VTN L TEE®R T—5

(1984 1 20)

Des isgsn o f A s s emb 1 ¥ I.evel

ILansguasge f or Control F 1 ow

Parallel Computer

wFo AF9E F. D. Ramo s
CREREIGE T2E8BD
SUMMARY ' control yields faster scalar arithmetic
calculation. However, pufe data flow

Capable of exploiting inherené parallelism in a computation is a failure with regards to
program, the proposed parallel control flow manipulation of data /structures because
computer is discussed. Potentially executable concurrent execution of logically parallel
instructions will be known by examining the operation may result into data substructures
completeness of a control token packet which that cannot be synthesized in order to obtain
contains the already available control token(s) the desired structure. Consequently, what has

corresponding to a certain instruction or node

packet. A control token packet 1is simple in

structure and stored in a content-addressable

memory called control token memory.

DATA FLOW and CONTROL FLOW REVISITED

To expedite program execution, researches about
parallel processing are enthusiastically being
performed. Of the proposed parallel processing
architectures avail-

computer employing by

ability control mechanism, data flow computer
seems to be more popular than that of control

flow because of its freedom from side-effects
resulting, for example, in program verification
facility. This peculiarity is attributable to
an absence of shared memory location, better

known as variable, in data flow programming.

Data is passed directly between instructions

and a separate copy, if necessary, is generated

for each destination.

The aforementioned inseparable flow of data and

been conceived to be a parallel operation has

to be done in a sequential way. Therefore, to

ascertain whether a logically parallel

operation may be done concurrently or not

becomes a must. Also, by value data mechanism

is not commendable when the performance of,

say, conditional expression does not make use

of the separately generated data thus it has to

be destroyed. This will surely occur in loop

implementation., To alleviate these problems,

non-data flow concepts have to be employed

otherwise, generalépurpose data flow computer

will not be feasible. Such integration of

non-data flow concepts results in its

non-uniformity.

On the other hand, eventhough susceptible to

side-effects, parallel control flow computer

may turn out to be a better general-purpose

machine. Like data flow, control flow utilizes

the principle of by availability control

mechanism. Sharing of computation results among

the specified destinations is the cause of

their differences. What is sent to the next

{1

to-be-triggered instructions is simply a

control token implying the availability of the
corresponding argument{s). As a result, we may

opt not to issue a control signal to specified

next instruction(s) immediately after compu-

tation execution. What we have to be certain of

is that once an instruction is activated, the

necessary operands are all available. This will
be meritorious when the degree of parallelism

in a program may cause some sort of resource

shortage or deadlock thus we have no option but
to reduce it. In contrast to data flow pro-
gramming, data initialization of a re-entrant
procedure or loop in control flow programming

does not require a separate specification

because it may be easily included within the

subroutine or loop's body, as in conventional

Von Neumann computer, by means of "move

immediate" instruction.

CONTROL FLOW PARALLEL COMPUTER ARCHITECTURE

The proposed control flow computer is organized

as shown in Figure 1. The main memmory is

modularized and 16-word interleaving is used so
as to mitigate the of

problem memory

contention.

Control token memory (CTM) serves as a 'storage
of so-called control token packets (CTP). There

is a corresponding control token packet for

every potentially executable instruction that
has received at least one required control
token. The structure of a control token packet

€2

is illustrated in Figure 2. Node address

(NA)
indicates the address of the instruction, also
called as node packet, corresponding to this
CTP. By means of the color indicator (CI),
simultaneous or successive invocations of same
subroutine may be performed. Status data (SD)

contains information about the state of CTP as
enumerated below :

1. CTP is being used or not.

2. If being used, does it contain all the
necessary control tokens already? In the
former case it is said to be a CCTP, an

acronym for complete control token packet.

Being a CCTP, is the corresponding in-

struction being executed or not?

4, In case a CCTP has been executed already
but some of its ohtput control tokens are
not yet 1issued due to wunsafeness, such
CCTP 1is newly dubbed as result control

- token packet (RCTP).
LCT and RCT stands for left control token and
right control token, respectively. These binary
indicators are set to 1 if the correspénding
control token is available or dummy otherwise,
it is cleared. Therefore, the completeness of a
CTP is simply determined by the logical AND of

LCT and RCT. CTSIs, control token sent indi-

cators, show that corresponding destinations
have received the output control token already

if it is set to 1 or else it contains 0.

CONTROL FLOW NODES

Program is written in a control flow language

which is a collection of nodes almost similar

to those defined by Dennis (see Figure3).

