g 5 4 B 16-5
(1981 3 27)

SoME [MPROVEMENTS ON UTAH STANDARD Lisp
Kend1 NAMBA
SONY CorPORATION
Aup1o TecHNoLoey CENTER

MinaTO-KU, Tokvo, 108 JapaN

-- ABSTRACT -- Standard Lisp on IBM 360 & 370 proposed and
implemented by A.C.Hearn and J.Fitch et al. of the Univer-
sity of Utah had still several bugs and some execution-time
inefficiency. This paper describes these bug-fixings,
modifications and additions of comfortable features, and
some improvements in the stack operation and compiler-
interface which contribute to a speed-up of the factor of
about 1.2~1.6. It also urges the necessity of variety of
datatypes for a more practical Lisp system, such as vectors,
hash tables, bit/byte strings.

-- KEYWORDS & PHRASES -- LISP SYSTEM, Buc-FIXING, MAINTENANCE.

§ 0 -- INTRODUCTION --

Standard Lisp (SLISP in the sequel) was proposed and implemented by A.C.Hearn
and J.Fitch et al.[5,2] to minimize the difficulties associated in transporting the
REDUCE algebraic system to various Lisp dialects. And currently the REDUCE on
SLISP/IBM 360 & 370 runs on hundreads of sites over the world[6]. We became a
REDUCE user through the ‘famous HLISP/Fortran-REDUCE[3,8,9] since 1977; and in 1979
we had run SLISP/IBM-REDUCE(version:0Oct=-~15-78); and since January '80 and up to
now, we have been using SLISP/IBM~REDUCE (ver.:Apr-15-79). Between these last two
releases, the basic interpreters written in IBM 360 & 370 assembly language are
identical word by word, letter by letter.

We encountered some difficulties in the system -- some are dependent on our
site, and some were essentially by bugs survived so long the history of the main-
tenance efforts of various individuals since J.McCarthy[7]. Studying the inter-

preter code and locating and fixing bugs, we found better ways to do the same jobs
and made minor modifications in the interpreter and the system FRONT-END file =--
but intact the REDUCE system file. Two functions are added, four deleted and some
modified.

The organization of this paper is as follows: after a short overview of the
original SLISP in section 1, we deal with bugs and how they are fixed in section 2;
in section 3, with features made more comfortable; in section 4 speeding-ups are
discussed, and in section 5, with the concluding remarks, we discuss the desirable
features of the Lisp system when we are to use it as an indispensable programming
vehicle in versatile applications as well as experimental or theoretical tool.

This proposal is heavily influenced by our long practices in both Lisp, Snobol4[4],
and Spitbol[1l].

§ 1 -- ORIGINAL SLISP/IBM, AN OVERVIEW --

The SLISP is a rather conservative Lisp system. Its top level is EVAL, but
EVAL and APPLY utilize hidden association-list, A-List ("ALIST" is the actual ASM
label for the memory location for it). It has no Vector datatype but is simulated
by a package in the FRONT-END file: MKVEC for creation, PUTV and GETV for value
store and retrieval.

Its memory-maps at three initial stages are illustrated in Fig.l. ©Note that
it is implicitly assumed that memory area acquired by the initial GETMAIN macro
call is contagious and is in higher address space.

The Free-Cell Storage, FCS, is a collection of conventional dotted-pair cells,
and even the Atoms are constructed by this basic cell. Fig.2 shows the general
field assignment and examples for some Atom headers. The two tag fields are used
as "what kind of cell the container is”, instead of the "rich pointer" used in
HLISP, for example, in which type-information of a pointed cell is stored in the
pointing field, reducing the memory-access time in type-checking. Garbage-Collec-
tor, GC, uses as the mark-bit the MSB in the CDR-tag. lost of the cells have x'00'
in these two tag fields.

