V7Y = 7EBH 15 —3
(1985 12 20)

OLD Resolution with Tabulation

Hisao TAMAKI

Ibaraki University
Nakanarusawa 4-12-1, Hitachi, 316, JAPAN

ABSTRACT

To resolve the search-incompleteness of
depth-first logic program interpreters, a new
interpretation method based on the tabulation
technique is developed and modeled as a
refinement to SLD resolution. Its search space
completeness is proved, and a complete search
strategy consisting of iterated stages of
depth-first search is presented. It is also
proved that for programs defining finite
relations only, any search strategy for the
method is terminating and complete.

1. Introduction

The most fundamental principle of logic
programming is the equivalence of the
declarative and the procedural semantics(1],
which has led many researchers to believe logic
programming to be a suitable framework for
various program manipulation tasks such as
verification, synthesis, transformation, and
formal debugging. The unfortunate fact is that
this equivalence is always sacrificed in real
implementations like Prolog, in faver of
execution efficiency. As a result, logically
correct logic programs do not necessarily run
correctly on Prolog.

One may argue that Prolog is Jjust a
programming language with its own procedural
semantics, of which programmers should have
sufficient knoledge. But the abandonment of
the equivalence is so deeply concerned with the
philosophy and the potential of logic
programming that it could not be approved
easily. '

There are several causes of this dis-
equivalence: the absence of occur check, the
depth-first search strategy, and inclusion of
many extra-logical feartures. We atack the
second problem in this paper: we develope an
interpretation method which is complete even
under essentially depth-first search
strategies,

The completeness of SLD refutation (2,3,4)
ensures that given a conjunction of atomic
formulas as a query, every instance of it
implied by the program can be obtained as a
result of some computation path. Though a
typical Prolog interpreters are essentially SLD
refutation procedures, they are not complete in
the sense that they can, with their depth-first

~1~

Taisuke SATO

Electrotechnical Laboratory
Unezono 1-1~4, Sakuramura, 305, JAPAN

search strategy, be trapped by an infinite
computation path in the search tree, and fail
to find an actually existing successful
computation path.

The breadth-first strategy might seem a
sufficient theoretical answer to this problenm,
since it will eventually find any successful
computation path in the search tree. But apart
from the practical problem of its storage
requirement, it also suffers from infinite
paths of the search tree. In this case, though
it is not trapped from succesful computation
paths, it can be trapped from termination if
all solutions are requested, even when the set
of solutions is finite.

Several authors, including Brough and
Walker (5], proposed tecniques to prune the
infinite paths in the search tree by detecting
identical or matching goals on a path,
Hovever, all of such tecniques are incomplete
in two ways (as was studied in (5)) : some
infinite paths can escape the pruning, and some
pruned infinite paths can have side branches
which constitute successfull computaion paths.

The interpretation method we develope here
can be considered as a remedy to such pruning
tecniques, as well as a generalization of the
tabulation tecniques [6) for functional
programs, where the result of evaluating a
function call is stored in a table to eliminate
repeated evaluation of the function calls for
the same arguments. Though the same effect of
avoiding the redundant evaluation of a goal is
achieved as a side bennefit, the principal
purpose of applying the technique here is to
prevent the interpreter from repeatedly
entering the evaluation of the same goal in a
single computation path and thus from being
trapped by an infinite path. The suspended
computation node in the path is later fed,
through the table, with the solutions of the
other computation paths for the goal in
question. In this way, the completeness of the
SLD refutation is preserved.

The next Section presents an example to
illustrate the above discussion and to
informally explain our interpretation method.
Section 3 and Section 4 contain more detailed
description and some completeness results,
Finally in Section 5, ve conclude by
summarizing the advantage of our method.

2. Examples
2.1 Infinite paths in search trees
Consider the following program to define
the reachability relation in a directed graph.

(Je follow the DEC10 Prolog convention of
designating variables by upper case letters.)

PROGRAH 2.1 {graph reachability}

(c1) reach(X,¥) « reach(X,Z), edge(Z,Y¥).
(c2) reach(X,X).

