5 o # 22

(1983 2 14)

A Unification Algorithm for Infinite Trees

Kuniaki Mukai

ICOT
Mita Kokusai Bldg. 21F
4-28 Mita 1-Chome
Minato-ku Tokyo 108 Japan

Abstract.

A simple unification algorithm for infinite trees has been
developed. The algorithm is designed to work efficiently
under structure sharing implementations of logic programming
languages, e.g., Prolog. The data structure used are pairs

of equation 1lists and sets of multi-equations. It
represents the configurations of unification processes. A
relation, called "is covered by", between two terms is
introduced to terminate the algorithm. The fundamental

operations are to compute the frontier set of two given
terms and to test the relation between them. One of the
main features of the algorithm is that the answer to the
test 1is gained as a by-product of the frontier computation.
Since there are scme subtle pecints as to whether the
algorithm will terminate, a termination proof is shown.

1. Introduction

The objective of this paper is to explain a simple and efficient
unification algorithm for infinite trees. In ColmerauerC2], the idea
of infinite trees into Prolog, in order to eliminate the need of cccur
check from unification processes, was introduced. He gave a general
algorithm and a proof of its correctness and termination in his
paperC21]. For any given two terms, the general algorithm has to
select the smaller one in view of length. Of course it is not
efficient to measure the length at the unification process. We found
a relation which is called "is covered by", explained later in this
paper. The relation is able to play the same role "smaller" relation
above for the termination.

To describe our unification model, we will use a set of
multi-equations to represent variable binding information. A
configuration of the unification process is represented by an ordered
pair of a 1list of equations and a set of multi-equations. We view
unification processes as transformations between two configurations.

We want to build a complete and efficient unifier into Prolog with
structure sharing implementation, for example Dec-10 Prolog. Our
method does not need to copy any term, because terms that appear in
the unification process are subterms of some term occurring in the
input configuration.

Now, we will briefly explain a key point of the algorithm. Let's
imagine the following situation: a current value of a variable v is a
term b, and v=t is the current equation, where t is a non variable
term. With this situation, we first test whether b "is covered by" t.

4

If this is not the case, we change it so that the new value of v will
be t. During the test, we get the list of new equations of terms to
be unified. This means that we do not any particular steps to test
the relation "is covered by". All other points of the algorithm are
usual.

Our algorithm is simple and it is easy to show its correctness using
induction with regard to the basic transformation steps of
configurations. It is not obvious, however, whether the algorithm
terminates, and at this point of time, we have no short and clear
explanation for termination without a formal proof. So, we will
explain a detailed proof of termination.

We can reduce the termination problem by the fact that it is
impossible for any infinite sequence, say (Ti;i>=1), to satisfy the
condition: for each i >=1, 1) Ti is a finite set of (finite) . terms,
2) for each term x in T(i+1l), there exists a term y in Ti such that x
is a proper subterm of y. If it existed, we would be able to make a
downsequence of positive integers from the sequence (Ti;i>=1l) by
getting the maximal size Ni of all terms in Ti for each i>=1l. But the
integer sequence (Ni;i>=1) is obviously impossible.

2. Basic Definitions

We write a system of equationz as a list of equations. For
example, <(x=l,u=f(x),y=x> is a system of equations. The length of the
system is 3, the top of the system is the equation x=1. The form V=t
is called a multi-equation, where V is a finite set of variables and t
is a term. We wuse sets of multi-equations for variable-value
bindings. For example, the result of the unification

x=y, z=2, u=v, y=1
is written as the set of multi-equations
{{x,y}=1,{z}=2,{u,v}="undef"}.
We use the special term "undef” for the undefined value.
Definition. A configuration of unification is an ordered pair of the
form (R,M), where R is a list of equations of the form term=term, and
M is a set of multi-equatioms.
Example. The configuration
(¢x=y,y=2>,{{x}=fix),{y2=f(y), {z}=f(=2)3)
represents the situation: ’
1) the current values of variables x, vy and =z are fix), f(y) and
£(z),and
2) remaining pairs of terms tec be unified are {x,v} and {y,z3J.
Definifition. SUBTERM(t) is the set of all subterms of t, and
SUBTERM' (t) is the set of all proper subterms of t. For the special

term "undef", we use the following definitions:

SUBTERM("undef")={"undef"},
SUBTERM' ("undef")={} (empty set).

