FENES -1
(1978 2 9)

Function-class —— its definition and application

Toshiaki Kurokawa

Information Systems Lab., TOSHIBA R & D Center

Abstracts

We present a new declaration and classification method for functions or procedures,

which distinguishes the internal body of function and the external subprocedure for function in-

vocation. And that external procedure is divided along two coordinates: input vs. output, and

requirement vs. procedure.

New concept, 'function-class', is introduced in this paper along this line.

The function-

class coneept promotes 'a declarative kind of function definition' and opens 'an easy way to

write assertions for procedures’.

It will be applied to the area of program writing, program verification, compiler opti-

mization and automatic program analysis, i,e. to the automated software production system.,

Introduction
There are two problems which gave
The one is the classifica-

When the

birth to this paper.
tion problem on the program.
author made an attempt to.make another
LISP system which would be a child of LISP
1.9 [1], the problem was the great number
of built-in functions in LISP 1.9. A method
to group and classify these functions is neces-
sary,

The other problem is the software
production problem. The more efficient
method to make and write a program is now
a popular and a hard problem. As the author
is employed to the LISP language, it is, in
other words, how to write a function in a
more efficient style.

This paper presents a step to the solu-
tion which is called a function-class concept.
A function-class can be considered to be an
extension of a function type, but it has a
more formal definition and has much power.

It provides a kind of declarative way of
program writing.

We present the definition of the function-

class and its calculus in chapter I, which is

the main purpose of this paper. In chapter II,
an informal description of function-class is
given. And the application is given in chapter
III where the function-class is applied to
LISP language (esp. to LISP 1.9), the LISP
specialities (i.e. body type) are explained,
and some basic classes in LISP are given.

At last some utilizations of function-
class are given. They are program construc-
tion, program modification, program check-
ing and compiler optimization.

The term 'function-class' is adopted to
distinguish the existing term, ‘function type'.
Also the effect of the term 'object class’ in
the SMALLTALK [2] cannot be neglectea.‘

If you consider the term 'function' as a class
name for the functions, then you should inter-

pret 'function-class' as 'subclass for the class

of functions'.

I. Definition of Function Class

(1) function, input, output

In this paper, we use the term "function'
in the most usual meaning in the programming

language circle; function has input and output,

such that output = function (input), as shown
in Fig. 1.

We include procedure to function; a
procedure is a special function such that out-
put =¢, i.e. output is not necessary. This
kind of interpretation of procedure is already

adopted in the language LISP. [1]

input
outer world func¢tion
< side effect> Jl’
output

Fig. 1l Input, output and function, Side-
effect is shown as the interaction

with outer-world,

(2) an internal structure of function

A function has its internal structure as
shown in Fig. 2. A function consists of 5
parts; procedure for input (IP), requirements
for input (IR), requirements for output (OR),
procedure for output (OP), and the body of
function. Not all functions have the above 5
parts, We denote the null part by ¢.

Both requirements are represented in
an expression of elementary predicates; i.e.
a finite set of predicates combined with
operators f‘_rﬁ' or, not. These requirements
should not have the side-effects. And that
they have no effects on the input or output.

v If an input or output does not meet the
requirement, then the requirement violation
(i.e. error) will occur and the execution of
the program will stop.

Procedures are represented in a finite
sequence of atomic processes. Input procedure
processes input, i.e. input is modified. And
output procedure processes output.

In some cases, the procedure will inter-
act with the outer-world and input procedure
returns the output value (without invoking the

body of function), The trace mechanism of a

function can be represented by these input/

output procedures.,

input
V

=~ t=procedure for input (IP)

requirements for input (IR)

world w—F]— = l body of function |

requirements for output (OR)

=—~t=procedure for output (OP)

output

Fig.2 Internal structure of function

(3) Definition of the function-class

Function-class is defined by the 4~tuple
<IP, IR, OR, OP>.

Thus the function can be defined by a
pair, <function-class, body>. A function f
belongs to a class fc if f is defined by
<fc, body>.

In this way, the programmer can con-
centrate the construction of the core body of
function, aside from the bothersome input,
output trivialities,

Function-class is an extension of func-
tion type which is used merely for convention
in the existing language, and has no clear
structures and no way to introduce new
types.

Function-class has, however, a clear
structure. And the user can introduce his
own function-class, and that it is possible to
define new classes concisely as explained in

the next section.

(4) Calculus on the function-class

There are 2 ways to introduce a new
function-class. The one is to define a new
class with the full 4 elements; IP, IR, OR

and OP. The other is to construct a new class

from the elementary function-class using

the following operators; %, -, +,

(4. 1) * (multiplication)
Definition Let a and b are function classes,
a =<IP,, IR,, OR,, OP_ >, b =<IPy, IRy,
ORp, OPL>. A new class ¢ = a*b is defined
as follows: ¢ =<IP,.IPy, IR, and IRy, OR,
and ORy, OP,* 0P} >.