(C3) edge(a,b).

(c4) edge(a,c).

(C5) edge(b,a).

(c6) edge(b,d).

Fig.2.1 shows the search tree, which we call an
OLD tree, for a query < reach(a,X) given to
this program. Each node is (labled with) a
goal statement or negetive clause, and each
child node of a node is the result of applying
a clause in the program to the leftmost goal
(atom) of the parent goal statement. The
symbol () denotes the emtpy goal statement or
null clause. Each edge is labeled with the
substitution for the variables of the parent
goal statement necessary to make this clause
application possible. An OLD tree is a special
case of an SLD tree(3,4).

«—reach(a,X)

'S

a
«—reach(a,Z),edge(Z,X) 0

e

«reach(a,Z1),edge(Z1,2),edge(Z,X)

/

Z<—a
—edge(a,X)

fw oo
0 0

Zl+wa

. <«edge(a,2),edge(Z,X)

.. ///é*~b \\\3f—c

. —edge(b,X) <«—edgelc,X)

. X
B ///Q*-d \\}*-a
0 0

Fig.2.1 an OLD tree

We can learn several things from this

example.

(1) The depth-first interpreter is trapped by
the leftmost infinite path giving no
solution, provided the two clauses for
reach is ordered as in the program.

(2) If the order of the clauses for reach is
reversed, the interpreter runs infinitely
repeating the solutions.

(3) The behavior of (2) is related to the
nature of the graph in question. If it is
acyclic, the interpreter gives the finite
set of solutions and then goes into the
infinite path without giving any further
solutions,

(4) The infiniteness of the search tree is
partly due to the left-recursive style of
the definition of the predicate reach.
Though the right-recursive reformulation of
the program succeeds in eliminating the
infiniteness if the object graph is
acyclic, it does not work for graphs with
cycles like this exanmple.

In this example, an experienced
programmer could immediately modify the
program, adopting right-recursion and an
explicit data structure for the set of already
reached nodes, to run it correctly on Prolog.
But there are cases where such programming
solutions are neither trivial nor preferable,
just as the conversion from left-recursive
grammars to right-recursive ones is not always
preferable. For example, the authors have
encountered the following situation in the
course of developing a dataflow analyzer for
logic programs.

simple

Given a logic program and a predicate p,
we want to know whether ,in a call to p, some
data which flows into the i-th argument can
possibly flow out from the Jj-th argument. Such
information can be approximated by a relation
flow(p,i,J) defined as follows.

flow(p,i,J) (=)
there is a clause D in the program and a
chain al,bl,az,bz,...,an,bn of arguments

of the atoms of D, such that a and bn are
i-th and Jj-th of the head
respectively, and

1. n =1, or
2. for every k (1¢(k(n), a, and bk share a

arguments

variable,
and
for every k (1(k(n-1), b, and a, , are

(say i’-th and j’~-th) arguments of the
same atom in the body (say of the
predicate p’), and flow(p’,i’,J")
holds.

This inductive definition can be quite
straightforwardly coded as a logic program. In
spite of the absence of the explicit
left-recursion in the definition, its search
trees can contain infinite paths of Jjust the
same nature, The programming effort to cope
with these infinite paths is certainly somthing
that we would like to dispense with, at least
in the early stage of the developement.

2.2, Illustration of the method

Now we return to the first example to show
how our interpretation method works. We start
with the root of the search tree, labeled with
the goal <« reach(a,X), which is stored in a

table called the solution table, to be
associated with the list of its solutions.
Expansion by the clause (Cl1) gives the new goal
statement <« reach(a,2),edge(Z,X), and expansion
by the wunit clause (C2Z) gives the null
statement with the solution reach(a,a), which
is stored into the solution list of reach(a, X)
(Fig.2.2).

1: «reach(a,X)

S

2: <reach(a,Z),edge(Z,X) 8]

Solution table
reach(a,X): (reach(a,a))

Lookup table
23

Fig.2.2

Since the subgoal reach(a,2) is an
instance of the goal reach(a,X) in the solution
table, expansion of the node 2 is suspended and
the reference to the solution list is
established via another table called the
loockup table.