.Example. - - o
SUBTERM(f (g(x),1))={f(g(x),1),g(x),x,13

SUBTERM' (f(g(x),1))={g(x),x,13.

For convenience, we will extend the definitions SUBTERM and SUBTERMS'
for 1lists of equations, lists of multi-equations, and configurations.
Let R and M be a list of equations and a set of multi-equationms.

Definition. SUBTERM(R) is the set of all subterms of the nonvariable
left or right hand side of some egquation in R. SUBTERM'(R) is the set
of all proper subterms of the nonvariable left or right hand side of
some egation in R. SUBTERM(M) is the set of all subterms of the right
hand side of some multi-equation in M. SUBTERM'(M) is the set of all
the proper subterms of the right hand side of some multi-equation in
M. SUBTERM((R,M)) is the wunion of SUBTERM(R) and SUBTERM(M).
SUBTERM' (M) is the union of SUBTERM'(R) and SUBTERM' (M).

Example.
SUBTERM(<(x=1,y=f(z)>) = {1,f(z),z3.
SUBTERM' {<(x=1,y=f(z)>) = {z3}.
SUBTERM({{x,y3=1,{z3}=f(z),{ul="undef"3) = {1,f(z),z,"undef"3.
SUBTERM' ({{x,y3}=1,{z3}=f(z),{ult="undef"}) = {z3.
SUBTERM((<(x=f(y)>,{{x,yI=f(y)})) = {f(y),y3.
SUBTERM' ((<x=f(y)>,{{x,y3=f(y)3})) = {yl.

Definition. TERM(R) is the set of all nonvariable left or right hand
side of some equation in R. TERM(M) is the set of all the right hand
side of some multi-equation in M. TERM((R,M)) is the union of TERM(R)
and TERM(M). -

Example.
TERM(<(x=f(x),y=2>) = {f(x)3.
TERM({{x3}=1,{y,z3=23}) = {1,2%.
TERM(({x=f(x),y=z>,{{x3=1,{y,2z3=23)) = {£f(x),1,23%.

Let v, C, and M be a variable, a variable class, and a set of
multi-eguations.

Definitin. If there is a unique multi-equaton in M of the feorm C=b
for some b, we write BIND(C,M) for b. If there 1is a unique
multi-equation, say C'=b', in M such that v is in C', we write
CLASS(v,M) and VALUE(v,M) for C' and Db'.

Example.
BIND({z,ul},{{x,y3=1,{z,u3=2,{v,w}=33) = 2.
CLASS(z,{{x,y}=1,{z,ul}=2,{v,w}=32}) {z,ul.
VALUE(z,{{x,y}=1,{z,ul=2,{v,w3}=33) 2.

3. Unification Algorithm

An initial configuration of our algorithm is the form (R,M), where
R is a system of input equations. Without loss of generality, we can
suppose that 1) either right or left hand side of each equation in R
is a variable, 2) for each variable v occurring in R or M, there is a
unique variable class C occurring in M such that v is in C, and 3) the
special term "undef" does not occur in R. Since our Dbasic
transformations defined below conserve the properties, we supposed
that these three conditions always hold for any configuration.

Our unification process terminates if and only if the current R is
empty, . or FRONTIER operation defined below returns "clash". "clash"
means the failure of the unification.

The primitive operations on trees(terms) in the unification process

are to compute the "frontier" of two given terms and to test whether
the one given term "is covered by" the other one.

