i =1 . B 21—4
(1982 12 21)

Associative Evaluation of PROLOG Programs %

BHEE (REEEAE ETEH)

ABSTRACT An evaluation method for Prolog programs is represented, which is
employed in H-Prolog interpreter. In this method, hash memories are used to
store several kinds of information for the purpose of high speed access and
efficient comparison of data. The main working storage is a hash memory for
variable-value pairs called bindings. The notion of binding is extended so
that it is referred by its variable name and a label called a context which is
generated at each application of a clause. Each binding contains a context to
determine wehether it is "alive' or "dead”. Another hash memory contains the
"monocopy” lists which represent subterms in a program and the indices of
clauses. The system written in the C language is simple because of employment
of the data structures based on the hash techniques and of LISP functions.

1. Introduction

Recently, Prolog [2,3,10,11] is becoming to be recognized as a powerful
means in various field of artificial intelligence. This language has been de-
veloped for predicate logic programming [7,8] which has its origin in mechani-
cal theorem proving [101. Because of this the implementation of Prolog, i.e.
the construction of an interface between the language and current hardware and
software, differs from that of most programming languages which reflect exist-
ing computer architectures. A unique feature of Prolog is that a program is
evaluated by a sequence of pattern matching processes called unifications
between two predicate terms. A unification generates a collection of
variable-value(subterm) pairs called bindings, which are used in the later
evaluation. Control of the evaluation is based on pattern-directed procedure
call (or application of closes to goals) and nondeterminism which is imple-
mented by means of depth-first tree search and backtracking as are other
languages for artificial intelligence, e.g. PLANNER [51.

In this paper, we discuss some methods employed in our Prolog system
called H-Prolog. In the system, several kinds of information are stored in
hash memory. The main working storage is a hash memory and contains the bind-
ings and some control information for evaluation of the program. Another hash
memory contains subterms in source programs for the purpose of simple compari-
son of two subterms in unification. This memory also contains the indices of
closes for efficient selection of the applicable clauses. Some comments are
in order on the background of our methods in comparison with previous systems.

The data structure for instances, i.e. terms which are derived from
source terms in source programs by substitution of variable(s), is based on
*structure sharing” introduced by Boyer and Moore [11, as are many Prolog sys-
tems. In structure sharing, an instance of a source term is not constructed
in working memory. The working memory contains a set of the bindings, called
the environment, and whenever the system encounters a variable it refers the
environment to get the corresponding value.

In our system, the bindings are stored in hash memory instead of stacks
or list memory.. Because some variables may have been defined in an earlier
stage before being substituted in an evaluation of a goal, and since they must
be restored to be uninstantiated in backtracking, the data structure in the
working storage is essential to efficiency of the evaluation. In the
stack-type Prolog systems, more than one stacks are used: binding information

¥ This work was done while the author was at Machine Intelligence Research
Unit, University of Edinburgh.

%% Katsuhiko Nakamura (Faculty of Science and Engineering, Tokyo Denki Univer-
sity, Hatoyama-machi, Saitama—ken 350-03 Japan).

<1>

is stored in two stacks [11], or the instances are generated (or copied) in a
stack [9] in the unification. Another stack called the trail is used in these
systems to store information for backtracking. In the system using a list
memory as the working storage [1], the bindings are represented by means of
*association lists,” which may change to “garbage cells' in backtracking.

Our method utilizes the notion that we can determine whether a binding is
"alive” or "dead" from a label (called a context) unique to an application of
a clause added to the binding. A variable in a dead binding is considered to
be unbound, and the location of the dead binding in the hash memory is treated
as an unused place. Therefore, restoring the variable to be unbound in back-
tracking is done by simply “eliminating” the context. Furthermore, our method
as well as the stack—type Prolog systems does not need garbage collection of
the working storage found in list-processing systems.