Unlike the pruning techniques mentioned in
Section 1, we do not stop here but use the
solution in the solution 1list to expand the
goal statement of the node 2, obtaining two
more solutions to the goal on the root
(Fig.2.3). The pointer in the lookup table
makes this solution lookup possible, and is now
advanced to point to the list of new solutions.

1: «reach(a,X)

T

2: «—reach(a,Z),edge(Z,X) @]
I—a
—edge(a,X)
X—b X—c
0 0

Solution table
reach(a,X): (reach(a,a),reach{a,b),
reach(a,c)]

Lookup table

Fig.2.3

Application of the second and the third

solutions gives only one more solution
(Fig.2.4). Then finally the application of the
fourth solution adds nothing to the solution
list, and the whole process terminates
(Fig.2.5).

~3~

1: «reach(a,X)

K+—a
¢ «reach(a,Z),edge(Z,X) 0
e 5 N
—edge (a, X) —edge(b,X) —edge(c,X)
fon Ve oo e
0O 0 0 a

Selution table
reach(a,X): (reach(a,a),reach(a,b),
reach(a,c) reach{a,d))

Lookup table
23 o

Fig.2.4

¢ <—reach(a,X)

~

¢ +<reach(a,Z),edge(Z,X) §]

\
/a /-—b y‘—c Kd
“—edge(a,X) <+edge(b,X) <«—edgelc,X)
iy
§] QO Qa 9]
Solution table

reach(a,X): (reach(a,a),reach(a,b),
reach(a,c),reach(a,d))

—edge (d,X)

Lookup table
2: o—

Fig.2.5

This exawple might be too simple to
illuminate the inportant fact that the top down
process (ordinary expansion) and the bottom up
process (table lookup) can arbitrarily be
intermingled with each other. For example, it
is possible that some goal statement resulted
from a table lookup is executed further in top
down manner, and then suspended again as
another entry in the lookup table. The
detailed description and the completeness proof
in the succeeding sections are thus motivated.

It should alse be noted that the entire
process is controlled by the top down search,
and only those solutions required by the top
goal are generated. For example, if the top
goal is < reach(b,X) in the above example, only
those nodes reachable from the node & are
touched.

3. OLDT refutation and its completeness

In this section, we formulate the
interpretation method as OLDT refutation and
prove its completeness. HMostly vwe follow the
standard terminology and conventions in the
basic theory of logic programming (3,4), and
omit definitions of basic terms and notions,
such as term, atom, definite clause, negative
clause, null clause, unification, and so on.

First we model the conventional Prolog
interpreter by means of OLD refutation, which
is a special case of SLD refutation(3].

DEFINITION 3.1 {OLD resolution}
Let € be a negative clause <« Al""An (m0)

and D be a definite clause. Let I, of the
form 4 <« Bl’°"Bm (m)0), be D with all
variables renamed so that there is no conflict

with those in C. ¢ and D are said to be
OLD resolvable if Al and 4 are unifiable, and

the negative clause (or null clause when n = 1
and m = 0) *—(Bl,.u,Bm,Az,,.yAn)ﬁ is the

OLD resolvent of € and D where 8 is the mgu of

Al and 4. The restriction of the substitution
g to the called

the substitution of the OLD resolution.

variables of Al is

The OLD resolvent and the substitution of
the resolution are unique up to renaming of
variables.

DEFIRITION 3.2 {OLD tree}
Let P be a program and Co be a negative

clause. Then the OLD tree for the pair (P, Co)
is a possibly infinite tree with its nodes
labeled with negative or null clauses so that
the following condition is satisfied.

1. The root is labeled with CO.

2., Assume a node v is labeled with (.

