HEAEA BRAEES RS
IPSJ SIG Technical Reports

2008—AL—121 (1)
2008/12/3

757 DTV FREICET BARIED TSR

INE T

R BK

iy #E—T

BB A THHER T 376-8515 BB AT RAET 1-5-1
E-mail: t{kozawa,otachi}@comp.cs.gunma-u.ac.jp, ttkoichi@cs.gunma-u.ac.jp

HS5EL FHXTIE, 22DF57 G & G, DT ANV IEELTEDENSE T T T GG, D tree-width IENT 5 H
3TRE5Z3. XD BE&MICIE, Gy D Hadwiger & G, D PLEOMEN G1oG, DTS VT NVBOTRLEBT LR

KT, ERAFATREZRCEGAMILRT.
F—7—F FhIVEH, KB, 7527V, Hadwiger

A lower bound for tree-width of Cartesian product graphs

Kyohei KOZAWA', Yota OTACHI', and Koichi YAMAZAKI'

Department of Computer Science, Gunma University, Tenjin-cho 1-5-1, Kiryu, Gunma, 4376-8515 Japan
E-mail: }{kozawa,otachi}@comp.cs.gunma-u.ac.jp, ttkoichi@cs.gunma-u.ac.jp

Abstract In this paper, we give a lower bound for tree-width of Cartesian product graphs. To be more precise, we show that

the bramble number of Cartesian product of graphs G and G; is at least Hadwiger number of G; times PI number of G,. We

also demonstrate applications of the lower bound.
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1. Introduction

The concept of free-width have been making great contribu-
tions on pure and algorithmic graph theory for recent twenty years.
Roughly speaking, the tree-width of a graph G, denoted by tw(G),
is a graph parameter to measure how close G is to a tree. In this
paper, we give a lower bound for tree-width of Cartesian product
graphs. To this end, we use another graph parameter bramble num-
ber which is essentially the same as tree-width: Bramble number of
a graph G, denoted by bn(G), is the maximum order of a bramble of
G. A bramble B = {B,, ..., Bg)} of G is a collection of connected
subgraphs of G such that any B; and B, in B, B; and B; intersect or
are joined by an edge. The order of B is the least number of vertices
to cover every B; in B, namely the size of minimum hitting set of B.
Seymour and Thomas showed that the bramble number of a graph
is precisely the tree-width of the graph plus one[10]. A merit to
use bramble for showing lower bound on tree-width, is that a lower
bound can be found constructively.

1.1 Motivation

Our study was motivated by the following natural question which
arises from a study of inapproximability of bramble number: Is
there a suitable graph product operation under which the tree-width
of a resulting product graph can be determined only by tree-width

of its factor graphs? A famous example of this type of question
is cliqgue number under strong product operation. Clique number
w(G) of a graph G is the size of largest clique in G. Strong product
of G| = (1, Ey) and G, = (V2, E;), denoted by G ®G,, is the graph
whose vertex set is ¥ X V3, and edge set is {{(u1,v1), (42, v2)} | [11 =
u V {uy, 12} € E1] A [vi = vy V {v,v2} € E;]}. It is known that for
any graphs G, and G;, w(G, ® G,) equals w(G)) X w(G7).

To consider the above question, let us observe the following. Let
G be a graph and B = {By,..., B} be an optimal bramble of G.
Then it is not difficult to see that B x B = {By,,...,Bpg,g) is a
bramble of G ® G, where B;; = {(u,v) | u € B;,v € B;}. And let
H be a minimum hitting set of B, then H? = {(1,v) | u,v € H} isa
hitting set of G®G. So if H? is a minimum hitting set of G® G then
we have a lower bound for tree-width of G ® G.

Unfortunately there is a drawback in the above observation, that
is, H? is not a minimum hitting set of B x B in general, and it would
be difficult to determine the order of B x B or obtain a lower bound
for the order, unless we impose some restriction.