Control flow nodes and their firing rules are

shown in Figure 3a. With the exception of a

subroutine node, a node becomes executable if

all the needed control tokens are available.

The principle of by availability control

mechanism seems to be not suitable in the case
of a subroutine node because it is actually an

aggregate of the previously stated fundamental

nodes, Therefore, an arrival of at least one
control token, perhaps, may result into
fireability of some fundamental nodes.

We decided not to use the input arc selector
node and merge node (see Figure 3b). "An input
arc selector node will be of importance - only
when the daté corresponding to the contol
tokens to be selected are both constants. This
will be a very rare case and it can be easily

shown that an input selector node may be
realized by using a pair of T-Gate and F-Gate
nodes. The merge node, on the other hand,

serves no purpose but to increase the number of

nodes used in writing a control flow program

thus slowing down its execution. This 1is be-

cause, if .a program 1is accurately written,

there is no possibility that a multi-source

control arc will have more than one control

token at any time for it will result into

program non-determinacy.

CONTROL FLOW INSTRUCTION FORMAT

Figure 4 illustrates the format of a control

flow instruction or node packet. The first two

words (at most) contain information about the
operation code, operand and result specifi-
number of destinations, and

cations,
destinétion specification, If existent, a left
operand may be an immediate data or it may be
memory referenced. The latter 1is classified
into absolute, indirect or relative addressing.
The right operand specification classification
is almost the same as that of the left operand.
Nevertheless, when the right operand's address

is the same as that of the left operand, it may

be specified in that manner so as to minimize

€3

the number of memory words occupied by a node

packet. Similarly, in case the memory

referenced result is the same as that of either

left operand or right operand it may be
specified so.

The format of destination specification is
shown in Figure 5a., If SNI (subroutine node

indicator) is equal to 1, the remaining five

bits are interpreted as depicted in Figure 5b.

WCA signifies "which control are will be

triggered. If ENT equals 1, that is, the

subroutine node will be "entered", the control

arc to be triggered is an input one or else it

is an output one. The corresponding destination

address will be 16-bit long indicating the

invoked subroutine number or name. If SNI is O,

the first three remaining bits will be

interpreted as in Figure 5c¢ while the last two

remaining bits will be wunused. Destination

addressing type is either absolute or relative

but as much as possible relative addressing

will be utilized. If NCTN, number of control
tokens needed, equals 0, the token packet of
the indicated node address needs only -one
control token. to become executable or else it
requires two. This information will be used to
determine whether the right control token 1is
dummy or not.:

CONTROL FLOW PROGRAM

The instruction set summary of assembly

language to be used in control flow programming

is shown in Figure 6. This is based upon that

used for MC68000.

As an illustration, consider the simple control
flow program graph of Figure Ta. Note that the

first two nodes both require one control token

only. This is allowable provided that during

the arrival of the required control token of

the trigger node, valid data have been stored

already into addresses A and B. The body of the

program as defined in control flow assembly

language is shown in Figure Tb.

Figure 8a illustrates the general format of a

statement. It consists of statement number or

label, operation code, operands and result

field, and destination field. Copy, synch and

trigger nodes do not require operands and

result field. The other exception is an. OAS

node whose destination field is subdivided into

TRUE-destination and FALSE-destination. This

€4)

format is shown in Figure 8b.

The subroutine definition, as shown in Figure
9, 1is similar to that of a conventional
assembly language's macro definition. It
consists of three parts : header, body and
trailer.

SIMULATION RESULTS

Using the previously mentioned control flow
assembly language, a 16-point Fast Fourier
Transform patterned program is simulated.

Figure 10 shows execution time as a function of
the number of functional units. We can see that

the execution time stabilizes, that 1is, there

is no apparent improvement, near the point

where the number of functional units equals 32.

This is due to the fact that, ideally, 16

functional units may be active simultaneously

and, 16 more units are required so that soon to

be created 16 complete control - token packets

may be immediately executed. The execution time
corresponding to the stability range may not be
the minimum due to other factors such as memory
contention. However, such discrepancy, if there

is, is minimal.

Figure 11 is a plot of the number of needed

control token memory words versus the number of

functional units. In order to avoid deadlock

due to shortage of CTM words, the actually

needed number of CTM words must be twice the

simulation results. This 1is because control

tokens needed for the execution of a certain

node packet may be simultaneously created.

Hence, they will be written into separate CTPs

and then combined. It can be shown that for any

program such deadlock will most unlikely occur

if the number of CTM words is Dp * (No + 2). Dp

is the maximum parallelism of the program and

No is the maximum number of output control

tokens issued by any node.