2.1 If ¢ is a null clause then v is a terminal
node.
2.2 Otherwise, let Dl""Dn (n)0) be all the

clauses in P which are OLD resolvable with
C, and Cl""cn the respective OLD

resolvents. Then v has n child nodes,
labeled with Cl,..,Cn. The edge from v to

the node labeled with Ci is labeled with
g It vhere 6 i is the substitution of the

OLD resolution of C and Di.

DEFINITION 3.3 {OLD refutation}

Given a program P and a negative clause €, an
OLD refutation of € by P is a path in the OLD
tree of (P, C), from the root to a node labeled

with the null clause. Let @ 1,..,9 k be the

labeles of the edges on the path. The
substitution of the refutation is the
composition & = & 1° 8 ge e o 4 ¥ and the

solution of the refutation is €0 .

~4~

DEFINITION 3.4 {Counterexample of a negative
clause}
Given a program P, an instance *—Al,,.,An of

a negative clause € is said to be a
counterexample of € in P if the universal
closure of Al&,.&An is a logical consequence of

P,

The soundness and completeness of OLD
refutation is Just an instance of those of
general SLD refutation (2,3,4).

THEOREM 3.5 {Soundness of OLD refutation)

If ¢’ is the solution of an OLD refutation of
a negative <clause € by P £’ is a
counterexample of € in P.

THEOREM 3.6 {Completeness of OLD refutation}

If ¢’ is a counterexample of a negative
clause C in P, there is an OLD refutation of C
by P such that €’ is an instance of the
solution of the refutation.

The following notion of subrefutation is
specific to the OLD refutation and will be
frequently used in the sequel.

DEFINITION 3.7 {Subrefutation}

For a node v in an OLD tree, we denote the
number of atoms in the megative clause labeling
v by leng(v).

Consider a path from a node vy in an OLD tree

to one of its descendants vy such that for
every node v on the path other than vy leng(v)
) leng(vz) holds. Let *‘Al,..,An be the label
of vy, where n = leng(Vl), and let k& = n -
leng(vz). Since this path can be viewed as a

refutation of *—Al,..,Ak by neglecting last

Jeng(vz) atoms in the label of every node on

the path, we call it a subrefutation of
*—Al,,.,Ak. We call it a unit subrefutation if

k = 1. The substitution and the solution of a
subrefutation is defined as for a refutation.

Ve need a few more definitions before
describing the OLDT refutation.

DEFINITION 3.8 {Partial OLD tree}

4 partial OLD tree is a finite top segment of
an OLD tree. That is, any finite tree obtained
by deleting arbitrary number of subtrees from
an OLD tree is a partial OLD tree.

DEFINITION 3.9 {Table predicates and their
term-depth}

We assume that among the predicate symbols
used in the program, some are designated by the
programmer as table predicates. Moreover, we
assume that each table predicate p is assigned
a non-negative integer called the term-depth of
Po

The intention of the first assumption is
to give flexibility to our method by limiting
the tabulation only to the designated table
predicates. As an extreme, the OLD refutation

vill be a special case of OLDT refutation,
where no predicates are designated as table
predicates. The second assumption is related
to the abstraction operation defined below,
wvhich is used to bound the number of distinct
subgoals (atoms) to be solved,

DEFINITION 3.10 {(Term-depth abstraction)}

Let 4 be an atom of a table predicate p, and
k& be the term-depth of the p. Then the
term-depth abstraction of 4, denoted by abs(4)
is 4, with every subterm of depth more than k
replaced by distinct newv variables.

For example, if the term~-depth of p is 1,
abs(p(£(g(X),h(¥)),2)) is p(£(U,V),a).

DEFINITION 3.11 {OLDT structure)

An OLDT structure is a forest of partial OLD
trees with +two tables, the solution takle and
the lookup table.

A node is called a table node if the leftmost
atom of its label is of a table predicate. A
table node is either a lookup nede or a
solution node. The solution table associates
the leftmost atom of the label of each solution
node with a list of instances of that atom,
called the solution list, The lookup table
associates each lookup node with a pointer
pointing into some solution list in the
solution table.

Ve nov describe the valid construction
process of OLDT structures for a given pair of
program and negative clause.