1.2 Related works

For a graph G and a complete graph K,, with n vertices, Bodlaen-
der et al. showed implicitly that wW(G® K,,)) = (tw(G) +1)-n—1to
demonstrate inapproximability with an absolute error guarantee for
tree-width [1].
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Lucena determined the exact tree-width of the Cartesian product
graph of K, and X,, [7], more precisely, tw(K, o K,) = /2 +n/2~1
for n 2 3, where Gy o G, denote the Cartesian product of two graphs
G, and G,. Our results can be considered as a formulation of the re-
sult of Lucena.

Dijelloul provided upper bounds for tree-width and path-width of
Cartesian product graphs [4], [5]. We use the upper bounds to eval-
uate our lower bounds.

1.3 Our results

Our original motivation is to find a product operation @ for
which there exists a “tractable” function f such that w(G; © G;) =
S(tw(Gy), tw(G2)), or to find a “reasonable” lower bound function f
such that w(G, @ Gz) 2 f(tw(G1), w(G2)).

In this paper, we give a lower bound function for tree-width of
Cartesian product graphs in terms of two graph parameters related
to tree-width. To be more precise, we show that the bramble num-
ber of Cartesian product of graphs G, and G; is at least Hadwiger
number of G, times PI number of G,, that is, in our terminology
tw(G1 0 G) 2 (Gy) X «(G2), where n(G) and (G) denote Hadwiger
number and PI number of G, respectively (See Section 2. for more
detail on the terminologies).

We also demonstrate applications of the lower bound function.
More precisely, by applying our lower bound function to Cartesian
product graph of a complete graph and a grid, we practically deter-
mine the tree-width of the product graph. We also apply our lower
bound function to Cartesian product graph of a complete graph and
a complete multipartite graph. Unfortunately our lower bound func-
tion does not work for the case where both factor graphs have small
tree-width. For example, the path P, of n vertices has tw(P,) = 1
and it is known that tw(P, o P,) = n. On the other hand, our lower
bound function gives 7(P,) X «(P,) = 2 X 1 = 2. Fortunately, how-
ever, our lower bound function works well for the case where one
of two factor graphs has large tree-width, like a complete graph.

1.4 Organization of this paper

The rest of the paper is organized as follows: Section 2. re-
views basic definitions and notations, and introduce new terminol-
ogy. Section 3. gives the lower bound function for tree-width of
Cartesian product graphs. Section 4. demonstrates the application
of the lower bound function. In Section 5. we make a simple ob-
servation of a relationship between Hadwiger number and bramble

number.
2. Definitions and notations

Let G be a graph. ¥(G) and E(G) denote the vertex set and edge
set of G, respectively. Let X and ¥ be subsets of V(G). G[X] de-
notes the subgraph of G induced by X. If G[X] is connected, we say
X is a connected subset or simply connected. X and Y are joined if
X and Y do not intersect and there exists an edge such that one of
its endpoints is in X and the other is in Y. X and Y are touched if
they intersect or are joined. Note that in our definitions if X and ¥

are touched then they intersect iff they are not joined.

In this paper, P, and K, denote a path with n vertices and a com-
plete graph with n vertices, respectively (Note that P, is a path of
length n— 1). And K, n,...., denotes a complete multipartite graph
with & parts, where #; is the number of vertices in the i-th part of the
graph. For convenience, we assume thatny 2, 2 -+- 2 1.

2.1 Graph parameters

A tree decémposition of a graph G is a pair (X, T'), where X =
{Xi | i € V(T)} is a collection of subsets of ¥(G) and T is a tree,
such that

* UiennXi = V(G),

e for each edge {v,w} € E(G), there is a node i € V(T) such
that v, w € X, and

o for each v € V(G) the set of nodes {i | v € X;} forms a subtree

of T.
The elements X;’s in X are called bags. The width of a tree decom-
position (X, T) equals max;ey(r) [Xi| — 1. The tree-width of G is the
minimum width over all tree decompositions of G. A path decom-
position of G is a tree decomposition (X, T) in which T is a path.
The path-width of G is the minimum width over all path decompo-
sitions of G.

LetS = {S},...,S} be acollection of connected subsets of V(G).
The order of S is the size of hitting set for S of minimum cardinal-
ity, that is the least number of vertices to cover every subset S; € S.
Generally speaking, it is difficult to obtain a good lower bound for
the order of S. S is an intersecting family, a joined family, and a
touched family (or a bramble) if any two subsets in S intersect, are
joined, and are touched, respectively (Recall that all subsets in S are
required to be connected). Clearly if S is a joined family then the
order of S is |S|. So one way to avoid the difficulty of evaluating
the order is to take a joined family instead of an intersecting or a
touched family. Actually we use this simple but useful idea in this
paper.

