V7 NY o 7EBHR 169
Tars i v SEE 4-9

(1986. 2. 7)

TR IEIER O MESGIIIR 512 X 3 B EE SN o EEE
¥ OH CHMBERT v AT ABERERAD

PaZs AR

BEFHRIz BV, SETHECLFROBR. TROBorm EEE. BARIEL
RABOREFEGRIIEELTAPR TS Lo ARBR TR, INLEH—-WHER
BHLOFERETT 3. 2 20 ADXOFNGBUHM R & B SFH KB & #h
SBIRII—BEBREND, F LT, TOWAKREFRBNCF ENERVELEH
AR ERBREAD TR L. —BT 3 onpnFERBllcrsn sfhoEtt
BYARCEESWA 2. BANATEHEA MREEE » b, SHOTRB A MR
YoTHEEN 3, AFRUBREEOTBRI» Vo<, BREZOTRIZ L EH
T& b,

LANGUAGE TRANSFORMATION BY INFERENCIAL PATTERN MATCHING OF SEMANTIC INFORMATIONS

Tan Watanabe

Systems Development Laboratory, Hitachi, Ltd.

ABSTRACT

In language transformations, resolution of overloading and multivocality, and quality improvement of
transformed results are usually achieved by applying many case-by-case techniques together. This article
presents a new method to solve such probelms uniformly. Input sentences in source language is transformed to
an attributed tree which is an abstract syntax tree with semantic relations attached to its nodes. A subtree of
the attributed tree is compared with elementary trees specified in transformation rules requesting to satisfy
semantic relations and it is replaced by other tree specified in matched rule. From a small set of basic rules
and Relation Dictionary, numerous rules can be deduced by inference. This method is applicable both to

formal language transformation and natural language transformation.

1. INTRODUCTION

Pattern matching is one of straightforward way to language transformations(l). Various compilers have
been built by using syntactic patterns as templates for elementary transformation(2). In such compilers,
semantic informations are mostly treated by action routines, because detailed semantic informations are
difficult to be reflected to syntactic patterns(3). Attribute grammar(l) and case grammar(5) leads to a
systematic treatment of semantic informations. Attribute grammar evaluator for such purpose search for
syntactic pattern which matches with input sentence and transform it to a sentence in target language using
semantic informations provided in the process of syntactic component contained in or containing the syntactic
pattern. Semantic informations may be used also to resolve syntactic ambiguities(4).

This article presents a method of language transformation based not only on syntactic pattern matching but
also on semantic pattern matching. Explosive increase in the number of patterns is supressed by introducing
an inferencial capability in the process of pattern matching.

2. OUTLINE
A language transformer based on the method presented in this article consists of Input Analyzer,
Transformer, Output Synthesizer, Transformation Dictionary, and Relation Dictionary as shown in Figure 1.
Input Analyzer transforms given input sequence of sentences to a tree structure representing the syntactic
structure of the input sequence. Each node of the tree structure has some relations between attributes of
components in the input sentences. Each relation takes the form of

a b (b is related to a by a relator r).

r
A tree :tr_thure with such relations is called an attributed tree. The attributed tree generated from input
sequence is called a primary tree in this article.

Relations visible from a subtree of an attributed tree are those ones which are attached to nodes to be
encountered on the shortest way to the root node of the tree from the subtree. If a contradiction arise
between such relations, then the relation attached to a node nearer to the subtree is the visible relation and
the other one becomes a hinded relation.

In the following discussions, if a node x of a tree is on the shortest way to its root from a node y, then x is
said higher than y and y is said lower than x. IF the node x is on the shortest way to its root from any nodes of
a subtree s, then the node x is said to dominate the subtree s, and the subtree s is said to be subordinate to the
node X.

Transformation Dictionary contains transformation rules showing the correspondence of elementary tree
with secondary tree. Both of them are attributed tree. The elementary tree represents an elementary pattern
of input language. Relations contained in the elementary attributed tree represent conditions to be satisfied
during the matching process with input sequence. The secondary tree shows the result of transformation when
the transformation rule is applicable.

Relation Dictionary contains relations in the form of

a_ryb (e.g. INTEGER range , (-214748348,214748347))
which represents a general relation satisfied in the world under consideration. A relation in the Relation
Dictionary is visible from any attributed tree and its subtree if it does not contradict with visible relations in
the attributed tree. If contradiction arose, then the relation attached to the root-ward node nearest to the
subtree under consideration is the one to take effect. Relations in the Relation Dictionary may be considered
to be attached to a pseudo-node located in higher position than the root node of the attributed tree.

Some relations may satisfy transitive law, that is,

ifa r.band b r_c, thena r_c.

