V72U 7ERHR O O16-17
TurSI U SEE 41
(1986 2. 7)

Experimental Generation of An NBSG/PD Pre-Conpiler

by the Language Processor Generator MYLANG

Takashi Yamanoue* Hirovuki Anzai® Sho Yoshida*
Toshiyuki Sugiog Atushi Takeuchi@ Tsutonu Shiino@

*Kyushu University +Kyushu Institute of Technology
B0KI Electric Industry Company,Ltd.

Abstract

An NBSG/PD pre-compiler is a translator which transforms one kind of
Japanese programs specifically the NBSG/PD programs into € programs. The
NBSG/PD has limited vocabulary, plain syntax and a mechanism for wusing
information of the required specification which is defined by the Japanese
Based Specification Language NBSG. Ve have developed a subset of NBSG/PD pre-
compiler usfng the language processor generator MYLANG. MYLANG transforams
Extended Attributed Regular Translation Forms (EARTFs) into Extended Attributed
Syntax Directed Translators (EASDTs). The EARTF can define entire parts of

language processors.

1. Introduction

An NBSG/PD[2] 1is a Japanese programming language which is developed in
order to describe procedures of the functional elements. These functional
elements are extracted from the Japanese specification language NBSG[1].

The NBSG/PD has limited vocabulary, plain syntax and a mechanism for using
informaticn of the required specification which is defined by the NBSG.

We have developed the subset of NBSG/PD pre-compiler by the language
processor generator MYLANG. The NBSG/PD pre-compiler is a translator wvhich
transforms NBSG/PD programs into C prograns.

MYLANG is a translator which transforams the Extended Attributed Regular
Translation Forms(EARTFs) into Extended Attributed Syntax Directed Translator
(EASDTs). EARTF is the Attributed Regular Translation Form(ARTF) with the
notation of RAM(Random Access Memory) manipulating functions. EARTF can be used
not only for defining of language processors but also for defining software
models of conventional progranms. According to Watt's paper[3], ™"Attribute
grammars and affix grammars are currently the most promising tools available in
the design of compiler writing systems.” On the other hand, previous compiler

writing systems which use attribute grammars, are adopting L-notation or the

languages such as LISP, Pascal or C etc. in order to describe senmantic
functions of its attribute grammars. So, users of these compiler writing
systems have to acquire plural schema, for example, scheme of lexical analyzer,
scheme of syntax analyzer and scheme of semantic functions of the attribute
grammar etc..

In this paper, wunification of the above-mentioned schema is shown, using
the Extended Attributed Regular Translation Form(EARTF). EARTF is a kind of
scheme of attributed grammars. The EARTF can define semantic functions of
attributed grammars by itself. The Extended Attributed Regular Translation
Form (EARTF) is the Attributed Regular Translation Form(ARTF) with the notation
of RAM manipulating functions.

The Attributed Regular Translation Form(ARTF) is an augmented form of
extended BNF. The vocabulary of ARTF consists of not only terminal and nonter-
minal symbols but also action symbols and furthermore attributes may be
attached to these symbols.

Manna has exploited the regular expressions in order to prove the isomor-
phism problem of program schema[5]. Jackson has suggested one method of
software design, which is known as the Jackson method[6]. In this method,
structures of programs are expressed by regular expressions. Shaw has suggested
flow expressions[7]. These are regular expressions with shuffle products in
order to express concurrent process. Katayama has shown that attribute granmars
can be used for calculation models(8].

ARTF is a scheme which employs regular expressions and is augmented with
the attribute grammar. These features makes it possible for ARTF to define
softvare models and the calculation systems by ARTF.

A comparison between the Turing machine[10], which can be described as "4
finite state automaton + Infinite length's tape” and the idea contained in the
title of Wirth's book "Algorithms +Data Structures = Programrs"[9], reveals that
they are quite similar. In EARTF, ARTF corresponds to Algorithms, and RAHN
manipulation functions corresponds to Data Structures. Using EARTF, we can
define semantic functions of the attribute grammar and software models of
conventional programs. The language vprocessor generator MYLANG transforms
EARTFs into language processors or object programs. Comparison of HYLANG to

YACC[11] is shown by Fig.1.