The following graph parameters play important roles in this pa-
per, and there are several known results on Hadwiger number (See
e.g. [3]) and bramble number (See [2]).

Definition

e The PI number of G, denoted by «(G), is the maximum order
of all possible intersecting families of G.

e The Hadwiger number of G, denoted by 7(G), is the maxi-
mum order of all possible joined families of G.

e The bramble number of G, denoted by bn(G), is the maxi-
mum order of all possible touched families of G.

As mentioned in Introduction, Seymour and Thomas showed that
for graph G, bn(G) = tw(G) + 1[10]. A merit to use bramble for
showing lower bound on tree-width is that a lower bound can be
found constructively by taking suitable bramble and evaluating its
order. Generally speaking evaluation for the order is a difficult task.

It should be mentioned that the following graph parameter /inked-
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ness is strongly related to PI number. Actually, in this paper, we will
use an idea inherent in the concept of the graph parameter linked-
ness in order to obtain a lower bound for ¢(G). The definition of
linkedness is as follows.

Definition ( [8],[9]) A subset S of V(G) is k-linked if for any set
XCV(G) with |X] < k, there is a component of G — X containing
more than half of the vertices of S. The linkedness of G, denoted by
A(G), is the largest k for which G has a k-linked set.

For each set XCV(G) with |X] < k, we call the component con-
taining more than half of the vertices of S by big component of
G - X under S. Typical example of linkedness is that the linkedness
of a complete graph K, with n vertices is [n/2] (Because V(K,) is a
[n/2]-linked set).

Remark 1. The set of big components under S pairwise intersect
since each of them has more than half of the vertices of S.

Remark 2. The order of the set of big components under a k-linked
set S is at least k. Because if not, there is a hitting set X of size less
than k. From the definition, G — X should have a big component,
and clearly X and the big component do not intersect.

Since each big component is clearly connected and from Remark
1 they pairwise intersect, the set of big components is an intersect
family. Thus from Remark 2, we have A(G) £ «G). In Section
4., we will demonstrate a lower bound for PI number of a complete
multipartite graph by using an idea observed in Remark 2.

2.2 Cartesian product

Let G, = (V), Ey) and G; = (V,, E;) be graphs. Cartesian product
G) oG, is the graph whose vertex set is V; X V>, and any two ver-
tices (#1,v1) and (4, v;) are adjacent in G, o G; iff either [v, = v,
and {u;, u,} € E1] or [uy = u, and (v;,v,} € E,].

Remark 3. LetB, = (B},B,... ,Bl'BII] be a touched family (i.e. a
bramble) of a graph G, and B, = {B2,B2,... 'Blzagl} be a touched
Sfamily of a graph G,, andlet By x B, := (B;; | 1<is|B)l,1sj<
|B2l}, where B;; = {(u,v) |u€ B!,ve B}]. Then fortunately B, x B,
is a touched family (i.e. a bramble) of Gy ® G,. Unfortunately,
however, B, x B, is not a touched family of G, o G, in general.

3. Lower bound for tree-width of Cartesian
product graphs

In this section, we give a lower bound function for tree-width
of Cartesian product graphs. As mentioned in Subsection 1.2,
Lucena determined the exact tree-width of the Cartesian product
graph of two complete graphs with n vertices [7], more precisely,
w(K,oK,) = n*/2+n/2 -1 for n 2 3. Our lower bound func-
tion can be considered as a formulation of this result of Lucena. In
fact, applying our lower bound function to K, o K, with odd n, the
proof of our lower bound function is coincident with the proof of

the Lucena’s result. For even n, our lower bound function does not
achieve the optimal value. In fact Lucena constructed a bramble in
more sophisticated way for the case of even n.

Theorem 1. Let G, and G, be graphs. Then bn(G, 0 G>) 2 7(G1) X
L(Gz).