Definition. Let t and u be terms. FRONTIER is the function which

satisfies the following conditions.

1) FRONTIER(t,u) = <t=u> if t or u is a variable.

2) FRONTIER(f(tl1l,t2,...,tr),f(ul,u2,...,ur))=F1+F2+...+Fr, where r>=0,
f is a functor, for each i (1=(i=(r), Fi=FRONTIER(ti,ui) and Fi is
not "clash", and "+" is the concatenation operator for lists.

3) FRONTIER(t,u) = <>, i.e., empty list if t or u is "undef".

4) FRONTIER(t,u) = "clash" otherwise.

Example.
FRONTIER(f(1l,x),f(y,2)) = (1l=y,x=2>.
FRONTIER(g(1l),g(2)) = "clash".

Definition. For two given terms, t and u, we say t covers u if and

only if:
1) £t is "undef" or
2) u is not "undef" and FRONTIER(t,u) = <tl=vl,t2=v2,...,tr=vr> for

some r>=0, where for each i (1=(i={r) vi is a variable or atomic term.

Example.
f(g(1),2) covers f(x,y).
f(x,y) is covered by f(g(l),2).
f(x,g(y)) does not cover flig(x),y).

Remark. If a term tl is an instance of another term t2, then ¢tl1
covers t2. Therefore this relation 1is a generalization of the
instance relation. The covering test and the frontier computation
above can be made into a single procedure. More precisely, provided
FRONTIER(tl1l,t2), the time complexty to test the covering relation
between tl and t2 is only proportional to the length of the frontier.

Next, we will define two basic transformations. Suppose - the
configuration (R,M) is given. The resulting cornfiguration (R',M') is
defined as follows.

Let v=t or t=v be the top of R, where v is a variable and t is a
term. Although the R-component of a configuration is used as either a
stack or a queue in the algorithm, it is treated as a set in the
following definition for brevity.

Definition. Let (R,M) and (R',M') be two configqurations. We write
(R,M)->(R',M*") if and only if one of the following conditions heolds.

RULEl: t is a variable, CLASS(v,M)=CLASS(t,M), M'= M,and R'=R-{v=t},
where "-" is the difference operator for sets.

RULE2: ¢t is a variable, CLASS(v,M) is not CALSS(t,M),
M'=(M-{CLASS(v,M)=VALUE(v,M),CLASS(t ,M)=VALUE(t ,M)3}) U {C=2z}, and
R'=R-{v=t} U FRONTIER(VALUE(v,M),VALUE(t ,M})),

C=CLASS(v,M) U CLASS(t,M), and z is "undef” if both VALUE(v,M) and
VALUE(t,M) are "undef”, otherwise any of them which is not "undef”.

RULE3: t is not a variable, VALUE(v,M) is not covered by t,
M'=(M-{CLASS(v,M)=VALUE(v,M)}) U {CLASS(v,M)=t}, and
R'=(R-{v=t}) U FRONTIER(t,VALUE(v,6bM)}.

RULE4: t is not a variable, VALUE(v,M) is covered by t, M'=M and
R'=(R-{v=t3}) U FRONTIER(t,VALUE(v,M)).

Example.
RULEl: (<x=y>,{{x,y3}=1}) -> (< ,{{x,y3=13)

RULE2:
RULE3:

({x=y>,{{x}="undef",{y3=13) -> (O,{{x,y}=13)
(Kx=£(y)>,{{x,yI=£(f(xN) -> (Ky=£(x)>,{{x,yI=f(y)})

RULE4: (<x=f(£f(x))>,{{x,y}=f(y)}) -> (Ky=£f(x),{{x,yI=f(y)})
Algorithm.

Input data: a configuration, say (RO,M0).
Output data: "clash" or a set of multi-equations.

Method: 0) R=:R0 and M=:M0.

1) if R is empty then return M.

2) if (R,M)->(R',M') for some R' and M' then R=:R' and M=:M',
otherwise return "clash".