In our system, certain subterms and indeces of the clauses are stored in
a hash memory as “"monocopy” lists. The concept of monocopy lists and their
use for ‘associative computation® for LISP programs were introduced by Goto
C41 and implemented in HLISP System. A monocopy list is a list such that each
cell for the list, including a cell for an atom, is placed in the location de-
termined from the two pointers in the cell by a hash function (in the case of
an atom cell, the location is determined by its print name). One of the ad-
vantages of this method is economy of memory space, since identical subterms
(or sublists) are stored only once. The other is that the equality of two
list structures can be determined by simple comparison of the pointers.
During an associative computation, the monocopy lists are used for indexing
the partial results of computations in order not to repeat the same computa-
tion by checking the stored information before partial computations.

2. Preliminaries

A Prolog program is written as a sequence of clauses, where a clause is a
sequence of one or more predicate term(s). A term is either a constant, a
variable, or a function (or predicate) term composed of a function (predicate)
symbol and its arguments, which are also terms. In H-Prolog, the first char-
acter of a variable is an upper-case letter, and that of a constant and a
function symbol a lower—case letter as in [3]. Since we employ lists to store
the source programs we represent a term by LISP S-expressions whose instances
are of the form (f al ... an.am), and a clause of the form (PO P1 ... Pnl), n
>= 0, where the a’s and P's are function terms and predicate terms, respec—
tively.¥ A set of clause is called a database. A clause (PO P1 ... Pn) is
equivalent to the logical expression PO <- P1 & ... & Pn, where <- is the im—
plication operaton, and all variables in the clause are universally quanti-
fied.

An environment is a set of bindings, each of which is a pair of a wvari-
able and a sublist of a term, i.e. either a term, a function symbol, or a
list of a terms. A variable V is said to be bound to a term t in an environ-—
ment E, if (V,t) is in E. The instance <P,E> of a list P in an environment E
is the list which is constructed recursively by simultaneously replacing each
of wvariables in P by the list to which it is bound. By an application of a
clause C to an instance (called a goal) <G,E>, we mean an attempt to generate
an environment ELCn] in the following way:

(1) Renaming of the variables in C so that all the wvariable names are
different from those in G and E. Let C'’= (PO P1 ... Pn) be the renamed
clause.

(2) Unification for <G,E> and PO. If the unification succeeds, it gener-—
ates the minimum set S of bindings such that the two instances <<G,E>,S> = <G,
EVUS> and <P0,S> = <PO,EUS)> are identical. If the unification fails, the ap—
plication fails.,

(3) If the clause is a fact (n = 0), the application terminates. If the
clause is a rule (n >= 1), predicate terms P1,...,Pn are evaluated from left

% In H-Prolog, the terms can be written as f(al,...,an) or p(al,...,an).

<2>

to right. This is to find a sequence of clauses Ci,...,Cn in the database
such that Ci is applied to (Pi,ELi-1]) and to generate E[Li] for all i, 1 <= i
{= n, where E[0]) = E S. Each application of a clause may involve the subse-
quent applications of clauses until facts are applied to the subgoals.

Computation in Prolog system, or "top-level evaluation,® is evaluation of
a given sequence of goals as in Step (3). Finding the sequence of clauses is
based on depth-first tree search and backtracking [3,111.

] A clause may contain a special predicate term "!° as a goal which is
called the cut. In backtracking the cut in a clause stops the re-evaluation
of the goals before the cut in the clause and the goal to which the clause ap-
plied.

We use two kinds of lists: LISP-type lists (or L-lists) and the monocopy
lists (H-lists). Although L-lists can contain H-lists as their sublists, all
sublists of H-lists are H-lists. The basic functions in LISP such as atom(x),
car(x), cdr(x), and caar(x) can be applied to lists of both types. H-type
lists can be identified by the predicate hp(x), which is true if and only if x
is a pointer to a cell of H-lists including to an atom cell.

We shall describe some basic parts of the system in the C language L[é1.
Explanations are included as comments in the programs for the readers who are
not familiar with C, but know PASCAL.

