® 5 M4 B 34-1
(198511.13)

Implementation of Kyoto Common Lisp

Taiichi Yuasa and Masami Hagiya
Research Institute for Mathematical Sciences, Kyoto University

1. Introduction

Kyoto Common Lisp (KCL for short) is a full
implementation of the Common Lisp language [1,2].
KCL is a highly portable Common Lisp system intended
for several classes of machines, from mini/micro to
mainframe. The key idea behind the portability is the
use of the C language and its standard libraries as the
interface with the underlying machines and operating
systems: The kernel of the system is written in C and
the rest of the system is written in Common Lisp.
Even the compiler generates intermediate code in C.
KCL is also an efficient and compact system: KCL
regards the runtime efficiency of interpreted code as
important as the efficiency of compiled code. The
small size of the KCL system makes KCL suitable for
the current computer technology, such as the use of
virtual memory and cache memory.

Currently, there are major versions of KCL.

—

. KCL/AOS running under Data General’'s original
AOS/VS (Advanced Operating System / Virtual
Storage) for Data General's Eclipse MV series super-
minicomputers

2. KCL/VAX running under UNIX 4.2 bsd for Digital
Equipment Corporation’s VAX 1l series machines

3. KCL/SUN running under UNIX 4.2 bsd for Sun
Microsystems' Sun 2 Workstation

4. KCL/UST running under UNIX V (Uniplus' version)
for Sumitomo Electric Industries and Digital
Computer Laboratory's personal workstation Ustation
E15 (MC68000 base)

KCL/AOS ‘is the original version of KCL, which was
developed at Research Institute for Mathematical
Sciences (RIMS), Kyoto University, with the
cooperation of Nippon Data General Corporation. Other
versions are ported from KCL/AOS at RIMS. All four
versions share most of the source files of KCL.
Improvements and error corrections are performed on
the common source files, and the most recent revisions
are brought to each machine from time to time. Ports
to other machines and other operating systems are
being undertaken or in preparation at other
organizations.

2. Implementation Overview
The kernel of KCL is written in C, including:

* memory management and garbage collection
% the evaluator (or interpreter)
* Common Lisp special forms

All Common Lisp special forms are written in C. 418
Common Lisp functions and 11 Common Lisp macros are
written in C, and the other Common Lisp functions and
macros are written in Common Lisp. The KCL compiler
is entirely written in Common Lisp.

The size of the source code is:

C code 705 Kbytes
Common Lisp functions and macros in Lisp
173 Kbytes

The compiler 264 Kbytes

total 1142 Kbytes
Three routines in the kernel are partly written in
assembly language. These routines are:

* bignum multiplication
* bignum division
* bit table manipulation of the garbage collector

The total size of assembly code is 20 to 30 lines,
depending on the version of KCL.

When KCL/AOS, the original version of KCL, was born,
the following steps were taken to build it up.

1. Compile all C code with the C compiler and link them
all. A subset of KCL is ready to run at this
moment.

ia-]

. Load all Lisp code into KCL. Now the full system is
ready to rum, although the compiler and some
Common Lisp functions and run
interpretively.

macros

3. Compile the source files of the KCL compiler with
the (interpreted) KCL compiler itself. Load each
Fasl-file (i.e., the file created by the KCL compiler)
immediately after it is generated. The compilation
process becomes faster toward the end of this step.
Finally, the whole KCL compiler is ready to run by
itself.

4. Compile the Common Lisp functions and macros
written in Lisp, with the compiled KCL compiler.
Load the Fasl-files. This completes the generation
of the full system.

The same steps are taken whenever drastic changes are
made to the kernel. On the other hand, the procedure
to port KCL or to revise the ported versions of KCL is
much simpler, because all Lisp code has been cross-
compiled by the compiler of KCL/AOS beforehand.