In this definition, procedural concatena-

tion P, Py means the following procedures:

begin execute Py n Pps
execute Py - (Py N Pp);
execute Pp= (Py N Py)s
end

In otherwords, if a = ¢*d and b=c*e
then a*b =c*d*e, And that a*a = a,

Figuratively speeking, a*b is an inter-
section of classes a and b as shown in Fig. 3.

It should be noted that the commutative
law does not hold because P, Py, may not be

equal to Pp°P,.

(4.2) - (differentiation)
Definition If function class a=<IP,, IR,,
OR,, OP,> = aj*ay®e.. *a,, then a-a; =
apkag®ecc kag p*agpyce kay.

This '—' operation is the reverse

operation to "',

(4. 3) + (addition)

This '+' operator has an extension
operator., It has 2 way of extension; require-
ment extension and procedure extension.
(4.3.1) requirement extension
Definition Let function-classes a and x be
such that, a = <IP,, IR, ORy, OP,> and
x =<¢, IRy, ORy, ¢ > then function-class
a+x is defined to be <IP,, IR,, V IRy,

OR, V ORy, OP,>, where V denotes a or

operator for predicates.

(4.3.2) procedure extension

Definition 1.et function classes a and x be

such that a = <IPa, IR,, OR,, OP,> and x =
<IP,, ¢, ¢, OP, > where Py = if pred then
proc fi. A function class a+x is defined to

be <if Ipred then I else P, fi, IR,,

proc
OR,, if Opreq then Oproc else OP, fi>

Requirement extension may be equiva-
lent with '-' operation on the requirements.

If P, has the form, if P then Q fi, we
can introduce the 2 types of procedural ex-
tension. If the both predicates in P and Py
are exclusive (P Apred =¢) then we call the
extension, if pred then proc else if P then
Q fi fi, a natural extension. This synthesis
extends the domain of the procedure. Another
equivalent form will be case pred do proc;

P do Q; end-case.

If predicate Px is included in that
of Py (Px= P, Vvea), then we call the extension
_i_f pred then proc else 1_f P then Q gg, a

supplementary extension. Another form of

the synthesized procedure will be if P then

if pred then proc else Q fi fi.

A
A
a Z
Z
7

e

a+b

axb ¥c

a¥bxc -b=axc

Fig.3 An illustration of the calculus on
function-classes,

(5) Declarative definition of a function

In this section, we present some ex-
ample forms to define function in declarative
ways. Considering the power of function-
class, we will have other declarative defini-
tion formats later. Examples are adopted

from the LISP language.

(5. 1) Unification
Definition Let f and g be functions such
that f = <fc, bodyf>, g =<gc, bodyg>. And
that IPg = 1Py gc =OP.

h = h+g can be defined as follows: h= <he,

=IP and OPy¢. =0P

bodyh>, hc=<IP, IRgcVIRge, ORgcY ORge; OP>
bodyh = if IRg. then bodyf.

else if IR, then bodyg fi fi

ge
(example)

EQUAL = EQ + NUMBEREQUAL +
STRINGEQUAL + LISTEQUAL, where EQ
checks the address equality, NUMBEREQUAL
checks the numeric equality, STRINGEQUAL

checks character sequence equality, and

LISTEQUAL checks list structure equality.

EQUAL

>

QUAL

NUMB

Fig.4 Unification of functions. EQUAL's

domain is the union of the domains
of EQ, NUMBEREQUAL, STRING-
EQUAL and LISTEQUAL.

(5.2) Function-class change
f = <fc, bodyf> is a function. A new
function g is defined using the body of f:
g = <gc, bodyf>.
define g class= gc body = body-of { end

(example)
SET, SETQ, SETQQ share the same
body that is (set-value x0 x1),

(SET) (SETQ) (SETQQ)
arg 1=evalfarg 1]
arg2-evallarg?] arg2-evallarg2]
idplarg 1] idp[arg 1] idplarg]]
(set-value x0 xI)
\

- |

Fig.5 SET, SETQ, SETQQ share the same

body.

(5.3) Macro expansion
f = <fc, bodyf> is a function. A macro
expansion of f is defined as follows:

define g class = macro (x)

Definition

Definition

Definition

body = macro-expansion (x) of f end
where x denotes the macro expansion type.
(example)
2-argument functions such as *PLUS,
*APPEND are macro expanded to multi-argu-

ment functions as PLUS, APPEND,

(6) Relations about function-class

We define the predicates about inclusion
and element.
A function-class c is called to
be included in a function-class d when d =
dy*c*dy, where dj, d; may be ¢.