Proof. Let J = {Ji,...,JyGp) be a joined family of G, and
| = {L,...,Iy} be an intersecting family of G, with order of
«Gy), and let B := (B;; | 1 = i £ 9(Gy),1 £ j < |ll}, where
Bij={wv)|ueJ,vel}

First we show that B is a bramble of G; 0 G;. To show this, let us
first verify that each B, ; is connected. It is known that the Cartesian
product of two graphs is connected iff both factors are connected
(See e.g. [6]). So each B;; is connected.

Let us check that any B, ; and B, are touched. Since | is an inter-
secting family, there exists a vertex u € V(I;) N V(I,). If i = p, we
have (v,u) € B;; N By, for any vertex v in J; = Jp, so B;; and B,,
intersect. If i # p, there is an edge {v, w} in G such that v € J; and
w € Jp, 5o (v,u) € B;; and (w,u) € B,, are adjacent in G, 0G,. It
is worth to note that it is an advantage here to take | (an intersecting
family) not a bramble (a touched set) (Recall Remark 3).

Now we show that the order of B is 77(G1) X ¢(G>). So let us con-
sider the set H := {(u,v) | u € H,,v € H)}, where H; and H, are
minimum hitting sets of J and |, respectively. Then clearly H is a
hitting set of B (Note that |H)| = 7(G,) and |H)| = «(G.)). Further-
more H is minimum. that is, in order to cover every set in B at least
7(G) x «(G>) vertices are required. The reason is as follows. Parti-
tion H into {(J, 1), (J2,1),...,(Jiy, 1)}, where (J;,1) = {B; | 1 S i <
[I}. Thenas J;NJ; = 0 for i # j, if (u, v) covers a set in (J;, |) then
(u,v) cannot cover any set in (J;, I) for all i # j. Since the order of
1 is «(G>), we need at least ¢(G>) vertices to cover every set in (J}, 1)
for each 1 £ j £ 7(G,). So we need a total of 7(G)) X «(G>) vertices
to cover every set in B.

It should be noted here that there is an advantage to taking J (a
joined family) not a bramble (a touched family), because, in general,
it is hard to estimate the order of B if we took a bramble instead of
J.

As a result, we have that bn(G) 0 G3) 2 7(G)) x «(G>). [u]

4. Applications

In this section, we practically determine the tree-width of Carte-
sian product of complete graphs and fundamental graphs such as
grids and complete multipartite graph.

4.1 Complete graphs and grids

The following fact is a folklore result (See e.g. [5]).

Fact 1. Let G be a connected graph with m 2 2 vertices. Then
pw(P,aG) < m.

By combining Theorem 1 and Fact 1, we have Theorem 2 given
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below. As seen from the proof, Theorem 2 also holds if we replace
tree-width tw with path-width pw in the statement.

Theorem 2. Let grid,, be a m X n grid graph withm 2 n. Then,
¢n—1 < w(K,ogridy,) < tn.

Proof. Firstly it is easy to see that «(grid,,,) 2 min{m, n} by using a
similar argument to show that bn(grid,,,) = min{m, n} + 1 (See [2]).

Since K, o grid,,, is isomorphic to (K;a P,)a P,,, from Fact 1 we
have w(K;ogridym) < pw(Keogridym) = pw((KoPn)oPm) S
|V(Kea Py)l = £ - n. On the other hand, from Theorem 1, we have
(K, ogrid,) = bn(Keogridn,) — 1 2 1(Ke) X ugridm,) - 1 2
€-n-1. o

Our lower bound function is tight for tree-width of Cartesian
product of complete graphs and grids. For example, applying The-
orem 2 to P, ngridy, we have 3 £ tw(P,ogrid,) < 4. It is easy to
verify that tw(P; agridy) = 3.

4.2 Complete graph and complete multipartite graph

The following upper bound lemma can be proved by applying
Theorem 3.4 in[5].

c2mandn=3k n.

To estimate lower bound for tree-width of Cartesian product of
complete graphs and complete multipartite graphs, we will consider
the two cases: n, < |n/2] and otherwise.

£-n—ny, wheren 2 nm g--‘gnkandn=2f=,n,.