3) go to 1). [3J]

Example. Let's solve the equations {(x=f(x),y=f(f(y)),y=x>.

(Cx=f(x),y=f(f(y)),y=x>,
f{{x}="undef",{y}="undef"3)

=2 (Ky=f(f(y)),y=x>,

{{x}=f(x),{y}="undef"}) (RULE4)
->(Ly=x>,

{{x3=f(x),{y}=f(f(y)]} (RULE4)
> {<{x=f(y)>,

{{x,y3=f(x)}) (RULE2)
=->(<{y=x>,

{{x,y3¥=f(x)}) (RULE4)
=204,

Hx,y3=f(x)3}) (RULE1)

The output of this computation is {{x,y3}=f(x)3}, which means that the
value of and y is the infinite tree(term) f(f(f(.... In the example,
there is no application of RULE3.

Example. This example shows that the relation "is covered by" is
essential for the termination of unification processes.

(x=f(y,f(g(y),x)),x=f(a(y),x)>,
{{x}¥="undef",{y}="undef ")

-2 ((x=f{gly),x)>,

{{x3¥=f(y,f(g(y),x)),{y}="undef"}) (RULE4)
> (Kgly)=y,x=f(g(y),x)>,

{{x3}=f(g(y),x),{y}="undef"}) (RULE3)
->(Kx=f(g(y),x)>,

{{x}¥=f(g(y),x),{yI=g(y)}) (RULE4)
->(Ly=y,x=x>,

{{x}¥=f(gly),x),{yI=g(y)3}) . (RULE4)
-2, ‘ '

{{x3=f(gly),x),{yI=g(y)}) (RULE1,RULEL)

Remark. It is easy to check that if we do not replace the value. in

RULE3 above, the unification process does not terminate.
4. Proof of Termination
4.1 Proof for Queue Version

In this subsection, we treat a system of equations as a - queue 1in
view of the basic transformations described above. :

Definition. We write (R1,M1)=>(R2,M2) if and only if the following
conditions hold: (R2,M2) is obtained ' from (R1,Ml) by successive
applications of basic transformations n (>0) times, where n is the
length of R1. ("=>" is used only in the proof for the queue version.)
Example.

x=y,y=z>,{{x}=f(x),{y}=f(y),{z}=f(z)}) =>
x=y,x=2>,{{x,y,2}=f(x)1).

Lemma 1. If (R1,M)=>{(R2,M) then TERM(R2) is a subset of SUBTERM' (R1)

Proof. From the definition of "=>", there exists a series of
configurations ((Si,Ni);0=<i=<n) such that
(SO,N0)Y->(S1,N1)->...->(Sn,Nn), where S0=R1, NO=M, Nn=M, and n is the

length of R1.

Suppose there exists a term 4 in TERM(R1) but not in TERM(R2). Then,
from the definition of "=)>", we can select an integer j, a variable v,
a term t, a variable class C, and a term b, satisfying all of the
_following conditions:

1) 1=¢j=<n-1, the top of Sj is either t=v cr v=t,

2) v is in C, BIND(C,M)=b, BIND(C,Nj)=b,

2) b is not in TERM(R1l), b is not covered by t,

4) d is in TERM(FRONTIER(t,b)).

From 2), and since b is not covered by t, BIND(C,N(j+1)) must be t.
Since b is not in TERM(R1), BIND(C,Ni) is not b for each i (j<i=<mn).
Since Nn=M, these imply that BIND(C,M) is not b. This 1is a
contradiction to 2). Therefore, TERM(R2) is a subset SUBTERM'(R1).
3)

Corollary 2. There does not exist an infinite sequences of
configurations ((Ri,M);i>=1} such that (R1,M) => (R2,M) =>
Proof. If the seguence exists, for any integer i>=1, TERM(R(i+l)) |is
a subset of SUBTERM'(Ri). As we have noted in the introduction, it is
impossible. L[] :

Lemma 3. There does not exist an infinite sequences of configurations

({Ri,Mi);i>=1) such that all of the following conditions hold:

1) (R1,M1) => (R2,M2) => ... =) (Rn,Mn) => ...,

2) for each k>=1 and variable class C occurring in Mk, there exists
such j (3j>k) that BIND(C,Mj) is not BIND(C,Mk).)