KCL does not support the so-called immediate data.
Any KCL object is represented as (a pointer to) a cell
that is allocated on the heap. Each cell consists of
several words (1 word = 32 bit) whose first word is in
the format common to all data types: half of the word
is the type indicator and the other half is used as the
mark by the garbage collector.
cell consists of three words:

For instance, a cons

*CONS” mark-bit

car-pointer

cdr-pointer

and a fixnum cell consists of two words:

PFIXNUM® mark-bit

fixnum-value

Array headers and compiled-function headers are
represented in this way, and array elements and
compiled code are placed elsewhere.

Internally in compiled functions, certain Lisp objects
may be represented simply by their values. For
example, a fixnum object may be represented by its
fixnum value, and a character
represented by its character code.

object may be

Cells of small fixnums ranging from -1024 to 1023
and cells of characters are pre-allocated in fixed
locations. Thus, for example,

(eq 1023 1023)
yields t, whereas
(eg 1024 1024)

yields nil.

3. Memory Management

The whole heap of KCL is divided into pages (1 page =
2048 bytes). Each page falls in one of the following
classes:

x pages that contain cells consisting of the same
number of words

% pages that contain binary data such as compiled
function code

% pages that contain relocatable data such as array
elements

Free cells (i.e., those cells that are not used any
more) consisting of the same number of words are
linked together to form a free list. When a new cell
is requested, the first cell in the free list (if it is not
empty) is used and is removed from the list. If the
free list is empty, then the garbage collector begins to
run to collect unused cells. If the new free list is too
short after the garbage collection, then new pages are
allocated dynamically. Free binary data are also
linked together in the order of the size so that, when
a binary datum is being allocated on the heap, the
smallest free area that is large enough to hold the

binary datum will be used. Cell pages are never
compactified. Once a page is allocated for cells with n
words, the page is used for cells with n words only,
even after all the cells in the page become garbage.
The same rule holds for binary pages. In contrast,
relocatable pages are sometimes compactified. That is,
each relocatable datum may be moved to another place.

Fig.l illustrates the actual configuration of the KCL
heap There is a "hole” between the area for cell/binary
pages and the area for relocatable pages. New pages
are allocated in the hole for cell/binary pages, whereas
new relocatable pages are allocated by expanding the
heap to the higher address, i.e., to the right in the
this figure. When the hole becomes empty, the area
for relocatable pages are shifted to the right to
reserve a certain number of pages as the hole. During
this process, the relocatable data in the relocatable
pages are compactified. No free list is maintained for
relocatable data.

Symbol print names and string bodies are usually
allocated in relocatable pages. However, when the KCL
system is created, i.e., when the object module of KCL
is created, such relocatable data are moved towards the
area for cell/binary pages and then the pages for
relocatable data are marked 'static". The garbage
collector never tries to sweep static pages. Thus,
within the object module of KCL, the heap looks:

lower address higher address

cell/binary pages and static pages

Notice that the hole is not included in the ocbject
module; it is allocated only when the KCL system is
started. This saves the secondary storage a little bit.
The maximum size of the hole is about 100 pages (=
200 Kbytes).

4. Stacks
KCL uses the following stacks.

% Value Stack for arguments/values passing, lexical
variables allocation, and temporary values saving

* Frame Stack consisting of catch, block, tagbody
frames

% Bind Stack for shallow binding of dynamic variables

* Invocation History Stack maintaining information for
debugging

% C Language Control Stack, sometimes used in
compiled functions for arguments/values passing,
typed lexical variables allocation, and temporary
values saving, in addition to the obvious use such
as function invocation

To show the argument/value passing mechanism, here
we list the actual code for the Common Lisp function
cons.