Proof. The upper bound follows from Lemma 1. To derive a
lower bound, we will estimate 7(K¢) X (Ko, ny....n,) (The other side
Koy my....m) X UKe) gives a weaker bound).

To estimate ¢(K, ny,...n,)> consider a set S := {SCV (K ny,...n,) |
IS| = [n/2] + 1). Firstly it is easy to see that S is an intersecting
family. In fact, as m; < |n/2), any set S in S is connected and
clearly any two sets in S intersect pairwise. Now we show that the
order of S is at least [n/2]. Suppose if not, there is a hitting set &
of size at most [n/2] — 1. Then V(G) — H has at least |n/2] + 1
vertices. Thus ¥(G) — H has a set in S which cannot be covered by
H. Therefore we have (K, ny,..n,) = [n/2].

Thus from Theorem 1 we have £-[n/2] < bn(K; 0 Ky, py,..,)- O

Lemma 3. Ifn, > n/2), then £+ (n —m) — 1 < tw(Keo Knymy..m),

wheren 2n, 2 -2, andn= Z‘,f;l n;.

Proof. To estimate (K, n,
lSl = n + 1}

ing family with the order n — m; by using an argument similar to

), consider aset S := {SCV(Kyy ... |

Then it is easy to see that S is an intersect-

that in the proof of Lemma 2. Thus, from Theorem 1, we have
€ (n—m) S bn(Keo Ky y...y)- u]

By combining Lemmas 2, 3 and Lemma 1, we have the following
theorem.

Theorem 3. Letn, 2n, 2 - 2 myandn = 3% n;. Then

¢-[nf21-1  n £|n/2),
£-(n—-m)-1 n >|n/2]).

e'("_”l""l)_l 2 M(K(U nl.rq.....nk) 2

4.3 Lower bound function in terms of Hadwiger number

From the definition, clearly 7(G) £ bn(G) holds, and it is known
that for any graph G, bn(G) < 2A(G)[8], hence 7(G)/2 = A(G).
Hence, from Theorem 1, we have that bn(G o G) 2 7(G)?/2 (Recall
that 2(G) < «(G)).

5. Hadwiger number and bramble number

In this section, we consider graphs G with bn(G) = n(G). This is
motivated from Hadwiger conjecture.

The conjecture “7(G) 2 x(G) for any graph G” is known as
Hadwiger conjecture (x(G) denotes the chromatic number of G).
As we can see from the definitions, bramble number is somewhat
similar to Hadwiger number. So, it is natural to ask whether or
not bn(G) 2 x(G) holds for any graph G. Actually the inequal-
ity holds for any graph. To see this, consider a chordal graph G’
such that G’ is a supergraph of G and w(G’) = tw(G). Then,
since G’ is a chordal graph, x(G’) = w(G’) holds, where w(G’)
denotes the size of largest complete graph in G’.
w(G) +1=m(G) +1 = w(@) = x(G') 2 x(G).

Next let us observe a relationship between bramble number and
Hadwiger number from the viewpoint of “covering and packing

So we have

problem on hypergraphs.” To this end, we need some definitions.
Let B be a bramble of a graph G, and let Hg denote the hypergraph
whose vertex set is ¥(G) and edge set is B. Let P be a property on
hypergraphs. For example, “Balanced,” “Arboreal,” and “Normal”
can be considered as P. Then B has P (or P-bramble) if Hg has P.
Let H be a hypergraph. A covering of H is a set of vertices of H
intersecting each edge of H. The covering number of H, denoted by
7(H), is the size of a minimum covering of H. So, for any bramble
B, 7(Hy) equals the order of B. A packing of H is a set of pairwise
disjoint edges in H. The packing number of H, denoted by v(H), is
the size of a maximum packing set of H. So, for any bramble B,
v(Hy) equals the size of a maximum joint set contained in B. H has
Konig property if 7(H) = v(H) holds.

We are now ready to explain the relationship between bram-
ble number and Hadwiger number. Let consider a graph G for
which there exists an optimal bramble B having Konig property (i.e.,
bn(G) = bn(B) and B has Konig property). For such a graph G, we
have bn(G) = 1(G), so Hadwiger conjecture holds for such a graph.
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