CONCLUSION

Parallel control flow computer, due to its non-

importation of non-control flow concepts, may

turn out to be a better parallel processing

machine. Above all, some of the programming

methodologies developed for Von Neumann

computer may be adopted because the latter

operates upon the principle of (sequential)

control flow.

REFERENCES
MAIN MEMORY
Module 1
Module 2
MAIN MEMORY -
ARBITER .
Module m

 PROCESSING SECTION

Functional Unit 1
Functional Unit 2

) §
1/0 DEVICES

HQST COMPUTER

[11

f21

[31

(4]

(5]

[61

Functional Unit k

CONTROL TOKEN MEMORY

Packet 1

CONTROL TOKEN
MEMORY ARBITER

Packet 2

Packet n

Figure 1. Control Flow Parallel Computer

€5

‘Computer Architecture,"

Ackerman, W. B., and J. B. Dennis, "VAL -
A Value Oriented Algorithmic Language, Pre-

liminary Ref. Manual," Tech. Rep. TR-218,

Laboratory for Computer Science, MIT, June
1979.
Arvind, K. P. Gostelow, and Wil Plouffe,

"An Asynchronous Programming Language and
Computing Machine," Tech. Rep. TR-114a (UC-
Irvine, Calif.), December 1980.‘

Dennis, J. B., and D. P, Misunas, "A Pre-
liminary Architecture for a Basic Data Flow
Processor," IEEE Proc. on 2nd Annual Symp.
on Computer Architecture (1975), pp. 126 -
132.

"Control Flow Parallel

Sowa, Masahiro,

IPS of Japan,
Sig. Archi., 48 - 2, March 1983.

Sowa, M., and T. Murata, "A Data Flow Com-—
puter Architecture with Program and Token
Memories," IEEE Trans. on Computers, Sep-
tember 1982, pp. 820 - 824.

Treleaven, P. C., D. R. Brownbridge, and R.
P. Hopkins, "Data-Driven and Deménd-Dri;en

Computer\Architecture," Computing - Surveys,

March 1982.

I'nalct|so] ter] rer | crsis |

Figure 2. Control Token Packet

—>

LCT T . F

1. TRIGGER or COPY NODE 2. SYNCHRONIZE NODE T

T
‘:> OPERATOR 3. OUTPUT ARC SELECTOR (OAS) NODE
) LCT
t_—_:>

DYADIC

— OPERATOR SUBROUTTNE
1

MONADIC

4. ARITHMETIC and BOOLEAN 5. T-GATE NODE
OPERATOR NODE 6. SUBROUTINE NODE

LCT
— a) Control Flow Nodes
RCT

7. F-GATE NODE

:,}%5{ }?’Cﬁ

Determinate Non-Determinate

1. MERGE NODE ‘ T F

Tt F! TL F! Tl F? Tl F!
— E T F

2. INPUT ARC SELECTOR NODE
b) NOT VERY USEFUL NODES

Figure 3. DENNIS Nodes (Actors)

€6)

OPCODE| LOS| ROS| RS | ND | DSl | DS2
DS3 | DS4 |DS5 |DS6 | DS7

LEFT OPERAND B IR EREN
RIGHT OPERAND a) General

RESULT

DESTINATION 1 [1Jev] Twea 7]

DESTIFATION 2 b) Subroutine.Node

DESTINATION 7 - [0 [[senwc]] y I
¢} Fundamental Node

Legend :
LOS - Left Operand Specification
ROS - Right Operand Specification R
RS - Result Specification Figure 5. Destination Specification Format
ND - Number of Destinations . '
DSi - ith Destination Specification

Figure 4. Instruction Format

1 TRIGGER 2,3

2 ADD A,B,C 4,5

3. SUB A,B,D 4,5
(ci=as+p ©.-a-p) 4 ADD C.D.E .
5 SuB C,D,F ?

D I

a) Control Flow Graph b) Assembly Language Program

7.