(2)

Lexical Syntax ‘ Semantics

YACC Lex BNF C
MYLANG EARTF EARTF (EBNF) EARTF

Fig. 1. Comparison between YACC and MYLANG.

2. The Extended Attributed Regular Translation Fors

The Extended Attributed Regular Translation Form(EARTF) is the Attributed
Regular Translation Form(ARTF) with the notation of RAM manipulation functions.
ARTF is an augmented form of Extend BNF. The Extended BNF which 1is the basis
of ARTF, is as shown by the following example. This example is the syntax

defining simple arithmetic expressions.

<e> = <Kt> ('+' Kt>)%
<t> = Lf> ("% f>)%
<f> = <id> + (" <e> ")

Fig. 2. An example of Extended BNF

Where the objects <e> and '+’ are a nonterminal symbol and a terminal symbol,
respectively. Namely, for any string S, <S> is regarded as a nonterminal
symbol, and 'S' as a terminal symbol. The two meta-symbols "=" and "+" are
used in the same context as "::=" and "|" in BNF respectively. Similarly, the
meta-symbols "(", ")", "+" and "%*" are used in the same context as in regular

expressions.

Before explaining ARTF in detail, an example is shown below.

e (/x)> = <t (/x)> ("+ <t (/x1)> [(x:=x+x1)])%
L(/x)> = <F(/x)> ("% <F(/x1)> [(xi=xxx1)])% ;
<KF(/x)> = <id(/n)>[lookup(n/x)] + " (' <e(/x)> ")"'

Fig. 3 An example of ARTF: definition of arithmetic calculator by ARTF

The example 1in Fig. 3 is an ARTF defining the syntax and semantics of
arithmetic calculator. This illustrates the attributed syntax-directed transla-
tioh of simple arithmetic expressions. ARTF is a kind of the attributed syntax-
directed translation scheme.

As shown by the example in Fig. 3, ARTF consists of one or more equations

LNy
.

which are terminated by a meta-symbol For a sequence of strings S, [S] is
called an action symbol. [lookup(n/x)] in Fig. 3. is an action symbol and has
"lookup™ as its name.

The nonterminal symbol <e(/x)> shows that the symbol has an attribute.

This is done by the attribute occurrence variable(name) "x". Attributes can be

attached to nonterminal and action symbols in the following manner:

(3)

<N (il' iz, e im / Sys Sgs eees S)>

[A(il’ iz, cees im / S1v Sgs eees S,)]

wvhere, N is a nonterminal symbol name and A is an action symbol name. Each ix
where 1<{x<m, shows an occurrence of an inherited attribute of +the symbol.
Similarly, each Sy where 1<{y<n, shows an occurrence of a synthesized attribute
of the symbol. An attributes of the nonterminal symbol or action symbol |is
identified by the position of its attribute occurrence.

It 1is possible to describe an assignment of arithmetic expression in an
action symbol directly , such as [(x:=x+x1)],[(x:=x%x1)]. Fig. 4 is an ASDT

which is defined by Fig. 3.

<e(/x)> CE(/X)D vat Lt(/x1)> [(x:=x+x1)]

O O O O—-
<t(/x)> ~KEUX)> e KT (/x1)> tegxl
X O @ ® ((x x*x1)]

[lookup (n/
SR> IS AL
1@,

N\ <id (/)

e (/x)>

V(I
Fig. 4 ASDT which is transformed from Fig. 3

ARTF can also be used to describe predicates. Using the predicates, it |is
possible to define context-sensitive languages by the ARTF. Fig. 5 is the ARTF
vhich defines a recognizer of the language A"B"C"™. A"B"C" is a famous example
of context-sensitive language. Here, action symbols [?(i=j)] and [?(j=k)] are
predicates. A symbol [?(p(xy..x))] means that if p(x;..x) is true then the
synbol becomes A(empty string), and otherwise it is é(empty). In this exanmple,
attribute. occurrences i,Jj.k means number of A, number of B, and number of C
respectively.