low address

W T~ . \\\"_"'“""" R e ~Z - -
ASM coded ~_ N O ~. O TN
Interpreter & ™ ~ .. ~ S~. ™~ ~
1 I~ \ N \‘
F/SUBR's. . ™ ~ N~ N ~_ =
~ \ <
NILL [/ 7 7 3 BRI
) /
Inltlal OBJECT— Stack Area
J list/ !
!.m./]] 7 / /" NIl | —*_‘"_‘ —————
One-shot Core Moved OBJECT- [Restdred -~ ~ ’j;
Initialization Mist /0 2 [OBJECT- list &--
* CHKPOINT ‘Datastructures-
high address file et
\ = -
Free-list W | Free-list
GETMAIN'ed /779644/ /?/
‘ Restored /C/
Bps ¥ Complled Codes
e Free BPS

1 I/0 Buffer ! 1 I/0 Buffer
) I i
d

| SRR § P

FREEMAIN edI

This boundary changes dynamically

a) Just after SLISP is b) When control is passed c) Just after previous
loaded. to top-level monitor core image 1is
loop. RESTOREd from the

CHKPOINTed file.
Fig. 1) The memory-Map of the Original SLISP/IBM at first few stages.

The Property-List, P-List, is a list composed of indicator-value pairs and the
Flag-indicators. The Value of an Atom is put on this P-List under the name of
APVAL or FLUID. The function definitions are put under the name of EXPR, FEXPR,
SUBR, FSUBR or MACRO. In the evaluation of an expression, the value or function
definition of an Atom is searched by traversing the P-List for the indicators in
the above order; if the earch was unfruitful, then the current A-List is tried.

The datatype String is represented as a literal Atom, flagged by the indicator
STRING as the first element in the P-List, and has a value cell pointing to itself
under the indicator of APVAL in order to evaluate the STRING itself.

8 2 —- THE MaLFUNCTIONS AND How THEY ARE FIXED --
There were the following three bugs:

a) The relocation code in the function RESTORE changed the value of
OBLIST when the initial GETMAIN macro call returned noncontagious memory
(this happened when SLISP was loaded by CALL command in a command proce-

dure of TSO).

b) ERRORSET did not handle the A-List properly. If it was evoked in
EXPR or FEXPR with Fluid variables, the updated A-List was not stored
into the word "ALIST".

¢) EQUAL bombed if non-EQ function-pointers or file DCB's were passed.

The bug a) occurred because of the following two reasons(Fig.3):

1°) Initial OBLIST made by "ECHO" macro had erroneous CDR-tag in the value
cell of APVAL in its P-List(Fig.2-g). AWD=x'40' is reserved for SUBR's
or FSUBR's, ASM-coded or later compiled.

2°) After copying old memory image, the relocation phase starts scanning
the entire active FCS to adjust the pointers in CAR/CDR-address part to
either SMAIN or S8NIL. If the CDR-tag AWD was encountered, it checked
the CAR-pointer only against OLDBPBAS to determine whether it was
compiled or ASM-coded.

This was corrected by enhancing the "ECHO" macro which, linking the Atoms,
deposits initial Atom headers and P-Names and P-List 1nd1cator~value pairs such as
APVAL, FLUID, SUBR or FSUBR. It handles properly the blank-embedded P-Names by

~Om

CAR-part CDR-part
CAR . CDR .
taq CAR-pointer taq CDR-pointer
e g 24 8 24
bits
a) General Field Assignment of a Cell
(A.’IOM! A i V_‘:F p-List I'ypel - S ; P———*P—List
x'80' lP—Name x'CO" : s&rt integer
t %x'EQ' : Real
Iéharacter codes IEWD | ° > x'D0' : Hex/Iogical
: x%'60" g Value FWDI ’//1

C1yrr

HW)L////” P
b) Literal Atom Header.
E **—k_ﬁ%gtmﬂmL E
[Tz x' 00| Fp]]

c¢) Number Atom Header

Eadded with x'00’

P-Name is stored as 4 ch/cell padded last with x'00' as necessary.

T H H ¥
' H 1

—— L Al '

The NIL Atom Header

=

a)

b~ |1 ol [} ——[1 ¢ [L] ;—>E<'01'1me an,/]
Sucag — x'40"
e) Atom header of a Functions
E YR e e e [i S [| e
"EXAMPLE OF A STRING" : . v\
T Ly L

f) String Datatype

e T i e e L s g [NRE
"OBLIST" [f NIL l é o———+—~ﬁ> | car]; .>___+__<4§ CDR] é o___4>m

g) The Atom "OBLIST" holds all INTERN'ed Atoms.