3. Bindings and the Unification Algorithm

In this section, we introduce a particular type of binding, and present
the unification algorithm we use. Each binding contains additional informa-
tion to determine whether it is alive or not. A context is a value which is
unique to each application of a clause, and is used to refer an environment.
We define a binding to be a S5-tuple (v,cl,c2,c3,t), where v is the pointer to
a wvariable, cl1, c2, and c3 are contexts, and t is a pointer to a sublist of a
source term. A binding (v,cl,c2,c3,t) is interpreted as follows:

(1) v has occurred in the clause which is applied in context cl. The
pair (v,cl) is considered as a renamed variable.

(2) by structure sharing, ¢3 and t represent an instance of t to which
(v,cl) is instantiated. :

(3) c2 is the context of an application of a clause by which this binding
is generated.

The bindings are stored in a hash memory. The key by which its location
is determined and the binding is accessed is both v and cl1. A context is gen-
erated before each application of a clause. A context is ‘eliminated’, when
the corresponding application fails. If c2 is an eliminated context, the
binding is not in use and the place it has occupied can be used for storing a
new binding.

The following are basic functions for generating and accessing the bind-
ings:?

place(v,cl,c2,c3,t): This function places the binding at the location
determined by both v and cl1 in the hash memory.

getc2(v,cl), getc3(v,cl), getterm(v,cl): if there is a binding with both
v and cl as its key, the value of getc2, getc3, and getterm is the third item
(c2), fourth item (c3), or fifth item (t) of the binding, respectively.
Otherwise, the value is FALSE.

Our unification algorithm is shown in Figure 1. Like most Prolog sys-—
tems, our program does not include the "occur check," i.e. the test to con-
firm that a term which is substituted to a variable does not contain the vari-
able. The function unify(u,v,cu,cv,c) is to unify two instances represented
by the pairs (u,cu) and (v,cv), where u and v are (the pointers to) source
terms, and cu, cv and c are contexts, and to generate bindings in the hash

<3>

memory as its side effect. The value returned is TRUE if the unification
succeeds, and FALSE otherwise. The context of the application which initiates
this unification is assigned to the fifth argument ¢, and each generated bind-
ing contains it as its third item. The truth-value functions used in the pro-
gram to test the conditions are shown in Table 1.

The basic idea of this algorithm is common to most Prolog systems which
employ structure sharing, except that the binding information is stored in
hash memory instead of stacks or a list memory and that all variable-free sub-
terms. are represented by H-lists. Therefore, if both subterms to be unified
are represented by H-lists then the value of the unification is determined
simply by the equality of their pointers. .

Example. Consider the unification of the instance (p (f X) (f a)) and
the term (p Y Y), where the instance is represented by the source term (p.X)
and the binding (X,S,U,U,((f X) (f a))) in the environment. Suppose that the
function unify is called by .

unify((p X),(p Y Y),S,T,T).
The function unify is subsequently called as follows:

unify(p,p,S5,T,T)
unify(X,(Y Y),S,T,T)
unify ((f X),Y,U,T,T)
unify((f a),(f X),U,U,T)
unify(f,f,U,U,T)
unify(a,X,U,U,T)

As the side effect, two bindings (Y,T,T,U,(f X)) and (X,U,T,U,a) are generated
and stored in the hash memory. The unification succeeds and the value of the
function unify is TRUE.

4. The Interpreter

In this section we discuss the basic parts of the interpreter, which is
represented by the function goal in Figure 2. The function goal(glls,c) eva-
luates sequentially the goals in the list glls with respect to the initial en-—
vironment referred by c. It calls try(p,c), if the list glls is not empty
(NIL) and if the leftmost predicate term in the glls is not the cut symbol.
The wvalue returned by try(p,c) is a list (clls) of clauses whose head terms
may be unified with p. A practical approach for try(p,c) is to return the
list of the clauses such that the predicate in the head of the clause is that
in p. Later, we discuss a more efficient "indexing" method to find a possible
clauses. The function goal then tries to find a clause in clls which can be
applied to the first goal in glls.