(e.g. X _operationmode, COUNTER, COUNTER operationmode, INTEGER
then X operationmode, INTEGER.)

They are called transitive relators.
"Class" is a special transitive relator. For some relator r,
if a Class_b and b_r_>c, then a__r_>c holds.
(e.g., X Class. INTEGER and INTEGER %32, then X __S_iz_e)32.)
Such relator is called an inheriting relator.

A relation induced by transitive relators and inheriting relators is called an infered relation. Sum of the
number of successive transitions and the number of successive inheritance to induce a relation is called the
number of inference steps to get the relation.

Transformer nestedly match the primary tree generated from given input sequence with elementary trees in
the Transformation Dictionary. If some elementary tree matches with a primary subtree, a subtree of the

primary tree, then the subtree is replaced by the secondary tree corresponding to the elementary tree. An

Input
Analyzer

Attributed
Tree

Transformer

Tree
Matching

Relation
Matching
by inference

[Tree

Transformation
I ———

Attributed

Output
Synthesizer

Figure 1. Inferential semantic pattern matching

Rulel
FACT —> EXP
(Name x, Lv V) (Reg r, Code L r x)
Rule2
Const => Exp
(val 0) (Reg r, Code XOR r r)
Rule3
Add Opl EXP
(Reg r, Code c)
& Op2 FACT
(Name x)
EXP
(Reg r, Code ¢, A r x)
Rule4
Mult Opl FACT
(Name x)
& Op2 EXP
(Reg r, Code c)
EXP
(Reg r, Code ¢; M r x)
Rule5
Mult_Opl Const
(val 2)
{} lop2 EXP
(Reg r, Code c)
EXP

(Regr, Code c; SLA r 1)

Ruleé
Index_Name Id
(Name x, Lv L)
I Subsc EXP
(Reg rl, Code ¢)
NAME

(Reg r2, Ireg rl, Disp 0,
Code ¢; L r2 =A(x))

Rule7

Index_Name 1d

(Name x, Lv L)

Subsc Add Opl EXP

NAME

(Reg r2,

Rule8

(Reg rl, Code c)

Op2 Const
(Val v)

Ireg rl, Disp 4*v,
Code ¢; SLL rl 25 L r2 =A(x))

Index_Name 1d

B

(Reg r3,

Rule9

Assign Lpart

STMT

(Name x, Lv V)
EXP
(Reg rl, Code c)

Subsc

Code c; L r2 =A(x); ST r1 0(r2rl))

NAME

(Reg r2, Ireg rl, Disp d, Code cl)
EXP

(Reg r3, Code c2)

Rpart

(Code c2; ¢l; ST r3d(r2rl))

Figure 2. Transformation Dictionary for formal language

elementary tree is said to match with a primary subtree in the Transformation Dictionary if their tree
structure match with each other and relations attacehed to the elementary tree are satisfied by relations
attached to the subtree or by relations visible from the subtree, or relations infered from them.

Output Synthesizer generates a sequence of sentences in target language from the attributed tree

transformed in the above way.

3. TRANSFORMATION PROCESS

More detailed explanation of the process of transformation follows. Input Analyzer transforms an input
sequence to an abstract syntax tree, where each node represents a nonterminal or a terminal component of the
input language, and each arc has indication of grammatical role of the subtree subordinate to it. Trivial
differences such as slight difference in word-order and abbreviations uniquely amendable are resolved in the
abstract syntax tree.

If node n has subtree s connected by an arc with grammatica! indicator r, then it represents a relation

n_r.s.
Syntactic relations can be organized into an abstract syntax tree. Some relations might not be represented by
such abstract syntax tree. Input Analyzer -analizes input sequence and extracts such semantic relations
between its components and attach such relations of the form a __g?b to some node of the abstract syntax
tree to make a primary tree. The selection of the node to attach a semantic relation is decided by a criteria
that a relation should be attached to a lowest node which dominates all nodes where the same relation takes
effect.

Transformer scans given primary tree to find some subtree which has the same tree structure with that of
some elementary tree whose transformation rule is given in the Transformation Dictionary. The elementary
tree may include a node which is gained by inference from the primary subtree. If such primary subtree is
found, then relations attached to each node of the elementary tree is compared with the relations attached to
corresponding node in the primary subtree. If every relations are the same, then the simplest success of
pattern matching is attained. If some relation attached to a node in the elementary tree does not coincide
with that of corresponding node in the primary subtree, then the relation is compared with relations visible
from the node in the primary subtree. If same one is found in the visible relations, then the relation is said to
be satisfied in the primary tree. If no same relation is found, then a trial is made to get the relation by
inference uning the relations in the primary subtree and the relations visible from the primary subtree. If the
trial succeeds then the relation is said to be satisfied in the primary tree by inference. If all relations in the
elementary tree are satisfied in the primary tree, then the elementary tree is said to match with the primary
subtree and the primary subtree is replaced by the secondary tree corresponding to the elementary tree.