DEFINITION 3.12 {Table node registration)

Given an OLDT structure and a table node v in
it, the table node registration procedure
classifies it as a solution node or a loockup
node, and does necessary table manipulation,
resulting in a new OLDT structure.

According to the leftmost atom 4 of v's
label, we distinguish among the following
cases. (Note that by definition the predicate
of 4 is a table predicate.)

(1) {Lookup node}
4 is an instance of some key entry 4’ in
the solution table.
Put v into the lookup table with the
pointer to the entire solution list of 4.
(2) {Abstraction}
Otherwise, and the nesting depth of 4 is
greater than the term-depth of the
predicate of 4,
Create a nev root v0 in the forest, label
it with abs(4),
put abs(4) in the solution table with an
empty solution list, and
put v in the lookup table with a pointer to
this empty solution list.,
(3) {Solution node} Otherwise, put 4 in the
solution table with an empty solution list.

DEFINITION 3.13 (Initial OLDT structure)
Given a program S and a negative clause C0,
the initial OLDT structure for the pair (P, CD)

is the result of the following operation.
(1) Let]b be an OLDT structure consisting of a

~H~

forest with a single node vy labeled with
Co, an empty solution table, and an empty

lookup table.
(2) 4pply the table node registration procedure
to the node o in Tb.

DEFINITION 3.14 {Extension of an OLDT

structure}

Given a program P and an OLD structure f, an
immediate extension of T by P is the result of
either of the following operations.

(1) {OLD extension} Select a terminal node v,
which is not a lookup node, such that its
label € is not a null clause and at least
one clause in P is OLD resolvable with €.

(1.1) Let Dﬁ,..,Dﬂ (m0) be all the clauses

in P which are OLD resclvable with €,
and Cl”“’cn the respective OLD

resolvents. Then add =n child nodes,
labeled with Cl'""Cn' to v. The edge

from v to the node labeled with each Ci
is labeled with 0‘1, where & F is the

substitution of the resolution of ¢ and

D..
i

(1.2) For each nev node, register it if it is
a table node.

(1.3) For each unit subrefutation (if any)
starting from a solution node and
ending with some of the new nodes,
assume that the subrefutation is of
4, and let —4’ be its solution. Add
4 to the last of the solution list of
4, if # is not an instance of any
entry in the solution list.,

(2) {Lookup extension} Select a lookup node v,
such that the pointer associated with it
points to a nonempty sublist of a soclution
list., Let 4 be the head element of this
sublist, Advance the pointer by one to
skip 4. Let C be the label of v. If ¢ and
4« are OLD resolvable, then create a child
node of v, labeled with the resolvent, and
label the new edge with the substitution of
the resolution, Do the same thing as in
(1.3).

An OLDT structure 7’ is an extension of
another OLBT structure 7T, if I’ is obtained
from I through succesive application of
immediate extensions.

DEFINITION 3.15 {OLDT refutation}

Given a program P and a negative clause C, an
OLDT refutation of ¢ by P is a path in some
extension of the initial OLDT structure for (P,
C), from the initial reot to a node labeled
with the null clause., Here, by initial root we
mean the root inherited from the initial OLDT
structure,

The notions such as the substitution and the
solution of refutation or subrefutation are
defined similarly as for OLD refutation.,

Note that an OLDT refutation by P is an
OLD refutation by P plus some set of unit
clause theorems of 2 for table predicates.
Thus the soundness of OLDT refutation is an
immediate consequence of the soundness of OLD

refutation. For the completeness proof we need
the following lemma.

DEFINITION 3.16 {subsumption of subrefutation}

A (sub)refutaion r is said to subsuwe a
(sub)refutation r° if the solution of r’ is an
instance of the solution of r.

LEHMA 3.17 {0LDT simulation of OLD
subrefutation}
Assume r is an OLD subrefutation of a

negative (or null) clause *—Al,..,dn (n)0) by a

program P, T is an OLDT structure for the
clause and the program, and v is a node in TI.
Assume further that v is labeled with

*—Bl,o.,Bn, mn, and the sequence A;,..,4 is
an instance of Bl""Bn°

Then there exists an extension of I such that
T contains an OLDT subrefutation of *—31,,.,Bn

which starts from v and subsumes r.