Fig. 2)

extending the calling syntax.

Examples of Atom Header Structure.

The comparison in the relocation of RESTORE is chan-

ged to that against OLDNIL instead of OLDBPBAS, because the relocation amount is

the same
Bug
function
Bug
MT of an

for both FCS and BPS.

b) was a rather unexpected one. REDUCE system fregquently relies upon this
but with deliberate protection of FLUID declarations.

c) was found by running the SLISP verifier, a program in the REDUCE system
early release, which we obtained through Mr. N.Inada of RIKEN. The func-

tion EQUAL now checks that both arguments are valid FCS pointers before it renders
recursive call to itself.

§ 3 -- FeATURES Mabpe MorRe COMFORTABLE --

The

following 10 features are added or modified to make the SLISP more comfor-

able to TSO or Batch users:

3-1) In

it has consumed only 3 minutes of CPU-time.
Timer during the GC;

left for

our TSO/MVS environment, a session is abruptly cancelled by the monitor if
The original SLISP stopped the Task
ST.ISP user was unable to know exactly how much of time was

him/her to save the current state of computation by CHKPOINT. Now the

mimer ticks continuously once it is started just before top-level monitor loop gets

control,

she can take an appropriate action for the later restart.

and user can get the consumed time from that point by '(TIME)'. And he/
As for the subsidial

informations, GC's CPU-time and GC-count are maintained.

3-2)

bound variable,

When the error A2,

A6, A8 or A9 occurs, the identifier's P-Name for the un-
undefined function or missing GO-label in the PROG is printed to

~3~

OLDMAIN -] - ~T
ASM coded l‘SMAIN T T~]
Interpreter & == = --MAINw# " Interpreter
F/SUBR's. Interpreter S~ >~._ ™
>~
Page T o TN T T T
Stack Area Boundary| Stack Area v
. - (4 [+ n KA])
owonrL”” NILI | not avail to SLISP \‘
OBJECTS returned to 0S(4 KB)
SNIL Stack Area B
| S NIL[t--’:,—”,
Free NILR ﬂl_l_.] | s - 7
fed A L. - o%]’m - - P
OLDBPBAS | Compiled Codes Restored __—:”_,——”,:
OBJECTS - - AT
Free FCs
Free Free
Restored Compiled
Cwes T T 7 T T TrTrrT
CHKPOINTed Memery Free BPS Cb'/ mpiled 0"des/ /
Image VL1l
{ I1/0 Buffer H i 1/0 Buffer ;
Memory Map at RESTORE Fig. 4) New Memory Map

at Execution Time.
Fig. 3) Memory Mag in RESTORE'ing, when noncontagious
area 1s allocated by the initial GETMAIN.

facilitate programmers to quickly locate the errors.

3-3) When the absolute system bomb occurs, SLISP dumps for the last resort the old
Program Status Words(Program Counter, Interrupt code, etc.), all 16 general regis-
ters' contents and some address constants proper to SLISP. In the original, PSW's
PC was always the same, pointing within the TRAP handler. Now this PC points the
next instruction to be executed after the one which actually caused the trouble.

3-4) Two new functions are added to facilitate system maintenance efforts:
!$CELL (LOC: {integer (short or hex), or alike}): dotted-pair
Type: EVAL, SPREAD

If LOC > 0, it returns a dotted-pair whose CAR/CDR is the hex-num representation of
the corresponding contents of the cell pointed by LOC. If 0 > LOC > ~16, it retur-
ns the contents of the general register |[LOC| -1 in a hex-num as the single element
in a list. No argument check is made, so one can obtain, for example, Atom header

of any x by

(!3%CELL (LIST (LIST (QUOTE x)))).
!$2AP (LOC:integer, VAL:integer, MSK:{integer in the range of 0—15}):NIL
Type: EVAL, SPREAD

This rewrites any location pointed by LOC by the value and length specified by VAL
and MSK for the duration of the current SLISP run. This is a Lisp version of 370-
machine instruction, Store Characters under the Mask:

STCM RX,MSK,LOC.