Figure 7. Example Program

LABEL OPERATION CODE LEFT OPERAND,RIGHT OPERAND,RESULT DEST. 1,DEST.2,...,DEST. n

a) General
S

LABEL 0AS BOOLEAN-VALUED VARIABLE TRUE-DEST./FALSE-DEST.
b) Output Arc Selector Node

Figure 8. Format of Control Flow Statement

NAME SUBROUTINE ARGL,ARGZ2; .. .,ARGn
[BODY OF SUBROUTINE]

ENDS
Figure 9. Subroutine Definition

€7

Legend :
‘[EA] - effective address
1 byte - 16 bits
1 word - 2 bytes)
1 long word - 2 words

I. Data Movement Operations
1. MOVE [EA],[EA]
The size of the operand may be specified to be byte, word or long as illustrated
subsequently: MOVE.B, MOVE.W, MOVE.L ‘)
MOVEC [EA], [EA], [EA]
The number of bytes to be moved is always 1 more than what is indicated in the
third [EA] which is 1-byte long.
MOVEI #[DATA], [EA]
The size of the immediate data matches the operation size.
2. EXG [EA], [EA]
3. SWAP [EA],[EA]
II. Integer Arithmetic Operations

1. ADD [EA],[EA],[EA] 2. SuB [EA],[EA], [EA]
ADDI [EA],#[DATA], [EA] SUBI [EA],#[DATA], [EA]
AUDI #{DATA], [EA], {EA] , SUB: #|DATA], [EA], [EA]

3. MULS [EA],[EA], [EA] 4. DIVS [EA], [EA],[EA]
MULU [EA], [EA], [EA] DIVU [EA],[EA], [EA]

5. INCR1 [EA],[EA] 6. DECR1 [EA],[EA]

INCR2 [EA],[EA] DECR2 [EA], [EA]
INCR4 [EA], [EA] DECR4 {EA], [EA]

7. NEG [EAl, [EA]
III. Multiprecision Arithmetic Operations

1. ADDR [EA],[EA], [EA] 2. SUBR [EA],[EA], [EA]
ADDRD [EA}, [EA], [EA] SUBRD [EA],[EA], [EA]

3. MULR [EA], [EA], [EA] 4. DIVR [EA], [EA], [EA]
MULRD [EA], [EA], [EA] DIVRD [EA], [EA], [EA]

IV. Logical Operations '

1. AND [EA],[EA],[EA] 2. OR [EA], [EA], [EA]
ANDI [EA],#[DATA], [EA] ORI [EA],#[DATA], [EA]
ANDI #[DATA], [EA], [EA] ORI #[DATA], [EA], [EA]

3. EOR [EA],[EA], [EA] 4. NOT [EA],[EA]

TORI [EA],#[DATA], [EA]
EORI #[DATA], |EA], [EA]
V. Shift and Rotate Operations

1. ASL [EA], [EA], [EA] 2. ASLI [EA],#[DATA], [EA]
ASR [EA], [EA], [EA] ASRI [EA],#[DATA], [EA]
LSL [EA], [EA], [EA] i LSLI [EA],#[DATA], [EA]
LSR [EA], [EA], [EA] LSRI [EA],#[DATA], [EA]
ROL [EA],[EA], [EA] ROLI [EA],#[DATA], [EA]
ROR [EA], [EA], [EA] RORI [EA],#[DATA], [EA]

VI. Compare Operations

1. EQ [EA], [EA], [EA] 2. EQI [EA],#[DATA], [EA]
GE [EA], [EA],[EA] EQI #[DATA], [EA], [EA]
GT [EA], [EA],[EA] GEI [EA],#[DATA], [EA]
LE [EAl,[EA],[EA] GEI #[DATA], [EA], [EA]
LT [EA], [EA], [EA] LEI [EA],#[DATA], [EA]

LEI #[DATA], [EA], [EA]
LTI [EA],#[DATA],[EA]
LTI #[DATA], [EA], [EA]
VII. Bit Operations N
1. BTEST [EA],[EA],[EA]
BTESTI #[DATA], [EA], [EA]
BSET [EA], [EA], [EA]
BSETL #[DATA], [EA], [EA]
BCLR [EA], [EA], [EA]
BCLRI #[DATA], [EA], [EA]

Figure 6. Instruction Set Summary

§8)

i

ZOm-SCam»m

[R

1/(1000 UNITS)

21

.20

USED CONTROL
TOKEN MEMORY
PACKETS/WORDS

19

18

Number of Memory Modules = 20
Number of Interleaved Words = 16

Number of Functional Unit-Control Token Memory Links = .. __

Number of Functional Units

Degree of Parallelism of Simulated Program

12

14 16 18 20 2?2 24 26

NUMBER OF FUNCTIONAL UNITS

Figure 10

36 38 40

12

1 T T T T T T T T T T
14 16 18 20 22 24 26
NUMBER OF FUNCTIONAL UNITS

Figure 11

SIMULATION RESULTS

€9