[2(i=3)1[7@=k)] is A only if i=j=k and otherwise the expression beconmes

¢. Thus the language AiB‘iCk=A"BnCn where n20 is defined in Fig.5.

<s>=[(i:=0)]("A'[(i:=i+1)])=
[(3:=0)](C 'B"[(j==35+1)])=
[(k:=0)]('C'[(k =k+1)])=
<t (i,Ji,k/)>

<t(i,Ji,k/)>=[7(i= J)][7(J k)1 s

Fig. 5 ARTF which defines the context-sensitive language A"B"C".

The Extended Attributed Regular Translation Form(EARTF) is ARTF with the nota-

tion of RAM (Random Access Memory) manipulating functions. RAM is manipulated

(4)

by semantic functions which are denoted by action symbols. A RAM manipulating
function is a load or a store imstruction.

A load instruction is denoted by [(x:=[arithmetic-expressionl)]. A store
instruction is denoted by [([arithmetic-expression):=x)].

We have defined list manipulation functions and string manipulation
functions by EARTF as shown in Fig. 6,7. These functions play an important role

in developing language processors.

<cons(x,y/z)>=[([#list]ls=x, [[#list]+1]:=y,z:=[#list],
[#listl:=[#list]+2)] 3

Cear (x/y)>=[1(x>#1list)] [(y:=[x1)]

Cedr (x/y)>=[7(x>#list)] {(y:=[x+11)]

<atom(x/)>= [?(x(ﬁllst)] :

<null(x/)>=[?2(x="nil")] 3

Fig. 6 Basic list manipulation functions defined by EARTF.

<strepy (i,3/7)>=((

{jl:
[7¢ TlCGie=i+1,3:=3+1,[3]:=[iD)])% 3
[il

(L1 (

{
(
Cegqstr (i,i/)>=[7(
¢ [?
Fig. 7 String manipulation functions defined by EARTF.
In Fig.7, <strepy(i,i/)> is a function which copy a string from { to J.

<eqstr(i,j/)> is a predicate which is A if string i and J are the same or else

¢.(i and j are initial addresses of strings in RAM.)

3. Standard Action Routines and A Tracer in MYLANG(MS-DOS version)

MYLANG is equipped with standard action routines which look ahead more
than one character, backtrack input strings and manipulate sequential files
etc.. These routines can be called by reserved action symbols which we call
standard action symbols. Standard action symbols are denoted by the symbol

[.a]. MYLANG is also equipped with a tracer as debugging environment.

3.1 Looking ahead more than 1 character
The standard action symbol [.tch(x/y)] means get the character y which is
ahead of x characters. The standard action symbol [.gch(x/)] means abandon x

characters without reading.

3.2 Backtracking
The standard action symbol [.gbp(/w)] means memorize the input string in
w, and the standard action symbol [.back(w/)] means let the input string as w.

w is a pointer to the input buffer. Combining these two action symbols, users

(5)

can backtrack input strings explicitly(not automatically). Some other versions

of MYLANG are able to backtrack automaticaly.

3.3 File input/output

The standard action symbol [.open(fid,rw/fn)] means open the read or the

write(rw) file with file number fn and with file name fid. The standard action

symbol [.close(fn/)] nmeans close the file fn. The standard action symbol

[.cinf(fn/)] means let the current input file as fn. The standard action symbol

[.coutf(fn/)] means let the current output file as fn. The standard action
symbol [.tapeout(x/)] means output the string x to the current output file.
fid, rv and x are initial addresses of strings in RAM.
3.4 Tracer

Fig. & is an example of tracing LISP interpreter which is defined by

EARTF. Two kinds of brake points{nonterminal symbols and an address of RAM) can

be given by users.
lisp
n)ormal or t)race ? n 2
b)reakl ? b >(ear “(a b e))
<¢consg>

non_terminal symbol name ? cons n)ormal or t)rasce ¥ t
cons yles 7 vy

. 8 begin cons “(a b e))
.iniatmtsab < pop (1 :0)
.inilist < pop (0 :6)

.lisp 2001=[2000]

.reads > push (0 :6)
.atomeval [2001] : =6

.defun 2001=[2000]

.eval > push (1 :0)
.prints [2002] :=0

.atom 2001=[2000]

.car < pop (2 :2001)
.. cadr 2001=[2000]

.eddr [20060] :=2003
..ok brk_no.=13 > push (2 :2001)
b)reak2 ? <econs> end

b)reak (ram) ? n)ormal or t)race ¢ n
c)onsole or f)ile 7 ¢ <cons>

: n)ormal or t)race ? n

Fig.8 Tracing Lisp

4. An NBSG/PD Pre-Compiler

to .describe procedures of the functional elements.