Proof) The proof is by induction on the triple
(r,T,v), ordered by the following well-founded
ordering.

(r,T,v) precedes (r’,I’,v’)

iff Irl (1r |, or
lrl = {r’] and ¥’ is a lookup node
but ¥ is not,
where |r| means the length of the
refutation,
Induction basis: |r|l = 1. Trivial since r is

a subrefutation of a null clause.

We consider two cases
whether the node v is a lookup

Induction step:
depending on
node or not.

(Case 1): v is a lookup node. Then there is a
corresponding solution node v’ in F. Let r be
divided as concatenation of two subrefutations

ry and r, so that ry is a subrefutation of
*—Al. Since Irll {lrl, and Al is an instance
of the leftmost atom B1 of the label of v,
hence of the leftmost atom Bl’ of the label of

v’, by the induction hypothesis we have an
extension T’ of T such that 7T’ contains a
subrefutation of *—BI’ which starts from v’ and

That is, if we let *—Al’ be the
subrefutation ry and q-—Hl” be

the above OLDT subrefutation,
instance of *—Bl". By the

of the definition of the OLDT
the solution list of 81’

subsunes Ty
solution of the
the solution of
*—Al’ is an

operation (1.3)
structure extension,

in 7’ includes Bl”.

Now consider the negative clause <« B ,..,8
h 1 n

’IQ_

the Bl B
and Al’*-

their
OLD
they also have an OLD

and unit clause Since

instances *—Al,a.,én have an
resolvent *—AZ’,,.,An’s
resolvent *—Bz’,..,Bn’ such that *—AZ’,,.,AD’

is an instance of *—BZ’,.G,Bn’, This means

~G~

that T’ can be extended (if necessary) to TI’’
by lookup extension, so that the node v has a
child node v’’ with the first »n - 1 atoms of
its label being Bz’,..,Bn’.

Since ry is a subrefutation of *—AZ’,..,AH'

and Irzl (|rl, again by the induction
hypothesis we have an extension T’’’ of T’
which contains an OLDT subrefutation s of

—B,",..,8°, starting from ¥’’ and subsuning
2 n
The path r

followed by the subrefutation s constitutes the
required subrefutation of *—BI’BZ""Bn'

Tye in starting from v and

(Case 2): v is not a lookup node. Let u and
r’ be the first node and the remaining path of
the subrefutation r, and D be the definite
clause in P used in the first step of the
subrefutation r. Then r’ is a subrefutation of
*—Ll,..,Lk,AZ’,..,An’, the OLD resolvent of

@-Al,..,An and 0., By the assumption, the label
*—Bl,..,BE of v and D are also OLD resolvable,
and the resolvent <---Ll’,..,L!‘,’,Bz’,..,Bﬂ,' is
such that the sequence Ll,..,Lk,AZ’,..,An' is

of the
Extending

an instance sequence
Ll',..,Lk’,Bz’,..,Bn’. T (it
necessary) by the OLD resolution on the node v,
we can get an OLDT structure 7’ in which v has
a child node v’ labeled with
*—Ll’,..,Lk’,BZ’,..,BH'. Then by the induction

hypothesis we have an extention T’’ of T’ which
contains a subrefutation s of

*—Ll’,..,Lk’,BZ’,..,Bn’, starting from ¢’ and

subsuming r’. The path in I’’ starting from v
and followed by s constitutes the required
subrefutation of *—BI,BZ,..,Bn,

THEOREM 3.18 {Completeness of OLDT refutation)
Let P be a program, Co a negative clause.

Assume that an instance Cb’ of Co is a
counterexample of CO in P. Then any extension
of the initial OLDT structure for (P, CO) can
be further extended to contain an OLDT
refutation of CO' such that Co' is an instance

of the solution of the refutation.