3) Mi's numbers of elements are equal to each other, i.e. no
application of rule RULE2 appear in the sequence (i>=1).

Proof. From the infinite sequence above, we derive a contradiction.
From 2), for any k there exists such j (k<Jj) that for any variable
class C, the cardinality of the set

{i;k<¢i=<j, BIND(C,Mi) is not BIND(C,M(i-1))3} is at least 2.

For each variable class C occurring in the sequence, let ' i(C) be the

~f~

maximal integer i (i=<j) such that BIND(C,Mi) is not BIND(C,Mj). From
the condition for j, for each C, i(C) must be greater than k, and
BIND(C,M3j) Tis in TERM(Ri(C)). Since for any i>k TERM(Ri) is a subset
of SUBTERM"(Rk,Mk)),BIND(C,Mj) is in SUBTERM'((Rk,Mk)).

: |
By successi?e applications of this process, we can build the sequence
kl<k2<. | such that TERM((Rk(i+1) ,Mk(i+l))) is a subset of

QUBTED.M ((Rk(l) Mk(i)}) (i>=1). This is, as said before, impossible.
C3 ‘ .

Theorem 4. 44 There does not exist an infinite sequence such that
(R1, Ml)‘—> (R2, M7) => ... => (Rn,Mn) => ...

Proof. We éan prove this by 1nductlon with regard to the ~number of
elements of‘Ml. .

1) Suppose &hat the number of elements of Ml is 1. Because of the
corollary | 1, there exist no integer k>=1 such that
Mk=M(k+1)=M(k+2)=.... On the other hand, the lemma 2 says that it is

impossible for Mi to change infinitely many times. So, the foundation
is proved. |
|

2) Suppose %hat the number of elements of M1 is m+l, and that the
theorem holds for the sequence such that the number of the variable
classes of the sequence is at most m.

If for some;k>-l, the number of the elements of Mk is less than that
of M(k-1), then from the induction hypothesis, the sequence
(Rk,Mk)Y=>(R(k+1) ,M(k+1)) => ... is finite. Then, the theorem holds
in this case. Therefore, 'we' suppose that the set of all variable
classes occ rinq in Mi is independent of 1 'i\=1).

We derive a | contradlctlon from the existence of the infinite sequence.
For each 1) 1, let Li be the set of all the common multi-equations in
Mj (3>=i). lAnd let L be the union of all Li (i>=1). L is not empty
because ' of | lemmaZ. Fix - integer k>=1 "~ so that for all j>=k L is a
subset of M

From the definitions of L and the basic transformations, TERM(Rj) is a
subset of '|SUBTERM'((Rk,Mk-L)) for any j>k. By a similar method -used
in lemma2, | we can construct the infinite sequence of integers
k= (11(1”(134 such that TERM((R1(i+1),M1(i+1)-L)) is a subset of
SUBTERM"(Ri(l) Ml(i)-L)) (i>=1}). But thls is 1impossible, so the
theorem is Qroved. C3l

4.2 Proof f&r Stack Version

Now, we will briefly give a termination proof for the stack
version. nly " points that are different from those in the queue
version are |included. The target is to derive a contradiction from
the infinite sequence 1):

1) (R1,M1)->(R2,M2)->...->(Rn,Mn)->

l
From the equence, we can construct j1¢(j2<..., satisfying the
following cgnditions 2) and 3):

2) For each k>=1, only one side of the equation, say Ek, of the top of
Rj(k) is a varlable, say v(k). We write t(k) for the other side of
Ek.)