The 4 bytes in VAL correspond to the 4 bits in MSK from left to right respectively;
modification length is the number of 1's in the MSK; bytes selected from VAL are
packed and stored to the memory starting at LOC contagiously (some cares for the
360's).

3-5) And two BPS save/restore functions, BPSCHKPT/BOSRSTR, are deleted because of
their poor ability to cooperate well with FCS data-structures as documented in the
Manual{2,p.31]. Also garbage code bodies for RBLK/WBLK are deleted. Their corres-
ponding Atom headers are made comment lines in the original and are inaccessible to
users.

~4~

3-6) Messages are made shorter and richer of informations. Also redundant space-
Tines/page-eject are supressed to save the forest resources. If functions are
TRACE'd, a global trace-level counter is maintained with modulo 32, and encoded into
one character out of "012...9ABC...STU@Q" in the trace print out(as this is a very
simple counter it betrays if GO is traced or evaluation fails within an ERRORSET
environment).

3-7) FLAG code is changed tc examine that the Atom has not been FLAG'ed yet by that
indicator before calling CONS to affix the indicator on the top of its P-List.

Flag duplications occurred during REDUCE assembly and its algebraic mode. They are
LOSE(to inhibit redefinition of functions), GLOBAL, and USED!*(to maintain proper
database in algebraic mode). REMFLAG is shortened to remove only the first indi-
cator found in the P-List.

3-8) Although it is a slight deviation from the Standard, some predicates are
changed to return non-NIL values instead of the trite T.

FLAGP: a sublist of the P-List of the first argument whose first element is the
second argument.

MEMBER: a sublist of the second argument whose top element is EQUAL to the first.

CODEP, IDP, STRINGP, LOGP, their argument is returned.

BIGP, FLOATP, DIGIT, LITER,} (The last two are moved down to ASM ccde, which are

DELCP and SEPRP used in REDUCE token reader and defined there).

3-9) After the normal REDUCE assembly, the compiler and its associated database
are removed by ' (REMCMP)', but some garbages were left in the FCS. Writing a re-
moval package, CLEANER, was easy by the aids of the new function, !$%CELL. In short,
it scans down the OBLIST and gathers all Atoms without P-List which are neither
pointed from FCS except OBLIST link nor from BPS. It also checks special P-Lists
of QUOTES and FLUIDS which hold QUOTE'd expressions or value-cells of variables
declared FLUID at compilation time.

By this CLEANER package, some 2,500 cells are released.

3-10) We find a rather kludge way to recover the control to the Lisp top-level
monitor loop Just after pressing the BREAK-/Attension-interrupt-key when the compu-
tation falls in some undesirable situations. Under the normal condition, these
interruptions cause the direct exit to TSO monitor, and the user program is purged
from the memory.

To do this pseudo-BREAK-recovery, one must assemble and link-edit with the
option "TEST". Immediately after the BREAK-key is pressed and TSO indicates "READY",
just enter "TEST" without operand. One can get the control indirectly through the
TEST processor passed to our Lisp after examining and restoring few registers.

In our experiences, R:i2,R3,Ry, Rs and Ry are candidates to be restored. The normal
values for them are easily obtained by an intensional floating-zero-division, which
is TRAP'ed and subsequently registers' contents are dumped.

§ 4 -- SPEED-UPS --

As mentioned earlier, CPU~time is very tight in our environment and it is abso-
lutely necessary to have a very fast Lisp system. We made the following 5 major
changes:

4-1) Stack Operation: In the original, only in PUSH was the stack-overflow checked
by a time consuming BXH* instruction, which takes 3~4 CPU cyle time for 3033+. Now

This check is rendered to the hardware by aligning the start of the FCS at the page

boundary and releasing just one page to OS between the stack area and the Atom NIL.

PUSH macro occupies 6 bytes instead of 8 -- thus both time and space are saved:

ST &R,0(,PDS) i ST &R, 0(,PDS)
BXH PDS,K4,ERG2 AR PDS,K4

(PDS=R; points next usable stack word,.K4=R, holds the constant 4 and NILR=Rs holds
the address of the Atom NIL).