A primary subtree which match with the elementary tree of some transformation rule may be different
from the subtree containing all branches connected to the root node of the subtree. If some branch is not
included in the primary subtree then the branch remains unchanged when thre prirmary subtree is replaced by
the secondary subtree of some transformation rule. 1f more than one transformation are applicable, then the
one with more branches in the elementary subtree has higher priority. Matching of branches nearer to the root
of subtree has higher priority than that of branches farther to the root. If the number of matched branches is
the same, then the transformation which requires fewer steps of inferences to decide its applicability has
higher priority.

Transformation of tree is performed either in topdown method or in bottomup method. In both cases,
resultant attributed tree obtained by the application of one transformation rule is used as the primary tree of

other transformations so that transformations are repeatedly performred.

4, TRANSFORMATION OF FORMAL LANGUAGE
An example of transformation applied to object code generation from a source program is explained. In this
example, the Transformation Dictionary contains rules shown in Figure 2, where secondary tree of each
transformation rule is reduced to a leaf. A node or a leaf "a" with relation
a ___reb
is written as
a (r b)
for brevity. Relation Dictionary contains the relations shown in (1) of Figure 3. Relator Lv specifies whether
a storage location or a value is represented by the object to which Lv is attached. Lv is an inheriting relator.
Given input sequence is
P(2*1+1) := 0
whose primary tree is shown in (3) of Figure 3. The primary subtree Id (Name P, Lv L) reduced to a leaf
has the same tree structure as that of FACT (Name x, Lv L) of rulel because the relations Id Class, NAME

Ema—
and NAME Class FACT lead to a relation Id Class, FACT by inference. But rulel is not applicable to

this primary subtree because the relation Id L\{%L is not satisfied. The subtree consisting of the leaf node
Const representing a constant 2 matches with rulel because Const Classs FACT andrelation Const __I_.,__\g
V are given in the Relation Dictionary. In this case, however, the primary subtree beginning with Mult node
matches with the elementary subtree of rule5 and this primary subtree is a larger subtree than the one
consisting of the leaf node Const. Thus, rule5 has higher priority than rulel and the subtree beginning with
Mult is changed to

EXP (Regr,Code L rl I; SLL rl 1)
where, L r1 1 is the object code generated by rulel applied to the node Id (Name I). In order to apply rulel to
Id (Name 1), the relation FACT Lv V should be satisfied. The relation EXP Lv,V attached to the
node Add is visible from the node Id (Name I). As Lv is an inheriting relator, relation Id —I‘-L-V is attained
by sequence of relations Id __Cla_ss_> NAME, NAME _Class, FACT, FACT Class EXP. The application of
rule5 generates a subtree

Add EXP

E Const

, to which rule3 may be applicable. In this case, however, rule7 is applicable to the subtree beginning with
Index which dominates the subtree beginning with Add. Thus, rule7 is applied and rule3 is not applied. As for
Const (Val 0), both of rulel and rule2 are applicable. The number of required inference steps of rule2 is
smaller than that of rulel, hence, rule2 is applied to this Const subtree.

A sequence of Code attributes is generated during the process of such tree transformation. As a result, the
input sequence is transformed to an assembly language program shown in (5) of Figure 3.

Consider the case where Transformation Dictionary does not contain rules 2, 5 and 7, which are special case
rules corresponding to rules 1, #, and 6 each respectively. In such case, rules to be applied to subtrees will be
rulel4 to Mult, rule3 to Add, rule 8 to Index, rulel to Const, and resultant assembly language program will be
the one shown in (4) of Figure 3. The resultant object code is 1 instruction longer and 6 bytes larger than the
former result shown in (5) of Figure3.

In this method, object code optimization will be specified by adding detailed transformation rules, each of
which specifies a special case treatment of some general rule. No changes in general rules are required when
detailed rules are added.

1d Class NAME Const Class FACT

NAME Class’ FACT Index Class NAME
FACT Class EXP Add Class EXP
E:A;th‘;t E\l’ass EXP Assign Class STMT
—
(1) Contents of Relation Dictionary
P(2¥1+1) := 0
(2) Input sequence
Assign Lpart Index___Name Id
(Name P, Lv L)
Subsc Add Opl Mult Opl Const
(EXP Lv V) (val 2)
op2_1d
(Name)
Op2 Const
(val 1)
[Rpart Const
(val 0)
(3) Primary attributed tree
L r3,=0 XR r3,e3
L ri,l L rl,I
M rl,=2 SLA rl,!
A ri,! SLL rl,2
SLL rl,2 L r2,=A(P)
L r2,=A(P) ST r3,4(r2,rl)
ST r3,0(r2,r1)
(30 bytes) (24 bytes)
(4) Result of translation (5) Result of translation
when rules 2, 5, 7 do not exist. when rules 1 through 9 are available.

