=B MmE 12-13
(1980. 6. 20)

A Note on Variable Bindings and
Function Invocations

Toshiaki Kurokawa

Information Systems Laboratory, TOSHIBA R & D Center
Kawasaki 210, JAPAN

Abstract

The problems of -the variable binding and the function invocation are dis-
cussed. The considered system is limited to the Lisp language, but the
materials are applicable to any other programming languages.

After the brief look at the current schemes, the requirements of the new
scheme are listed. User control, distributed control, advanced user inter-
face, efficiency, and debugging and maintenance are the targets for the new

system.

A solution is proposed. It utilizes the function class method and the
database facilities to satisfy the above requirements.

§1. Introduction

The variable bindings and the function
invocations are classical problems. It can
be thought as a solved problem. However,
there remain lots of problems to be solved,
especially from the engineering viewpoints.

It is true that the great number of
programming languages has proposed lots of
solutions. Restricting the theme to the
Lisp languages, there are pattern directed
invocation and binding, shallow and deep
bindings [1,2], and spaghetti and macaroni
stacks [3,4].

Still, the Lisp users employ the
classical Lisp 1.5 or Lisp 1.6 binding and
invocation schemes. A reason might lie in
the conservative tendency of the human be-
ings. It may be owing to the simple beauty
of the classical system. It may be only
because the new scheme is not available on
the hardware which the user can access.

In this paper, the author tries to dis-
cuss about what kinds of variable bindings
and function invocations are desired, and
what solutions will be available in the
present technology.

To pursueing this kind of work, it
might be advised that the establishment of
the application area is indispensable. It
is true in the case of implementation, be-
cause the elimination of the now - unneces-
sary' elements leads to the simple and effi-
cient system.

However, in this paper, the authoxr
would like to discuss from the unrestricted
viewpoints so that the obtained results can
be applied to the any areas, any languages,
and any systems.

The materials are, in fact, rather
restricted to that of Lisp language owing
to the fact that Lisp has more interesting
features than any other languages and the
author's present interests lie on the Lisp
system.

§2. Targets of the new scheme

The new scheme should satisfy the new
requirements. There are five major require-
ments:

(1) User control

The fatal drawback of the current scheme
is that the only interpreter (or compiler)
can control the variable binding and the
process activation.

It is true that the user can establish
his own interpreter to handle his own scheme,
but it is not efficient nor easy to control
whole system.

It is necessary that the user can control
the basic mechanism of the system.

(2) Distributed control

This requirement is a corollary of the
above. It is necessary to distribute the
control of the binding and activation so that
the user can share the control of the system.

In other words, the current problem lies
in the fact that the large interpreter handles
all the details of function invocations.

The current situation is that the big
interpreter is too difficult to understand.
It is not easy to extend the facilities of
the interpreter. It is also difficult to
create a compact application system in Lisp.
In order to supply a small application program,
much of the big interpreter is not necessary,
even if it does not cause any overhead.

(3) Advanced user interface

Why the users want to have lots of kinds
of the variable binding and the process acti-
vation is that it provides a comfortable,
advanced user interface.

There are several experiments or proposals
for this interface. Some of them are as
follow:

(i) variable binding through pattern matching

This is an idea that you need not de-
scribe the full details about how to pass the
arguments.

(ii) function invocation through pattern

matching

A function will be activated when the
suitable pattern is presented. The user
need not denote the name of the function.
Non-deterministic parallel processing can
be programmed through this scheme. It is
usual that the variables are bound as the
side-effect of this function invocation.

(iii) variable binding in the form of

assignment

Generally Lisp binding follows the
lambda binding, i.e. only the order of the
formal and actual arguments has the effect
of matching. In some cases, especially
when lots of arguments are employed, it is
convenient to denote the assignment direct-
ly. For example, (READ file = "Kurokawa"
linenumber = None eof-handler = (Ask-other-
file) character = EBCDEC) is more conveni-
ent to write and/or read the program.

(iv) default setting
The default setting mechanism is an
important ability of the human beings. The

frame theory [5], so it seems to the author,

depends on this default system.

Some functions need complicated argu-
ments, most of which are only necessary in
the special environments. In the above
example, if it is known that the character
form of the file is usually EBCDEC, it is
not necessary to declare EBCDEC only if the
default mechanism works behind.

The default provides not only the
pleasant user interface but also the appli-
cability of the system. The READ function
from default source can work on any actual
devices (files, cards, paper tapes).

In summing up the user interface, two
facts can be pointed out:

1 It is preferable that the user can
describe the full process of the variable
bindings and the function invokation.

2) Although there are lots of user inter-
face mechanisms to be considered in
general, it is not realistic to provides
plural interfaces for each function.