If the stack-overflow occurs, control is passed o TRAP handler with the indi-
cation of "Protection Exception", i.e. page-key is different and read/write protec-
ted. The consecutive stack operations are also time or space optimized by using
STM/LM§ instructions.

* Branch on Index High, an instruction to form loop. .The fall-through case is
decoded later, which is the normal in PUSH.

+ not an official data from IBM; measured by a timer program. 1 Cyc.time = 57 nsec.

§ Store Multiple/Load Multiple. Multiple consecutive registers are accessed.

~H~

In the EVAL code, PUSH of the return point(R,, the linkage register) is post-
poned until just before some recursion may begin; it saves a little CPU-time for
the Atomic arguments.

As a consequence of this, the stack area cannot be changed by SETSIZE or CON-
DENSE; they simply ignore the first argument. It can be only set by EXEC S-parar
meter once; its default size is 4 K words and expandable by 1 K words step.

4-2) Compiler-Interface: The compiler is written in SLISP, and there are some
tricks in the ASM-code. When a function call occurs from a compiled code, double
branches were made in the original; first BAL* into a fixed location at the begin-
ning of base register Ri2, which is another Branch to the desired function (Branch
Table) ™ Now this Table is a collection of model instructions to be deposited dire-
ctly into the BPS. This change in the FRONT-END file is made easily using !%CELL.
Also at the entry prologue, PUSH'ing some registers became shorter cdes (about 200
words are saved in the total including REDUCE system). o

4-3) EVLIS-SPREAD: These internal functions are never called in the normal EVAL.
New @EVLIS and @SPREAD are coded. The former pushes evaluated arguments onto the
stack and the latter spreads them to the appropriate register(s) or pseudo-register
(s). The register R;sis used as the frame pointer to communicate between these two.
The CONS'ings are avoided and again LM/MVCT are used instread of the list-traversal,
resulting less GC evocations.

)‘ a) b) c) f d) /
RE S 7 g S S R A
Ry, old “ ‘! ﬂ

A-List, old . AR P " o
PDS —¥| Rys, old v PDS ¥ ___|
""""""" Ry s+ TEN-Entry Pt Ry, g
A-List, new "
tFn-Header o "
PDS -+ Ay ¥
l' _____________ Ao ¥
Fig. 5) Prepare for the recursion(a); 4 -
just before entering @EVLIS, save N
informations for TRACE test(b); at re- PDS —]
turn from it, evaluated arguments are put {‘ fbatateiats

on the stack(c). @SPREAD just moves them
to appropriate registers/memories (d).

4-4) Order in Function Type Search: Obviously the most frequently called functions
are of type F/SUBR, so we changed the order to search them first:

(QUOTE — COND —») EXPR -——FEXPR — SUBR —FSUBR —MACRO —>(FLUID — in A-List)
«+~>» SUBR — FSUBR ~—EXPR — FEXPR — -+

Along with this change, new macros, $GET and $SASSOC, are introduced to enable
direct jump to the next alternative in case of search failure, instead of BAL'ing
to the internal subroutines and then comparing the result to NILR to determin it.

4-5) COND antecedents: It is very common to use long COND expressions in inner-
Toops. Predicates should be fast to fail if they are doomed so after all. Some
predicates are changed to this end.

§ 5 -- CoNCLUDING REMARKS --

The substantial part of this work begun in January, 1980 and was completed in
September. In this process it was very invaluable to have Spitbol running. SLISP
is a rather large system; about 8,500 lines in assembly code and 3,600 lines in
SLISP for the FRONT-END including the portable compiler. For example, imagine the
following tedious and error-prone task: While scanning the assembly source, marking
and counting and classifying all the system or user macro calls by read-and-blue
pencil! Spitbol's hash TABLE(collisions are resolved by linking all the items with
the same hash index) is especially useful. It can contain anything and extends its
capacity as required. TABLE can be converted to ARRAY, and vice versa, with a minor
but reasonable restriction.

* Branch and Link, for subprogram linkages. It saves current PC value to a specifi-
ed register and then branches.
Move Characters, up to 256 bytes are moved from memory to memory.

~6~

Spitbol has the packed STRING datatype, which may be internally shared among them
by the virture of start- and cffset-fields in its SPECIFIER, and has a good reper-
toir of STRING PATTERN MATCH cperations.