Lcons()
(
object x:
check_arg(2);
x = alloc.object(t_cons);
x->c.c_car = vs_basel0];
x=>c.,c.cdr = vs_basel1l;
vs_basel0] = x;
vVS.pop;

We adopted the convention that the name of a
function that implements a Common Lisp function
begins with ’L’, followed by the name of the Common
Lisp function. (Strictly speaking, -’ and ¥’ in the
Common Lisp function name are replaced by '_’ and 'A’,
respectively, to obey the syntax of C.) Arguments to
functions are pushed on the value stack. The stack
pointer vs_base (value stack base) points to the first
argument and another pointer vs._top points to the
stack location next to the last argument. Thus, for
example, when cons is called with the first argument
1 and the second argument 2, the value stack looks:

vs_top —

vs.base — i

bottom L——-————J

value stack

check_arg(2) in the code of Lcons checks if exactly
two arguments are supplied to cons. That is, it
checks whether the difference of vs_top and vs_base
is 2, and if mnot, it causes an error.
allocate_object(t_cons) allocates a cons cell in the
heap and returns the pointer to the cell. After the
car and the cdr fields of the cell are set, the cell
pointer is put onto the value stack. The two stack
pointers are used also on return from a function call.
vs_base points to the first returned value and
vs_top points to the stack location next to the last
returned value. vs_pop in the code above decrements
vs_.top by. one.

vs_top —>

vs_base > 2)

bottom L——————J

value stack

Because the same stack pointers are used both for
argument passing and for return value passing, the
Common Lisp function values does almost nothing. In
most cases, the caller of a function uses only the first
returned value which is pointed to by vs_base. This
is not the case, however, when the called function
returns no value at all. In order to avoid the check
whether this is the case, each KCL function, on return
from its call, sets nil to the stack entry which is
pointed to by vs_base, whenever it returns no value
at all. Thus, for instance, the actual code for the
Common Lisp function values is:

Lvalues(?
(

vs_topl0] = Cnil;

where Cnil is a global variable that always contains
the pointer to nil. See why this works.

5. The Interpreter

The KCL interpreter uses three A-lists (Association
lists) to represent lexical environment: one for
variable bindings, one for local function/macro
definitions, and one for tag/block bindings. When a
function closure is created, the current three A-lists
are saved in the closure along with the lambda
expression. Later, when the closure is invoked, the
saved A-lists are used to recover the lexical
environment.

6. The Compiler

The KCL compiler is essentially a translator from
Common Lisp to C. Given a Lisp source file, the
compiler first generates three intermediate files:

* a C-file which consists of the C version of the Lisp
program

* an H-file which consists of declarations referenced
in the C-file

= a Data-file which consists of Lisp data to be used at
load time

The KCL compiler then invokes the C compiler to
compile the C-file into an object file. Finally, the
contents of the Data-file is appended to the object file
to make a Fasl-file. The generated Fasl-file can be
loaded into the KCL system by the Common Lisp
function load. By default, the three intermediate
files are deleted after the compilation, but, if asked,
the compiler leaves them.

The merits of the use of C as the intermediate
language are:

* The KCL compiler is highly portable. Indeed the
four versions of KCL share the same compiler.
Only the calling sequence of the C compiler and the
handling of the intermediate files are different in
these versions.

*®

Cross compilation is possible, because the contents
of the intermediate files are common to all versions
of KCL. For example, one can compile his or her
Lisp program by the KCL compiler on Eclipse, bring
the intermediate files to SUN, compile the C-file
with the C compiler on SUN, and then append the
Data-file to the object file. This procedure
generates the Fasl-file for the KCL system on SUN.
This kind of cross compilation makes it easier to
port KCL.

* Hardware-dependent optimizations such as register
allocations are done by the C compiler.

The demerits are:

* At those sites where no C compiler is available, the
users cannot compile their Lisp programs.

* The compilation time takes long. 70% to 80% of the
compilation time is used by the C compiler. The
KCL compiler is perhaps the slowest compiler in the
Lisp world.

