also satisfied. As a consequence, we obtain the
formula size lower bound. m]

Note that we need a much more complicated argument to
look at the non-monotone case, which we do not investigate
in this paper, because singleton cells in the monotone com-
munication matrix are not singleton in the non-monotone
communication matrix.

In the general monotone case, we can prove a slightly
better lower bound than the quantum adversary bound [15],

which shows the exact 4" lower bound.
Theorem 6.2. Ln(BRecMAJ}) 24 + 8. (8)" (h22)

Proof. First, we choose 3" minterms and 3" maxterms from
3" input bits of BRecMAJ? so as to have the same struc-
ture in the 1st, 2nd, - - -

In the I-th level, we have 3"~ bits which are recursively con-

and h-th levels in the following sense.

structed from lower levels in the following way. We partition
3' bits into 3'~! blocks each of which contains consecutive
3 bits. For each block of 3 bits, we replace them into 1 bit
which is the output of MAJ; with the 3 bits. Then, we

get 3"~(+1) bits, We have 3" bits as input bits in the first
level and can construct them for each level by induction. If
all of 3'~! blocks have the same 3 bits except 000 and 111
in the case of minterms and maxterms, repsectively, we call
that they have the same structure in the [-the level. There
are 3" minterms and 3" maxterms because we have 3 choices
in each level. We consider the submatrix whose rows and
columns are composed of these 3" minterms and 3" max-
terms, respecively.

From another viewpoint, we can interpret it as a recur-
sively construction of the submatrix Sp of the communica-
tion matrix of BRecMAJ% as follows. We define Sh(k)
(k = 1,2,3) as a matrix such that some cell of Si(k) con-
tains an index (k—1)-3" 41 if and only if the corresponding
cell of S, contains an index i. By induction, we can see that
the number of all cells and singleton cells in Sj, is 9" and 6",
respectively. Singleton cells of each index from 3" bits in S
is 2", Indices of cells in Th(1,2), Tn(2,3) and T%(2, 3) in Fig-
ure 5 can be determined from the property of combinatorial
rectangles, but we do not go to the details because we will
assign the same weight for all these cells in each level.

100 010 001
110 | Sp-1(2) | Sh-1(1) [Th-1(1,2)
101 | Sp-1(8) | Th-1(2,3) | Sh-1(1)
011 [ Th-1(2,3) | Sph-1(8) | Srh-1(2)

5 Recursive Structure of Sj, for BRecMAJ g (h22)

Before using clique and rank constraints, we consider the
original LP bound. We assign weights a for all singleton
cells, b for other cells in the submatrix and 0 for all cells in
the outside of the submatrix. Then, the objective value of

the dual problem is written as
mabxfs" -a+ (9" —6")-b. (7
a,

If a rectangle contains k singleton cells, it also contains
at least k* — k cells which is not singleton. Thus, if
k-a+ (k% —k)-b £ 1 is satisfied for all integer k (1 < k < 2*),
then all constraints of the dual problem are also satisfied.
We assume that the inequality is saturated if and only if
k = (3/2)". Then, we get a = ﬁg{i and b= —;—:—. In this
case, we have (7) = 4",

Now, we incorporate clique and rank constraints. We
change weights of all cells except singleton cells in all S3’s in
the second level from b to 0. Then, we add 12 clique con-
straints and a rank constraint for each S in the second level
by following the way of Theorem 6.1. Let ¢ and d be values
assigned for every clique and rank constraints, respectively.
Then, the objective value of the dual problem is
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3%6"-a+(9" —81.6"7%).b+12-6""%.c+4.6"%.d. (8)
If we take ¢ = d = 2b, then we have (8) = 6" - a + (9" —
49-6"2).b = 4" + 12 (8)". Since all weights which are
changed from b to 0 are exactly compensated by clique and
rank constraints, all constraints of the dual problem are sat-
isfied. [m]

7. Conclusions

In this paper, we devised the new technique proving for-
mula size lower bounds and show improved formula size lower
bounds of some families of monotone self-dual Boolean func-
tions such as majority functions, unbalanced and balanced

recursive ternary majority functions. We guess that our

method is able to improve formula size lower bounds for any
monotone self-dual Boolean function and even much broader
classes of Boolean functions. Whether our technique (or its
extensions) can break the 4n? barrier and improve the best

formula size lower bound remains open.
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