The Vector is an indispensable datatype in the modern Lisp system. If it is
built-in, the open-chaining Hash Table can be easily constructed. Strings can be
packed if it provides bit/byte-Vector of any size. We recently felt the necessity
of bit-Vectors in writing an application program concerning the PLA optimization,
where subset of a moderate sized universe is economically encoded into this bit-
Vector.

-~ ACKNOWLEDGEMENTS -~

It is a pleasure to acknowledge the encouragement by Dr.Heitaro Nakajima,
Director of Audio Technology Center, in the process of this work. We had many care-
takings of MT handling from Dr.Y.Kanada and Mr.N.Inada. We also express our hearty
thanks to them.

~—- REFERENCES --

[{1] Dewar,R.B.K.:"SPITBOL Version 2.0", Document 84D23, Illinois Institute of Tech.,
Chicago, 1971.

[2] Fitch,J.:"Manual for Standard Lisp on IBM 360 and 370", Technical Report TR-6,
University of Utah, Aug. 1978.

[3] Goto,E.:"Monocopy and Associative Algorithms in an Extended Lisp", Technical
Report 74-03, Inform. Sci. Labs. University of Tokyo, 1974.

[4] Griswold,R.E. et al.:"The SNOBOL4 Programming Language", 2nd Ed., Prentice-Hall,
1971.

[5] Hearn,A.C. et al.:"Standard Lisp Report", UPC-60, Univ. of Utah, jan. 1978,
revised 1979.

[6] Hearn,A.C.(Ed.):"REDUCE Newsletter", Nos. 3,5 and 7, 1978-79.

[7] Hearn,A.C.: a private discussion with him at IFIP '80, Tokyo. The Assembly
comments indicate the following personnels:

J.G.Kent, J.F.Bolce, R.I.Berns, K.R.Kay and J.Fitch.

[8] Kanada,Y.:"Implementation HLISP and Algebraic Manipulation Language REDUCE-2",
Technical Report 75-01, Inform. Sci. Labs. Univ. of Tokyo, 1975.

[9] Terashima,M.:"Algorithms Used in an Implementation of HLISP", Technical Report
75-03, ibid., Jan. 1975.

-- APPENDIX A --

Notes: 1°) The time unit is milli-seconds, excluding the time of GC.
2°) I:Interpreted, C:Compiled.
3°) The first 3 bentch-mark problems are taken from that of 2nd Lisp Contest
of IPSJ WGSYM [Take-uchi,I.:"The Result of Lisp Contest", Aug. 21, '78].

Improved SLISP Original SLISP ratio (Imp/Orig)
TARAI [integer S ¢ 1 c b ¢
version] n=3 62 10 95 11 1.53 1.10
n=4 1,173 186 1,779 206 1.52 1.11
n=5 31,862 5,089 48,140 5,613 1.51 1.10
TARAI[list
version] n=3 165 5 265 6 1.61 1.20
n=4 3,125 108 5,007 127 1.60 1.18
n=>5 - 2,967 - 3,448 ——— 1.16
SORT [integer]
n=20 80 5 145 6 1.83 1.20
n=40 286 20 535 24 1.87 1.20
n=60 461 32 848 39 1.84 1.22
n=80 690 49 1,278 60 1.86 1.22
n=100 888 64 1,643 78 1.85 1.22
REV [see below]
n=5 53 3 85 4 1.60 1.33
n=6 215 12 344 16 1.60 1.33
n=7 854 51 1,375 65 1.61 1.27
n=8 3,439 206 5,521 262 1.61 1.27
n=9 13,808 825 22,119 1,047 1.60 1.27
L n=10 55,221 3,306 88,430 4,186 1.60 1.27

*) The REDUCE test program takes 7.1 seconds (9.1 previously), excluding the GC
which occurred 4 times and used 0.5 seconds under TSO with logon size = 1 M bytes.