The format of the intermediate C code generated by
the KCL compiler is the same as the hand-coded C code
of the KCL source programs. For example, supposing
that the Lisp source file contains the following
function definition:

(defun addl (x) (1+ x))

The compiler generates the following intermediate C
code.

init_code(start,size,data)

char #*start;int sizej;object data;

4 register object *base=vs_top;
register object *sup=base+VUM2;
vs_check;
Cstart=start;Csize=size;Cdata=data:;
set_VV(VV,VMi,data);
MF(VVL0l,L1,start,size,data);
vs_top=vs_hase=base;

/% function definition for ADD1 */

static L1()

4 register object *base=vs_base;
register object *sup=base+UM3;
vs_reserve(VM3);
check_arg(1);
vs_top=sup:;
baselll=one_plus(basel0]):
vs_top=(vs_base=base+1)+1;
return;

The C function L1 implements the Lisp function addi.
This relation is established by MF in the initialization
function init_code, which is invoked at load time.
There, the vector VV consists of Lisp objects; VWI03 in
this example holds the Lisp symbol add!. VM3 in the
definition of L1 is a C macro declared in the
corresponding H-file. The actual value of UM3 is the
number of value stack locations used by L1, ie., 2 in
this example. Thus the macro definition

#define VM3 2

is found in the H-file.

The KCL compiler takes two passes before it invokes
the C compiler. The major role of the first pass is to
detect function closures and to detect, for each
function closure, those lexical objects (i.e., lexical
variable, local function definitions, tas, and block-
names) to be enclosed within the closure. This check
must be done before the C code generation in the
second pass, because lexical objects to be enclosed in
function closures are treated in a different way from
those not enclosed.

Ordinarily, lexical variables in a compiled function f
are allocated on the value stack. However, if a lexical
variable is to be enclosed in function closures, it is
allocated on a list, called "environment list", which is
local to f. In addition, one entity is reserved on the
value stack, in which the pointer to the variable’s
Jocation (within the environment list) is stored, so
that the variable may be accessed by indexing rather
than by list traversal. The environment list is a
pushdown list: It is empty when f is called. An
element is pushed on the environment list when a
variable to be enclosed in closures is bound, and is
poped when the binding is no more in effect. That is,
at any moment during execution of f, the environment
list contains those lexical variables whose binding is
still in effect and which should be enclosed in closures.
When a compiled closure is created during execution
of f, the compiled code for the closure is coupled
with the environment list at that moment to form the
compiled closure. Later, when the compiled closure is
invoked, as many entities as the elements in the
environment list is reserved on the value stack, each
of which points to a lexical object in the environment
list, so that, again, each object may be referenced by
indexing.

Let us see an example. Suppose the following function
has been compiled.

(defun foo (x)
(let ((a #’(lambda ()

(y x))
(values a #’(lambda () (incf x y)))))

Cincf x)))

foo returns two compiled closures. The first closure
increments x by one, whereas the second closure
increments x by the initial value of x. Both closures
return the incremented value of x.

>(multipte-value-setg (f g)
#<compiled-closure nil>

(foo 10))

>(funcaltl f)
B
>(funcall g)
21
>

Fig.2 illustrates the status of the two compiled
closures after these calls.

Declarations, especially type and function
declarations, increase the efficiency of the compiled
code. For example, for the following Lisp source file,
with two Common Lisp declarations added,

(eval-when (compile)
(proclaim
*(function tak
(fixnum fixnum fixnum) fixnum)))

(defun tak (x y z)
(declare (fixnum x y 2))
(if (not (< y x))

z
(tak (tak (1= x) y z)

(tak (1- y) z x)
(tak (1- z) x yI)))

the compiler generates the following C code.

/% local entry for function TAK %/
static int LI12(V4,V5,V6)
int V4,V5,V6;

{ VUMB3 VMS3 VMV3
iFO(VE)I<(V4)IK
goto T4:)
UMR3(V6)
T4:,
Cint VT=L12((V4)-1,V5,V6);
Cint V8=LI12((V5)-1,V6,V4);
UMR3(LI2(VT,V8,LI2((V6)-1,V4,V5)))))
)
/% global
static L2(C)
(register object %base=zvs_base;
basel0l=make_fixnum(LI2(fix(basel01),
fix(basel11), fix(basel21)));
vs_base=base; vs_top=base+l;

entry for the function TAK %/

The main part of the tak function is LI2. If
redundant parentheses are removed, macros are
expanded, and identifiers are renamed, we obtain the
following code equivalent to L12.