Because of possibility of backtracking the function goal(glls,c) returns
the wvalue TRUE only after the top—level evaluation of all the goals has suc-
ceeded, although it is called whenever a rule is applied to a goal. When a
clause C = (PO P1 ... Pn) is applied to the first goal of glis = (G1 ... Gm)
such that the instance of Gl and PO unifies, evaluation of the goals Pi,...,Pn
is followed by that of G2,...,6m. This information is represented by the
S-tuple of the form (NIL,T,T,c,(62 ... Gm)), where T is the context of the
application of C. This 5-tuple is also stored in hash memory for the bind-
ings. Since the first item of the 5-tuple is NIL, it can be distinguished
from the bindings. The reason for using this method is that the lists of
goals (P1,...,Pn) and (G1,...,6m) is treated as a single list, but the con-
texts for the two lists are different.

The interpreter provides some built—~in predicates similar to SUBRs and
FSUBRs of LISP. When the system encounters a built—in predicate, it calls a
subroutine associated with the predicate name. Although this facility must be
included in the function goal, it is omitted in Figure 2. More detailed des-
cription of the function goal is given in Appendix.

<4>

5. Assopiative Indexing

When the database contains a large number of clauses, it is essential to
select the applicable clauses efficiently. In addition to the indexing of
clauses by the predicate names of the head clauses, our system employs another
indexing method which utilizes the H-list. In this method, an index is a spe-—
cial term which contains no variable and is represented as an H-list. An
index is constructed from an instance of a head clause by changing its
‘non—-indexing" sublists, which is specified as being no part of the index,
into a special symbol '$°. This symbol is also used to specify the
non-indexed sublists in the head clause to be indexed: if the car-part of a
sublist is $, the cdr-part of the sublist is the specified sublist. For exam—
ple, some possible indices for an original instance (p (f a X) b) are

(p $ b), (p (f.%) b), and (p (f a $) $).
These are generated from the instances,
(# p ($FfaX)b), (#p (f$aX)b), and (# p (f a (F X)) (% b))

respectively, with specification of non—indexing parts. The symbol "#' means
that these instances are to be used for the associative indexing.

Some functions are provided in H-Prolog system to generate the indices
and store the clauses in database and to apply these clauses to goals. The
built-in predicates asserta(C) and assertz(C) generate the index from the in-
stances of the head term of the clause C and add the instance of the clause at
the beginning and the end of the database, respectively, if the head term is
the form (#.P),

The symbol # in a goal of the form (#.G) behaves like a special predicate
to evaluate the goal G with respect to the clauses with associative indexing
(it is handled by the function try(p,c)). It first finds a clause whose index
is identical to that of the instance of G. This process is like the genera-
tion of an index by asserta or assertz except that it does not generate any
H-list but "traces' the generation of an index. Note that selecting a clause
is done through several hashing operation in this process.

A special H-cell called an associator is used to relate an index to its
clause. (The concept of associater is introduced by Goto [4].) An associater
is a cell which contains two pointers and whose location is determined by one
of the pointers called a key. Therefore, if the key points to an index and
the other pointer refers to its clause, then the corresponding clause can be
found from the index.

6. Implementation
The H-Prolog interpreter is written in the C language and was implemented

in the DEC PDP-11 computer. A simple re-hashing method is employed to handle
conflicts of hashing. In general, no ‘garbage’ list cell is produced in the

evaluation. However, in some case that a clause is retracted from the data-
base, or numerical computation is taken place, some ‘garbage’ H-cells may be
remained. An unused L-cell is returned to the free list whenever it is pro-

duced by the storage allocation function of C.