We write the above relation ccd,
borrowing the notation of set inclusion.

We also define the relation 'element'
for function and its class.
A function f belongs to a func-
tion-class c¢ if f=<c, body>.

We write the above relation f ¢ c.

The following definition extends this
relation.
A function f belongs to a func-
tion-class d if there exists a function-class

¢ such that f€ c < d.

(example)

A function-class PREDICATE has an
output requirement that the output is a boolean
value (tree or false)., EQUAL, GREATER,
NUMBERP belong to PREDICATE,., A func-
tion class DATA-TYPE-PREDICATE is in-
cluded in PREDICATE. As a function
INTEGERP belongs to DATA-TYPE-PREDI-
CATE, so INTEGERP € PREDICATE.

We get the following theorems about the

operators, +, -, %,

() yey+tz, zcytz
(2) yoy-2
(3) x*y cy, x*ycx

These inclusion and element relations
are efficient tools to classify functions. And
that a compiler can use them in efficient

manners,

II.
1,

Informal description about function-class

Synfax for function definition

(1. 1) Standard definition

define <function-name> class = <class ex-
pression>

body = <body expression> end
<class expression> = <class name> |
<class expression> <class operator>

<class expression>

<class operation> * [+] -

<body expression> < system dependent
codes > |body = of < function name > |
macro-expansion (<macro type>) of

< function name>

In the case of LISP language, <system
dependent codes > can be A-expression or

lap-codes,

(1.2) Unificational definition
define < function name > union-of < function
name sequence >

end

2, Syntax for function-class definition

define-function-class <class name>

<class body> end

<class body> =<class expression>

IP = <function> IR = < predicate >

OR = <predicate> QP = < function>

If <function> or <predicate> does not

exist, then ¢ will be placed.

III. Applications to LISP language (esp. on
LISP 1.9)
1. body type

To apply the function-class concept to
LISP language, the function-class should be an
extension of function-type in LISP.

The problem is that LISP function type
will be change after compilation. And that in
some systems, hand-coded type and compiled
type are different function types. As the
function-class denotes the outer subprocedures
of a function, the function-class should not
change after compilation,

We introduce the body type to fill this
gap.

lambda, index-register, and stack,

In LISP 1. 9, there are 3 body types;
Lambda
type body is expressed in A-expression,
Both index-register type and stack-type are
expressed in lap-codes. Only the argument
passing process differs; index-register or
stack.

Once after the actual arguments are set
through input procedure, the formal-actual
argument binding (or argument passing
through index-register or stack) are executed
in the body-invocation process,

We also introduce the predicate lambdap,
XTD, and st_acil_c_g to check the body type, and
that these predicates can be used in the input
requirements.

Thus after compilation, only this part
of body type predicate will change. And that if

a function is defined without body type require-

ment, then no change is necessary.

2. arglist and value

We denote the arglist for actual argu-
ment list (i.e. input to the function body) and
the value for the output value.

(example)

(1) For the expr-type, input procedures will
be arglist = mapcar|eval, arglist]. We will
call this procedure eval-proc, and call the
function class eval whose input procedure is
eval-proc and other 3 parts are¢.

(2) For the trace-type, the input procedure
will be print [list[function, arglist]] and the
output procedure will be print [1_1-5_2[function,
value]] , where function denotes the traced

function name.

3. Dbasic function classes

We will give some of the basic function
class for the basic functions in LISP.

(1) lambda =<¢, lambdap, ¢, ¢ >

(2) xr =<¢, xrp, $, ¢>

(3) stack =<¢, stackp, ¢, ¢>

(4) eval = <eval-proc, ¢, ¢, ¢>

(5) f = <arglist nconslarglist],$,é,4 >

This is for the fexpr type.
(6) 2
lexpr-process =

push-mark (lexpr);

= < lexpr-process, ¢, ¢, ¢ >

for x in arglist do push (x)
endfor ;
arglist- ncons[length{ arglist]]
end

(7) m = <-arglist=-cons [function, arglist],
¢, ¢, eval{value]>

This is for the macro type.

Now we have the following function

types expressed with the above basic classes.

expr eval *lambda,
subr = eval *xr,

csubr = eval *stack,

fexpr = f*lambda,
fsubr = f*xr,
lexpr = eval * g% lambda,
lsubr = csubr,
clsubr=eval * { * stack,
nexpr = lambda,
macro=m % lambda
(8) ev_(n) = <arg[n] = evallarg[nl], ¢, ¢, ¢>
The procedure, arg[n]—evalfarg[n]]
means that the nth argument is evaluated.
The function-class of SETQ will be

arg 2%ev_2%id_1.