Each function has its own interface
which may differ from the interfaces of
other functions.

In other words, it is not necessary to
have a huge interfacing routine in the
interpreter, instead it is preferable that
each function has its own interfacing
routine which will be shared with other
functions.

(4) Efficiency

The new scheme must be efficient. If
the efficiency is not concerned, the user
will establish his own scheme on the exist-
ing interpreter system.

There are three major possibilities
for the efficient processing:

(i) parallel processing

The variable evaluation and binding
process can be parallelized as well as the
body of the function. It is reasonable to
assume that some classes of functions are
difficult or unnecessary to be parallelized.

It is desirable that a function can be declared

that it hopes to be compouted in parallel.

(ii) coexistence of shallow and deep bindings

It is needless to repeat the disputes
over the shallow vs. deep here in this paper.
It is well known that in general the shallow
binding scheme is efficient. However, when
the complicated situation occurs such as
hypothesis handling or context switching, the
deep binding scheme is efficient.

From the users' point of view, it is bet-
ter to have both schemes until a new effici-
ent scheme over any circumstances will be
invented.

It is doubtful that the dynamic mixing
of the shallow binding and deep binding is
technically feasible, but the mixing of the
both schemes is far better than the mere
coexistence and switching of them.

(ii) sharing the codes

When lots of binding and invoking
schemes are provided, it is necessary to
acknowledge what parts of the functions are
common among many. It is necessary from the
engineering standpoint to extract the common
parts and share the parts among lots of
functions.

Otherwise, the efficient and inefficient
codes will be dispersed all over the user
system.

(5) Debugging and maintenance
It is well known that how the variables
are bound and how the functions are activated
are very important information for debugging.
The new scheme should have at least the
following facilities:

(i) requirement checking

The functions and the variables have
their own requierments. The new scheme
should provides the facility to declare and
check the requirements. The checking in-
cludes the tracing the values and environ-
ments and the trapping of the process when
the predefined requirement violation occurs.

If this type of the checking has to be
processed efficiently, it must be distributed
to each objects so that the checking will not
cause any overhead on the irrelevant functions
and variables.

(ii) detailed reference of the variable

It is necessary to refer all the vari-
ables at any time under the debugging process.
However, in the block structured language, it
is difficult to refer the upper level vari-
able which is now declared to be local.

In the debugging stage, the variable
should be referenced in what function's body
and in which block's. When the context

mechanism is employed, the context should
be able to be referred.

(iii) systematic modification

The new scheme should enable the easy
modification, i.e. the systematic modifi-
cation instead of the current tedious and
bug-generating hand modifications.

The requirements of the functions and
variables should be changed. The arguments
of the function can be modified both in
nuvber and types.

In addition to the above major tar-
gets, there are several facilities which
will increase the power of the new scheme
but will be difficult to include.

(6) Object-level linkage

It is useful to have a linkage
through other modules generated by other
languages. Lisp is not an easy language
to link with other language, when you
claim the efficiency on space and time.
(7) Database

In fact the Lisp language accompanies
with a kind of database; OBLIST and proper-
ty lists. The database facility is the key
issue for the new scheme. However, it is
not likely that the new scheme can easily
incorporate the general-purpose database
facilities in the whole.

§3. A solution for the new scheme

In this section, a solution is pro-
posed to satisfy the requirements in the
preceding section. The solution is based
upon the two basic concepts; the function-
class and the database of symbols (func-
tions and variables).

The detailed explanation of the func-
tion-class will not be given here, but the
interested reader can consult the published
paper [6,7]. In short, the function class
method enables the user control over the
variable binding and function activation.
The process will be described under the
function class to which several functions
will belong.

The database is necessary in general.
The specific need for the database lies in
the handling of the pattern match oriented
function invocation and the detailed refer-
ence of the variables. In fact, the de-
tailed history of the system utilization
might be included in this database.

The introduction of the function class
reduces the interpreter into the following
form:

eval(exp) = begin
case exp € constant then exp;
exp € reference then get-reference
(exp) ;
exp € list then begin local func,
args;

func: = car(exp);
args: = cdr(exp);
case func € function-name then
class-exec(get-class (func),
args, get-body (func));
func € lambda~expression then
lambda~exec(func, args);
otherwise
apply(eval (func), args);

end case
end
end case

end

The function has its class and its body.
Several functions can share the body (Req.
(4)-ii) and share the class.