Figure 3. Example of formal language translation

5. TRANSFORMATION OF NATURAL LANGUAGE
As another example, a transformation from a sequence of Japanese sentences to a sequerice of English

sentences is explained. Let the sequence of input Japanese sentences be

ﬂ&iﬁﬁﬁ&;j}b‘% 5 & Lr:o L L. éﬁgjb’&i)‘“)rlo

watakushi wa keisanki wo ugokasouto sita. Shikasi zenzen ugokanakatta.

and let Transformation Dictionary contain rules shown in Figure 4, Relation Dictionary contains rules shown
in (1) of Figure 5. A large attributed tree is generated by combining attributed trees, each of which is
generated from a sentence in the input sequence. Informations to be passed from sentence to sentence are
attached to a higher node dominating every subtree corresponding to a sentence which pass or refer the
informations.

If rule 8 and 10 are not included in the Relation Dictionary, above Japanese sentences will be translated
into

"I tried to move the computer. But it did not move at all."
assuming that omitted subject of the second.sentence is the computer in the first sentence. Better translation
can be produced when all relations shown in Figure 4 and (1) in Figure 5 are available, as it is described in the
following. The translation of the word # (watakushi) may result in either I or my. In this primary tree, rule2
is applied because the word is used as a subjective word and I is selected. The rules applicable to (ugokasu) in
the first sentence are not only rule? but also rule8. The applicability of rule8 is concluded by inference from
the relation
st (keisanki) Class ERf#EHE (instrumental machine)

Rule$ has higher priority than rule7 because the elementary subtree of rule 8 has more relations satisfied by a
primary subtree of input sequence than that of rule7, hence, rule8 is applied. As for < (ugoku) in the
second sentence, rulel0 is applied instead of rule9. This selection is performed in the same way as it is
mentioned above.

The result of translation is

" tried to run the computer. But it did not work at all.".

6. CONCLUSION

A method of language transformation based on inferencial pattern matching of abstract syntax tree with
semantic informations is introduced. One example indicated its applicability to formal language compilation
and the other example indicated its applicability to natural language transformation. Semantic informations
relating several sentences are treated in the same manner as those contained in one sentence. The order of
inference may affect the application order of transformation rules and a change in the order will result in the

change of generated sentences in target language.

REFERENCES

1) Waite,W. and Goos,G.: Compiler Construction, Springer-Verlag, New York (1984).

2) Glanville,R.S. and Graham,S.: A new method for compiler code generation, Proc. of 5th Annual ACM
Symposium on Principles of Programming Languages, pp231-240 (1978).

3) Farrow,R.: Experience with an attribute grammar-based compiler, Proc. of Conf. on Principles of
Programming Languages, pp95-107 (Jan. 1982).

4) Watt,D.R.: Rule splitting and attribute-directed parsing, Semantics-Directed Compiler Generation, Lecture
Notes in Computer Science 94, pp.363-392, Springer-Verlag, Berlin (1980).

5) Vinograd,T.: Languages as a Cogpnitive Process, Addison-Wesley, Reading, Massachusetts (1983)

s Rule7
{} Bym 3 subject a
computer Jl I object b
Rule2 nove subject a
v_subject F. I object b

v_subject I Rule8
g subject a

n__possessive #, [Class Instrumental machine]

Ruie3 il [object b

run subject a

n__possessive my l object b

[Class Instrumental machine]

Li5& 34 _subject a Rule9
{}]acti;n v < subject a

try to subject a move subject a

action v

Rulelo
Rule5 < subject a
Lzt adverb £ [Class Instrumental machine]
action v work subject a
{} [Class Instrumental machine]
do not adverb at all
action v
Ruleé
s conjunction LA L
s conjunction but

Figure 4. Transformation dictionary for natural language

&, Class . Human
#EM% __ Class Instrumental machine

< Class _ Action

(1) Relation Dictionary

Paragraph_stmtl L& 5233 ___ subject %,
[themel computer,
theme2 1]

action FH#
stmt2 L7z conjunction L L
adverb &%
action #j<__ subject null

(2) Primary attributed tree

I tried to move the computer. But it did not move at atl.

(3) Translation result when rules 8 and 10 do not exist

I tried to run the computer. But it did not work at all.

(4) Translation result when all rules 1 through 10 are available

Figure 5. Transformation of natural language