Proof) By the completeness of OLD refutation,
there exists an OLD refutation satisfying the
above condition. Lemma 3.17, applied to this

OLD (sub)refutation, the given OLDT structure,
and the initial root of the OLDT structure,
provides the required extension.
4, Search strategies
Search strategies for OLDT refutation
determine, at each step of OLDT structure

construction, which of the extension operations
is to be applied to which node, when there are
several possibilities. Unfortunately, not all
search strategies are complete. For example,
consider the following program.

PROGRAH 4.1

(c1) p(X) « q(¥), r.
(c2) a(s(X)) «~ q(x).
(€3} q(0).
(c4) r.
Fig.4.1 is a possible snap shot of an OLDT
structure for the query « p(X),
1: —p(X)
2: “Q(x),r
X—s(Y) X—0
3 *"Q(Y)pr ‘:]
//;*—0 \\\3"8(0)

4: 53 «r

«r

solution table

p(X) ¢+ 0

a(X) & (a(0),q9(s(0)),a(s(s(0))))
lookup table

: o—

Fig.4.1

If the extension by lookup continues to be
preferred, the refutations of the initial goal
< p(X) will never be found.

not difficult to avoid this
situation! we have only to prevent sticking to
some (group of) lookup node(s). The following
strategy is a candidate suitable for sequential
implementations,

It is

DEFINITION 4.1 {Multistage depth-first

strategy)

Ve assume here that the forest
structure is an ordered forest: the roots are
ordered by the order of creation, the child
nodes of a non-lookup node are ordered by the
textual order of clauses used, and the child
nodes of a lookup node are again ordered by the
order of creation. We say a node u is
to the left of a node v, if u precede v in the
left~to-right post order traversal of the
ordered forest.

The search process in the wmultistage depth-
first strategy consists of multiple stages. At
each step in the i-th stage, one of the
following extension operation is applied to the
node of the current OLDT structure which is
leftmost among the possible.

(1) OLD extension.

(2) Lookup extension, with the solutions to be
looked up limited to those which are
generated in the (i-1)th or earlier stages.

Vhen there are no nodes to which they are

applicable, one stage is finished and the next

stage begins. When a stage adds no solutions
to the solution lists, the entire process
terminates.

in an OLDT

For example, consider Program 4.1 executed
under the multistage depth-first strategy. The

~T~

first stage ends with the OLDT structure shown
in Fig.4.2. The lookup extension of the node 3
is suppressed since the only solution ¢(0) in
the corresponding solution list is generated in
this stage. The second stage successfully
generates a solution p(0) to the top goal
(Fig.4.3). The possibility of non-productive
iteration suggested in Fig.4.] is avoided by
prohibiting lookup to the solutions generated
within the current stage. The succeeding
stages generates solutions p(s(0}), p(s(s(0))),
soes giving the complete set.

12 «~p(X)
2: <—a(X),r
Xes(Y) X0
32 Q"'q(Y)yl’ [)
solution table
p(X) : OO
qa(X) : {q(0))
1
lookup table
3 o—r
Fig.4.2
1: «p(X)
2: “'Q(x)yl‘
/'—s(v) N«—o
32 —q(¥),r 0
fi-s
4: «r
]
0
solution table
p(X) : (p(0)]
q(X) 2 (a(0),a(s(0)))
lookup table
3 oo
Fig.4.3
Note that the mede of search within a

stage is exactly depth-first, with the solution
lists treated as additional data bases of
assertions, Lookup nodes alone can be resumed
for further search in succeeding stages.

THBOREY 4.2 {Completeness of the multistage
depth-first strategy}
Assume that all predicates in a program P is
designated as table predicates. Then for any
negative clause CO and its counterexample CO’

in P, the search process for OLDT refutation of
7, CO) under the multistage depth-first

strategy finds a refutation such that Cb’ is an
instance of its solution.

Proof) Noting that the number of solution nodes
in any OLDT structure for the program P is
bounded by a constant owing to the abstraction
operation in the table node registration
procedure, this is an easy consequence of the
completeness of OLDT refutation. The details
are omitted.