The procedure eval-proc can be defined as

for i from 1 to length[arglist] do ev_(i)
end-for.

(9) num_(n) = <¢, numberp[nl, ¢, ¢>

(10) id (n) = <¢, idp[n], ¢, ¢>

(11) def args _(n) =<¢, length[arglist]=n, ¢, ¢ >

The number of arguments are definite.
(12) args (n) = < args-n-procedure, ¢, ¢, ¢ >

The argg-n-procedure is a kind of
matching procedure which matches the actual-
formal number of arguments, It is defined as
follows:

if length[arglist|<n; n=length[formal arguments]
then for i from 1 to n - length[arglist]
do arglist —nconclarglist, '(nil)] end-for;
elseif lengthlarglist] >n
then arglist - sublist(arglist, 1, n]

The function M is defined as follows;
define sublist class =eval *num_2 *num_3%*
defargs_3

body = (lambda (xy z)
 begin local n
n— length[x];
for i from 1 to (y-1)
do x - cdr{x] end-for;
x=—reverse|[x] ;
for 1 from 1 to (n-2)
do x=cdr[x] end-for;
return reverse[x] ;

end

end-define

4, Some utilizations of function-class

We will briefly survey here in what
kind of areas this function-class can be
utilized,

(4, 1) Ease of program construction

This is one of the main object of the

function class attempt.

(4.2) Ease of program modification

This is also a direct effect. The func-
tion definition format which change the func-
tion class can be thought of a program
modification.

If a user wants to modify a function,he can
do' this,only to append some piece of codes to
input or output procedure to its function class

(i.e. slightly change its function class),

without altering its body codes,

(4.3) Program checking

Not to say that the function-class pro-
vides a verification tool, but it provides an
efficient way of program checking. Require-
ments part of function-class can check both
input and output of the function, and can
check to see if the output is reasonable or not
according to the input. Requirements can be
regarded as 'assertions' for the procedure.

Generally speaking, it is not an easy
task to attach precise assertions to programs,
In the case of function-class system, the
user need not write the requirement checking
codes to his function. He has only to select
the function-class whose requirement meets
it. For example, if you write an arithmetic
function and that you want to avoid the case
when the non-numeric arguments are supplied,
then you only have to declare the function
belongs to numeric function-class where both

input and output requirements are 'numberp’.,

Further if the scope of the numeric argument

is limited (eg. positive or integer), then you
can make a new function-class which is a sub-
class of the numeric function-class.

We have also an idea that we can deter-
mine the requirement automatically through the
trial execution of the object program. The
utilization of the input/output procedure is, of
course, a key idea that we can gather the
dynamic information of the arguments and
value of the function and that we will analyze
it and abstract its property as the requirements

for the function.

(4.4) Compiler optimization

The compiler can utilize the informa-
tion of the function-class and is possible to
generate much more optimized codes. First,
the compiler can utilize the body-of declara-
tion in the function definition. Multiple func-
tions can share the same code for the body, so
the number of codes can be made smaller.

Second, the compiler can check the
requirements at the compile time. If it is
proved that the input meet its input require-
ment, then the no-code generation for the
requirements is necessary, i.e. you can delete
the code for dynamic checking., Further, the
compiler can serve a wider range of cautious
execution type. It can ignore all requirements
which are proved neither true nor false. Or
it inserts the all requirements' codes when it
cannot determine the value at compile time.

Third, some of the inputfoutput procedures
can be executed at compile time, For example,
the argument-number matching process can be
executed at compile time, when the arguments
are already given in the text (or list) format.

Fourth, if the requirements information
and procedure information are combined,then
the compiler can eliminate a part of input/
output procedure and a part of input/output

requirements,

For example, in the case of numeric

function whose argument is fixed at the input
procedure, you can eliminate the fixing pro-
cess when you can conclude its argument

must be integer because the argument is a
function (f(x)) and the output requirement of the
function f is integer.

Although the thorough application of
proof procedure is perhaps impossible today,
we believe that the partial application can
give the great power to the compiler to gen-

erate a good code.

Summary

The definition of the function-class is
presented. It has the four components; input
procedure, input requirement, output require-
ment, and output procedure. The calculus on
the function-class is also defined. The
operator among them are *, -, and +,

Using the function-class, a new way of
defining function is given. It can be said a
declarative definition where a calculus (an
expression made from a set of functions and
function~-classes) is given instead of a
sequence of codes,

An application is given to the LISP
languages, and it is suggested that the func-
tion-class is a powerful tool for the program
writing, modification, checking, and
optimization,

We have a plan to reconstruct an exist-

ing LISP system using this function-class.

References

[1] LISP User's Manual, ETL and Toshiba,
1977. .

[2] SMALLTALK manual, Xerox PARK,
1976,