~T~

The following problem made by Mr.A.Rich takes time propotional to 4", n beeing the
length of the argument list of REV.
(DE REV (X) | (oE app (x v)
(COND ((NULL X) NIL) : (COND ((NULL X) Y)
(T (APP (REV (CDR X)) l (T (APP (REV (CDR (REV X)))
(LIST (CAR X)))))) (CONS (CAR (REV X)) Y)))))

-- APPENDIX B --

Some examples of messages. First the initial one and top-level monitor's. The right most is
made if functions are traced.

-CONTIGUOUS -
STANDARD LISP INITIAL CORE ALLOCATION: FREE CELLS = 339616y BPS = 349904, PDS = 4096,
here a page-eject occurs —
ARGUMENT FOR EVAL ... , REDUCE 2 (APR-15-79) .., ##% ARGUMENTS OF NU
‘ LL
(RESTORE (QUOTE REDU)) ON INTS ("APR=15-79m)
T|z$ 124MS, VALUE IS .., :%i?‘ #H® VALUE OF NULL
L NIL
ARGUMENT FOR EVAL ... ##% ARGUMENTS OF VERBOS
13#COMP (NIL)
Tl?E 0MS, VALUE 1S ... ##% VALUE OF VERBROS
) CLEANC) S NIL
ARGUMENT FOR EVAL ... NIL
(SETQ !#COMP NIL)
CLEAN() 3
TIME OMS, VALUE IS .., NIL
NIL '
ENDSENTERING LISP, ..
ARGUMENT FOR EVAL ...
(BEGIN) TIME 269MS, VALUE IS ...
N R . NIL

And the more pleasant ones made by the revised. The top-right is a trace example, and the
bottom-right is the final one.

-CONTIGUOUS- <= EVAL ARGUMENT : (SETQ DATE!# "APR=
STANDARD LISP INITIAL CORE ALLOCATION : <0+ SETQ (DATE !} "ApR-1g-?9"§ APR-15
-0> SETQ = "APR~15-79"
FCS = 338933 CELLS => EVAL TIME : 0 MS» ANS = "APR-1
BPS = 349202 WORDS ! <= EVAL ARGUMENT : (BEGIN)
<0+ BEGIN NIL
STACK = 4096 WORDS, <1+ PROG (NIL (SETQ !#INT NIL) (SETQ I3
ETQ OFL!% (SFTQ OPLt!s# NJL)))) (COND
=3<< MINOR MODIFICATIONS BY K,NAMBA, SEP, 09, 1980. >>u= '#) 500) (COND ((NULL 1#COMP) (BPSM
«. ") (TERPR [
<z EVAL ARGUMENT : (RESTORE (QUGTE RED)) ,,.n,’(§E§p§,§§ (SETG DATE!® NIL) A
=> EVAL TIME : 89 MS» ANS = NIL <2+ SETQ (!#INT NIL)
R . -2> SETQ = NIL
<= EVAL ARGUMENT : [%COMP <2+ SETQ (!#ECHO I1ECHO!3#)
=> EVAL TIME : 0 MSs ANS = NIL -2> SETQ = T
<2+ SETQ (!HEXTRAECHO T)
<= EVAL ARGUMENT : (SETQ I#COMP NIL) 2> SET@ = T
s> EVAL TIME : 0 MS»> ANS = NIL <2+ SETQ (TMODE!# NIL)
-2> SETQ = NIL
<= EVAL ARGUMENT : (BEGIN) , <2+ SETQ (IFL!3% (SETQ [PL!# (SETQ OFLI#
<3+ SETQ (IPL!% (SETQ OFL!%* (SETQ OPLI#
<4+ SETQ (OFL!% (SETQ OPL!# NIL))
<5+ SETG (NPLI# NIL)
REDUCE 2 (APR=15-79) .., e
ON INT3 -3> SETG = NIL
LisPs -2> SETQ = NIL
NIt 8 <2+ NULL ("APR-15-79")
. -2> NULL = NIL
1. - -
CLEANC) | =5 evaL Time 0 MS» ANS = NIL
NIL i
CLEANCYS ##% END OF DATA
NIL
=22¢< LISP RUN STATISTICS >>===
END;ENTERING LISP,,,
=> EVAL TIME : 144)1 MSs ANS = NIL CPU TIME : 1573 MS

GC,. =< 2y 1185 MS>
. GC TIME : 1185 MS§ #GC = 2.

~f~