The program is comparatively small: the size of the object code for the
interpreter including those for built-in predicates is approximately 12 K
bytes. The execution times for some simple Prolog programs are comparatible
to those of the UNIX Prolog system [3,9] which uses stacks to store instances
by "non-structure-sharing’ method and which is written in the assembly
language. On the other hand, memory usage for the bindings is not efficient
because a binding has five items (10 bytes in the case of PDP-11), and because
evaluation speed decreases considerably when the major part of the hash hemory
is occupied by the bindings.

7. Concluding Remarks

<5>

We have represented a new evaluation method for Prolog programs and its
implementation. The system written in a higher level language is simple and
portable. . The simplicity is derived from the fact that our system need have
only one stack used implicitly in the program as well as use of the Lisp func-
tions and hash memories. This system is being transplanted to other machines.

Our bindings represented by the 5-tuples contain sufficient information
even if the depth-first search is replaced +to breadth—first or parallel
search. Therefore, application of our method to "concurrent Prolog® is being
planned.

ACKNOWLEDGEMENT . The author would like to thank Professor Donald Michie for
encouragement and interest in this work, and Tim Niblett, Alen Shapiro, and
Dr. David Bowen for assistance in programming and preparing the manuscript.

References

(1) Boyer, R. S. and Moore, J. S., The sharing of structure in theorem
proving programs, in Machine Intelligence 7, (ed. Melzer, B. and
Michie, D.), Edinburgh University Press, (1972)

(2) Clark, K. L. and McCabe, F. G., The control facilities of IC-PROLOG, in
Expert Systems in Micro Electronics Age (eds. Michie, D.), Edinburgh Univer-
sity Press, ppl122-149 (1979).

(3) Clocksin, W. F. and Mellish, C. S., Programming in Prolog,
Springer-Verlag (1981).

(4) Goto, E., Monocopy and associative algorithms in extended LISP, Techni-
cal Report of Information Science Labaratory, University of Tokyo (1974).

(5) Hewitt, C., Planner: a language for proving theorems in robots, Proc.
First IJCAI, pp.295-302 (1969).

(6) Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Pren-—
tice-Hall Inc., Englewocod Cliffs (1978).

(7) Kowalski, R., Logic for Problem Solving, Elsevier North Holland, New
York (1979).

(8) Kowalski, R., Algorithm = logic + control, Jour. ACM 22, (1979).

(9) Mellish, C. S., An alternative to structure sharing in the implementa-
tion of PROLOG programs, Dept. of Artificial Intelligence Research Paper
N0O.150, University of Edinburgh

(10) Robinson, J. A., A machine oriented logic based on resolution princi-

ple, Jour. ACM 12, pp.23-44 (1965).

(11) Warren, D. H. D, Implementing PROLOG - Compiling Predicate Logic Pro-
grams, Vol. 1, Dept. Artificial Intelligence Report No.39, University of Edin-
burgh (1977).

<6>

Appendix. Description of the Function goal

Consider the case that glls = (G1...6m) and ¢ = S, and that the value of
try(61,S) is (Cl1...Ck) and C1 = (PO P1...Pn). Firstly, suppose that glls does
not contain the cut. Then, evaluation of the goals by the call goal(glls,c)
proceeds as follows.

(1) A new context is generated by the function newcontext() and assigned
to t. Let T be the generated context.

(2) Unification is attempted for the instance represented by Gl and S and
the term PO, It generates bindings in the hash memory. If the unification
fails, the context T is marked as "eliminated" by the function eliminate(t),
and the next clause in clls is tried to apply the goal (61,S) by the next
iteration of the "while" loop.) o

(3) In the case that the unification succeeds. and the clause is a fact (n
= 0), the list (G2 ... Gm) is evaluated by function goal. If the unification
succeeds and n >= 1 then the 5-tuple (NIL,T,7,5,(G2...6m)) is stored in the
hash memory and the goals represented by (P1...Pn) are evaluated by goal. If
these are evaluated successfully, then glls becomes to be equal to NIL, and
G2,...,6m are to be evaluated next.