The class prescribes how the actual argu-
ments are processed (i.e. evaluated), how the
requirements are satisfied, how the body is
activated. Most requirements (Reg. (1), (2),
(3)-i, iii, iv, (4)-i, iii, (5)-i, iii) will
be satisfied by the mere introduction of the
function class.

The main work will be shifted to provide
as many function classes as possible, eg.
pattern matching class or parallel processing
class.

The database consists of the two main
parts. One is the database of the variables.
The record will be the following (in the
form of the relational database): (variable-
name, enviornment, value) where environment
denotes the environmental information, i.e.
in which context, in which function, in which
block. Additional information about the
variable will be useful; eg. reference only,
modified, range of the expected value and so
on. The requirement (5)-ii will be satisfied
through this database.

The other part consists of the data on
functions; in what situation the function
should be activated, what functions are acti-
vated now, what kinds of classes are register-
ed and so on. The form of the datum might
not be fixed because the necessary information
will vary in its amount and its properties.

The coexistence of the shallow and deep
bindings can be realized through the utiliza-
tion of this database.

The variable database provides the total
information so that it is easy to establish
the shallow binding system where the variable
name with the current environment determines
the value and the deep binding system where
one can search the value through the guidance
of the name and structure of the environment.

Problems of this solution

There exist problems on this solution
except the fact that the solution need
considerable resources.

(1) binding and unbinding

In the current scheme, the bound vari-
ables have to be unbounded after the execu-
tion. It means that the function class
provides the way not only how it will be
bound but also how it will be unbound.
Actually the unbinding is itself a kind
of bindings, i.e. binding the o0ld value.
Thus it might be necessary to hold the old
values of the variables.

This overhead might be diminished when
the variable database is fully utilized.
However, it might be helpful that the
basic binding and unbinding facility might
be associated with the body of the function,
not with the function class.

(2) parallel processing

The parallel processing invokes the
problems known in the area of operating
systems, i.e. how to handle the multi-
processing.

A process might be halted, not termi-
nated. Later it will be resumed again.
When the process is halted, can the vari-
ables in the process be referenced or not?
It is not easy to answer this kind of
questions.

(3) pattern directed function invocation

In the language like Planner [8] or
Conniver [9], this type of invocation is a
main one, and the overhead can be permitted.

In the proposed situation, this might
be realized by the time consuming interrupt
facility or by the special function PAT-
TERN-DIRECTED~INVOCATION. These solutions
are not very good, because it may cause
some troubles to the user.

There also exists a problem about how
to do when unexpected functions are in-
voked through this mechanism. Some kinds
of fireman facilities will be necessitated.

§4, Summary

In this paper discussed are the re-
quirements and the possible solution of
the new scheme for the variable bindings
and the function activation.

Both of the requirements and the solu-
tion are not perfect. The author would
appreciate the any comments about the
materials in this paper.

The subjects on this paper should not
be limited to the Lisp language (the
present target is the Lisp languade,
though) . Most of the requirements dis~
cussed can be, the author believes, ap-
plied to any existing languages.

The critical point is that it is really
necessary to have a specialized hardware to
satisfy these requirements in the efficient
system.

References

[1] Baker, H. G. Jr., "Shallow Binding in
Lisp 1.5", CACM 21, 7, 565-569 (July
1978) .

[2] Xurokawa T., "On the shallow binding of
variables", J. of IPSJ, 20, 6, 524-526,
(Nov. 1979).

[3] Bobrow, D. G., and Wegbreit, B., "A
Model and Stack Implementation of Multi~
ple Environments", CACM 16, 10, 591-603
(Oct. 1973).

[4] Steele, G. L. Jr., "Macaroni is Better
than Spaghetti", Proc. of the Symposium
on AI and Programming Languages,

SIGPLAN Notices 12, 8, 60-66 (Aug. 1977).

[5] Minsky, M., "A Framewark for Representing
Knowledge", The Psychology of Computer
Vision, McGraw-Hill, 211-277 (ed.
Winston, P. H.) (1975).

[6] Kurokawa T., "Function-class-its defini-
tion and application", Kigoshori WG of
IPSJ, 1-8, (Feb. 1978).

[7] Xurokawa T., "Introduction of Function
Class Method - Its definition and
application =", Proc. of 13th Hawaii
International Conference on System
Science, (Jan. 1980).

[8] sSussman, G. J., et al., "Micro-Planner
Reference Manual"”, AI Memo 203a, AI
Lab. MIT (Dec. 1971).

[9] McDermott, D. V., Sussman, G. J., "The
Conniver Reference Manual", AI Memo
25%a (MIT) Updated (Jan. 1974)