3) Each Ek is an ‘element of FRONTIER(VALUE(v(k-1),Mj(k-1)),t(k-1)),

(k>1).
From the infinite sequence 3jl<j2<..., we can get the subsequence
11¢i2¢... such that the following conditions 4) and 5) hold.
4) For each k (k>=1), L is a subset of Mi(k).
5) For each k (k>=1), TERM((<E(k+1)>,Mi(k+1)-L)) is a subset of
SUBTERM' ((<Ek> ,Mi(k)-L).

It is easy to show that 5) is impossible. We have the
contradiction.

The rest of the proof is to show 2) and 3).
Let X be the set {Wi;i>=1}. We assume that if i is not j then Wi is

not Wi (i,3>=1). We say Wi is greater than Wj if and only if the
following conditions 6) and 7) hold:
6) i<j,

7) for each k (i=<k=<¢3j), the length of Wk does not exceed that of Wi.

From the definition of "->", X becomes a partially ordered set with
respect to the relation. It is trivial to show that each connected
component of X is a tree, and that the number of the - components 1is
equal. to the length of Rl. So, some component, say T, of X must be
infinite (Konig's lemma). Since the number of branches at each node
in ¥ is at most finite, there is at least one infinite path through T.
If T is written to be the set {Wj(k);k>=13}, the corresponding
subsquence of 1) is wrtten as 8).

8) ((Rj(k),Mj(k));k>=1}

In the sequence 1), only finite applications of the RULE2 appear.
For, the application decrease the number the variable classes. If we
neglect the initial segment of 6) which is finite and sufficiently
large, we get the sequence which satisfies 2) and 3).

5. Conclusion

We have proposed a simple and efficient unification algorithm for
infinite trees, and have explained the algorithm as it applies to
simple data structures consisting of equations and multi-equations.
The unifier runs up and down along trees, locally, in a depth-first
way, but globally breadth-first. Basic operations are to compute the
frontier of two given terms and to test the relation between them that
the one term is covered by the other. We can perform the computation
and the test at once within a time proportional to at most the smaller
size of the terms.

Each term which appears in the wunification process is always a
subterm of some term occurring in the input configuration. The
algotithm does not need any special inner representation of terms. So
. we think it is easy for the algorithm to be built into the ordinary
Prolog implementations with structure = sharing, for example, DEC-10
ProloglCk,71. We hope it will work in the average meaning as fast as
the ordinary and conventional unifiers without "occur check".

The correctness of the algorithm is clear but termination not
obvious. Therefore so we have described a detailed proof for the
termination.

ACKNOWLEDGMENT
Kazuhifo Fuchi, Director of ICOT Research Center, and Tishio Yokoi,

Chief of 3rd Labolatory, . inspired me in this work. I also want to
thank my colleague, especially Dr.Takashi Chikayama, 2nd Laboratory

~8~

for their valuable comments.

REFERENCES

1.

Martelli, A., and Montanari, U. An Efficient Unification Algoritm.
ACM Trans. on Programming Lang. and Syst., Vol.4, No.2, April
1982, pages 258-282.

Colmerauer, A. Prolocg and Infinite Trees. Logic Programming,
Academic Press, 1982.

Chang, C.L., Lee, C.R. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, New York, 1973.

Paterson, M.S., and Wegmann, M. Linear Unification.
J.Comput.Syst.Sci. 16, 2(April 1978), 348-375. :
Courcelle, B. Foundation of Infinite Trees. Theoretical
Foundation of Programming Methodology, D.Reidel, 1982, 417-471.
Bowen, D.L. : DECsystem-10 PROLOG USER'S MANUAL, Dept. of AI,
University of Edingburgh,l981l.

Warren, D.H.D : Implementing Prolog - Compiling Predicate Logic
Programs, Dept. of AI, University of Edingburgh Research Reprt

39&40, 1977.

’