An NBSG/PD

<econs> end

interpreter

is a Japanese programming language which

is developed

are extracted from the Japanese specification language NBSG.

An NBSG/PD pre-compiler

These functional

in order

elements

is a translator which transforms NBSG/PD progranms

into C programs. The NBSG/PD pre-compiler consists of two processors (a lexical

analyzer and

a syntax-semantics analyzer).

4.1 Exampies of HBSG/PD prograss

Fig. 9 is an NBSG/PD program which performs sorting. NBSG/PD prograsms
consist of <chree kinds of control expressions: sequences, selections and
iterations. We will explain these control expressions using regular expres-
sions.

If a and b are statements of NBSG/PD program, "a b" is also a statement
of an NBSG/PD program which expresses "ab™ in the regular expression.

if ai(lgjgn-l) is a conditional expression and bj(1Jn) is a statement
then the statement

“zzT, el Ok E, bl
&

HEo "

is also a statement of the NBSG/PD program which expresses

"

" + +- LY v+
alb1 azb2 else bn
in the regular expression, i.e.,

"if ay then bl' else if ay then b2' ... else bn .

If a is a conditional expression and b is a statement,
e oM. kO LERIYEBET, b BHYBEULEKD, ~ and =
e thZBET.RDTLEEIET, b BHYBEULEKD . T
are statements of the NBSG/PD program vwhich express
"(ab)*" and " (-ab)*"
in regular expressions respectively, i.e.,

"while a do b" and "while not a do b".

type sort. nth
5 a=% main()
4

INT % * 9 &2 :
INT BR M4 v, KRALL i
STATIC INT #23 (20]=-{100.43.60.37, 80, 83, 20000. 22,

20. 12453, 9870, 2, 77. 221, §48. 37,
) 9999, 42, 38, 711}
BIH L e =0,
}B?’]*—{vﬁ t= 2000, RO L 2@YHET,

BEEgEL vy - BRAFL H
((Hi&lﬂ{ vi 1= 20)001, RDC&%&&DET,

4 v =~ HERLL L H + 1,
SIEBAAAL v 2] > B (REL v xl0EE,

BHMAL 2],
?2’[T EREERR

=3 (
%)
®] 2 ¥R,

b4

V" EW[E?‘J&'J J&])&%ﬁféo
» - B
]
mhHBELEY.
4
/7

Fig.9 A Sorting program in NBSG/PD

(7)

4.3 A Syntax-Semantics Analyzer

A syntax-semantics analyzer of the NBSG/PD pre-compiler transforms the
intermediate programs into C programs. Fig.12 is a part of syntax-semantics
analyzer defined by EARTF. The nonterminal symbol <branch(/x)> defines transla-
tion of branch statements in NBSG/PD into "if" statements in C language. The
nonterminal symbol <iter(x/y)> defines translation of iterate-statements in
NBSG/PD into "while" statements in C language. Fig.13 is the C program which

is transformed from Fig.11 by the syntax-semantics analyzer.