/% local entry for function TAK %/
static int tak(x,y,z)
int Xsysz3
(
if(y<x) goto L;
return(z);
L:

(int t1=tak(x-1,y,2);
int t2=tak(y-1,z,x);
return(tak(ti,t2,tak(z-1.x,y)));

This is almost hand-written tak code in C. The only
overhead is the use of the temporary variables t1 and
t2. This is necessary to make sure that the
arguments are evaluated in the correct order (ie.,
from left to right), since the C language does not
specify the order of argument evaluation. If the
compiler generated the following code,

return(tak(tak(x-1,y,z),
tak(y-1,z,x%x),
tak(z-1sx5vy)))3

the € compiler of Eclipse AOS/VS evaluates the three
inner calls to tak from left to right (this is all right),
whereas the C compiler of Unix evaluates from right
to left (this is bad). In this example of tak, the
order of evaluation does not matter actually, because
tak causes no side effects. But the KCL compiler does
not know that. The KCL compiler still has room for
improvements.

7. Portability

Although KCL is made to be highly portable, certain
minor changes had to be done, when it was ported to
VAX Unix 4.2 bsd. These changes include:

1. The compiler top-level was slightly changed, because
of the differences of the calling sequence of the C
compiler and of the handling of object files.

2. File system interface was changed to fit Unix 4.2
bsd.

3. Machine-dependent Common Lisp system parameters,
such as most-positive-short-float, and
machine-dependent Common Lisp functions, such as
decode-float, were redefined.

4. The three assembler routines were rewritten.
5. The in-core loader that loads Fasl-file into the KCL
memory was changed. This was a simple job because

we used the standard linkage editor Id of Unix.

6. The memory dump routine was rewritten using the
standard system calls of Unix.

The whole job of poring KCL to VAX Unix 4.2 bsd
took three days. Later, we spent some more days, to

fix bugs in the ported version of KCL.

Port to SUN Workstation was much easier than port to

VAX, mainly because the operating system is the same
for both VAX and SUN. What has to be changed were:
1. The machine-dependent and
functions were rewritten.

system parameters

2. The three assembler routines were rewritten.

The whole job of poring KCL to SUN took three
evenings. Most of the time was spent for the three
assembler routines, because we did not know anything
about the MC68000 assembler at first.

%. Evaluation

The size of the object module of the whole KCL
system (including the Compiler) is:

KCL/AOS 1.78 Mbytes
KCL/VAX 1.45 Mbytes
KCL/SUN 1.56 Mbytes
KCL/UST 1.56 Mbytes

Since all system initialization {such as loading the
database of the KCL compiler) has been done when the
object module is created, the object module size
roughly corresponds to the initial size of the KCL
process when a KCL session is started, minus the
initial size of the hole in the heap (about 200 Kbytes).

For the results of Lisp benchmark tests [3] with the
four versions of KCL, refer to [4].

Acknowledgement: The authors wish to thank Dr. Reiji

Nakajima.

References

[1] Steele, Guy L., An Overview of Common LISP, in
Conference Record of the 1982 ACM Symposium on LISP
and Functional Programming, pp. 98-107, 1982.

[2] Steele, Guy L. etal, Common Lisp: The Language,
Digital Press, 1984.

[3] Gabriel, Richard P. Performance and Evaluation of
Lisp Systems, Computer Systems Ser. Research Reports,
MIT Press, 1985.

[4] Yuasa, Taiichi and Hagiya, Masami, Kyoto Common
Lisp Report, Teikoku Insatsu Publishing, 1985.

lower address higher address

cell pages and binary pages l hole i relocatable pages

Fig.l. The Heap

second closure v x:
o [[[]

first closure

-

Fig.2. Lexical Environments in Compiled Closures
% : address of the compiled code for #’(lambda () Cincf x))
*% : address of the compiled code for #’ (lambda () Cincf x y))