In the special case where all the relations
defined by the program is finite, OLDT refuta-
tion has a nice property which OLD refutation
lacks. (See the example in Section 2.)

THEOREM 4.3 {Completeness and termination for
finite-model programs)

Assume that the minimum Herbrand model of a
progran P is finite, and all predicates in P is
designated as table predicates. Then for any
negative clause CO’ the search process for the

OLDT refutation for (P’CO) under any search

strategy terminates, and gives a complete set

of solutions.

Proof) Since the length of a solution list in
any OLDT structure for (P,CO) is bounded by a

constant, the branching factor of lookup nodes
is bounded by a constant. The length of a path
is also bounded by a constant, since the number
of solution nodes is bounded by a constant and
every lookup node in a path decrease the number
of atoms in the label by one. Thus the size of
the OLDT structures is bounded by a constant.

The completeness of the search then
directly follows the completeness of OLDT
refutation.

REMARE {Comparison with the bottom up
interpretation method}

Since +this termination property is also
possesed by the usual bottom up interpretation
method, it should be compared with our method.

The bottom up interpretation also consists of
succesive stages. In each stage, every
positive unit theorem directly derivable from a
definite clause in the program and positive
unit theorems obtained in previous stages is
calculated. The process terminates when a
stage does not produce any new theorems. When
the minimum model is finite, it obviously
terminates giving the complete set of positive
unit theorems.

The advantage of our method over the bottom
up interpretation is that it is essentially top
down, and only those theorems required by the
top goal is derived, in principle. Ue say ’in
principle’, because the abstraction operation
generalizes a goal and may require solutionms
which is not required by the original goal. In
fact, if we set the term-depth of every

predicate to be 0, then the multistage search
for the OLDT refutation becomes nothing but an
implementation of the bottom up interpretation
method.

The abstraction operation is, however, a kind
of theoretical safety valve, and it seems that
in most applications we can set appropriate
term-depth for each predicate so that the
abstraction operation never actually occurs, as
in the example of Section Z, preserving the
top-down nature of our interpretation method.

5. Conclusion

We do not claim that the interpretation
method described above should be a single,
ultimate solution to the problem of the search-
incompleteness of Prolog: the storage
requirement can be too demanding in some cases,
and the overhead of table manipulation can be
too large.

Rather, the advantage of the method exists
in providing a spectrum of procedural
approximations to the declarative semanticss
as two extremes, if we designate all predicates
as table predicates, then the multistage
strategy gives the complete interpretation
procedure; if we choose no predicates as table
predicates, then the multistage search for OLDT
refutation is exactly the same as the
depth-first search for OLD refutation. For

some programs the latter extreme is still an
exact approximation, but for others we must
choose some appropriate intermediate
approximations. The common techniques for

proving termination could be used for this
purpose, to ensure that some predicates need
not be designated as table predicates.

The ideal logic programming system which
we envision will consist of a variety of
approximating implementation methods, tools to
determine which approximation 1is exact or
sufficient, and a poverful set of optimization
tecniques, rather than of a complete and
efficient universal interpreter.

References

(1) Van Emden, M.H. and Kowalski, R.A. “The
semantics of predicate logic as a
progranming languages”,Journal of the ACH
23, No.4, 1976.

(2) Clark, K.L. ”Predicate logic as a computa-
tional formalism”, Imperial College re-
search monograph 79/59 TOC, December 1879.

(3) Apt, K.R. and Van Emden, M.H. ”Contribu-
tions to the theory of logic programming”,
Journal of the ACH 29, NO.3, 1982.

(4) Lloyd, J.¥. Foundations of logic program
wming, Springer-Verlag, 1984.

(5) Brough, D.R. and Walker, A. ”Some practi-
cal properties of logic programming inter-
preters”, Proc. International Conference on
FGCS 1984, Tokyo, Nov., 1884,

(6) Bird, R.S. ”Tabulation techniques for
recursive programs”, Computing Surveys 12,
No.4, 1980.