(4) After the evaluation of the goals, the context T is eliminated. If
the evaluation has succeeded (i.e. the value of goal is TRUE), the function
goal returns TRUE. Otherwise, the system is in the backtracking state, and
the next clause in clls is tried to apply the goal (G1,8).

It is supposed that every context is not equal to 0, except the context
for "top' evaluation. Note that the locations for S-tuples stored in Step(3)
as well as those for the bindings can be re-used after the context T is elimi-
nated.

Next, consider the case that a predicate, say PCil, in the clause C1 is
the cut and that goal ((PLi+1]...Pn),T) returns the value FALSE. Then the the
context T is assigned to the global variable cutat, and goal returns the value
CFAIL. The value CFAIL makes goal to return CFAIL immediately without retry—
ing application of the other clause in clls, until the control backtracks to
the stage uwhere the value of cutat equals to T and the clause C1 was chosen.
In this stage, the wvalue FALSE is returned although remaining clauses
(C2...Ck) are not also retried.

<7>

unify(u,v,cu,cv,c) /% definition of the function %/

list u,vs /% type declaration of the arguments %/
int cu,cv,c} /% contexts are represented by integers %/
while (TRUE) (/% this block is a loop %/

if (isvar(u)) (
if (unbound(u,cu))
place{u,cu,c,cv,v)};
return(TRUE) ;
b

u = getterm(u,cu);
cu = getc3(u,cu);
continue; /% cause the next iteration of the loop %/

L: if (isvar(v)) (
if (unbound(v,cv))
place(v,cv,c,cu,uls
return(TRUE);
b

v = getterm(v,cv);
cv = getc3(v,cv);

goto L3
b
if (hp(u) && hp(v)) /% && is the logical AND operator %/
return(u == v); /% == is the equality operator %/
if (atom(u) !} atom(v)) return(FALSE);
/% |} is the logical OR operator %/

if (unify(car(u),car(v),cu,cv,c)
u = cdr(u);
v = cdr(v);
continues;

b
return(FAIL);
b
b

unbound(x,cx)
list x3
int cx3

return(getc2(x,cx) == FALSE |! eliminated(getc2(x,cx));

Figure 1. Definition unify and unbund of Function

Expressions connected by logical operators (&% and !!) are supposed to be
evaluated from left to right, and evaluation stops as soon as TRUE or FALSE of
the results are found.

function condition such that the value is TRUE

isvar(x) x is a (pointer to a) variable.

isconstant(x) x is a (pointer to a) constant.

eliminated(c) The context c is eliminated.

unbound{x,cx) The variable x in the context cx is
unbound.

Table I. Truth-Valued functions

<8>

/% definition of a global integer variable X/

int cutat;
The value is

goal(glls,c) /% evaluate a list glls of goal terms.
an integer constant either TRUE, FALSE, or CFAIL %/
list gllis;
int ¢
<
/% this block is a loop %/

while (TRUE) <
if (glls == NIL)
if (¢ = 0) €
return{goal (getterm(NIL,c),getc3(NIL,c)));

continues
/% cause the next iteration of the loop %/

)
return(TRUE);
b
if (car(glls) == CUT) {
if (goal(edr(glis),c)) return{TRUE);
cutat = c3
return(CFAIL);

break /% exit the block %/

list clliss
int t, p3
clls = try(car(glis),c);
while (clls != NIL) { /%
t = newcontext();
if (unify(car(glls),caar(cllis),c,t,t)) €
if (cdar(cllis) == NIL) p = goal(cdr(glis),c);

else ({
place(NIL,t,t,c,cdr(gllis));

p = goal(cdar(clls),t);

1=" is "not equal to" x/

eliminate(t);
in Pascal %/

switch (p) ¢ /% equal to 'case p of"
case FALSE:break}
case TRUE:return(TRUE);
t) return(FALSE);

case CFAIL:if (cutat =
else return(CFAIL);

clls = edr(clis);
else (eliminate(t);
clls = edr(clis);
Y

b
return(FALSE) ;
3

Figure 2. The Function goal

<9>