<branch (/x)> =<Z & € ><ten><notokilis {/x)>
‘Z Ot D& & “<sonota(x/)>
‘ELE ‘<maru> :
<z T >"reeIX® ‘+rewe”
<notokilis(/x)>-<notoki(/x)>(<notok|2(/xl)><nconn(x x1/)>)%
<notoki (/x)>= <eexpg(/a)> "D & % <ten><stmt(/b)><pea(t b/x}> :
<notoki2(/x)>= <notoki (/y)><list(“else’.” “/x)><ncone (x.y/)}> :
<sonota (x/)>= <ten>
(<stmt (/y)><list("else’.” “/z)><ncone (z.y/)><nconc(x.2/)>)/ :

<pea (x,y/z)>=<sand (" (", x. .')'/x)><1ist('if'.' c/z)>
<ncone (z. x/) ><nconc (z. y/)> :

<iter (x/y)>= <iter2(x/y)> :

<iter2(x/y)>=<nosaida (/k)>'é(DT L% EBYHBRT <maru><stats (/y)>
CERHBU D “<aiter2(koxiy/y)> s
<noaida (/k)>=" V)H <ten>[(k: -l)] + <E iR 5 F T ><ten>[(k:=2)].
<L BB ITTO>LBBEFTTT "+ kB FT O

<aiter2(k. x.y/x)>=
({7 (k<>1)]<sand (" (". 2. ") /x)><cons(1ox/x)>)/
<forhead(x/x)><sand((“/y)><nconc (x.y/)> :

<forhead (x/x)>=<sand (" (". x. ") */x)><cons {("while . x/x)> :

<sand(a. x. b/x)>=
<eons (8. x/x)><cons (b. “nil’°/b)><nconc (x.b/)>

Fig.12 A part of the syntax-semantics analyzer which is defined by EARTF

main() {int n43.
int nd5. nd7:
static int n48{20)={100.43.60.37.60.83.20000, 22, 20, 12453, 9870. 2. 77.221, 546.37. 989

98. 42. 38. 711}

n45=0:

while((nd45!=20)) {{nd7=nd5:
while{(n471=20)) {{nd7=nd7+1:
if (n49[nd51>n49[n47])) {nd3-n49[nd5]:
n49[n45]=n48[ns7]}:
nd9[nd?]=n43:

}

)

printf("%d¥n”".nd48[n45]):
n45=nd5+1: '

}

}

}

Fig.13 The C program which is transformed fronm Fig.11

(8)

4.2 A Lexical Analyzer

An lexical analyzer of the NBSG/PD pre-compiler transforms NBSG/PD
programs into intermediate programs. The lexical analyzer just distinguishes
reserved symbols and other names. Reserved symbols are passed through the
analyzer without change. Other names are sandwiched between "n(" and ")".
Fig.10 is a part of the lexical analyzer which is defined by EARTF. Fig.11 is
the intermediate program vwhich is transformed from Fig.9 by the lexical

analyzer.

<lex>=<inilex><tokens><wla><win>

<tokens>=[(b:=#eof)] (<neof(b/)><read(/a.b)><wtokena(a/)})><tapeouth(b/)>)%
<read (/#w., #b) >=<inistr (#w/)><inistr (#b/)> (<streconst>+else<nx>%) <re>
<nx>=[, teh(0/x)] <nrese><chrecat (#w. x/)>[. geh (1/)]

<nresc>=[. gbp (/x)] (<rese>[.back(x/)] [?2(1=2)])/
<re>=<¢ln><resc><con>[. nametape ($b/)]

<rese>=<gymx>+else (<kstr>+<astr>)

<gsymx>=<symxlI>+telse<symx2> >

<synxl>-<synx12>+<synxl3>+<synx14>+<sym115>
<symx12>=" ~ + ° + 07+ B

. .-

<symx13>=":" + “:" & o+

Fig.10 A part of the lexical analyzer which is defined by EARTF

E>type sort. trm
£5°a-# n{main) OF INT n(# 9 2) :
INT n(RFUMA > &), n(BHBEHL>5)
STATIC INT n(E %) [20)~{100,43,60.37.60.983,20000.22.
20, 12453, 9870. 2, 77.221. 546. 37. 9999, 42, 38, 711}
n(EH XL v r) =0, .
(n(ﬁﬂ’?"f va) 1=2000H, RO E2EIET,
n(E®HE A4 v 2) - NEF A .
(n(EBH AL) 1= 200K, mmca%ﬁbﬁf
T n (b B At A :/5) = a (¥ A 4 5) + 1,
CC’E, n(ﬁ?‘])["(ﬁﬁ?ﬂ"’ﬁ’ v&)] > (@) sl
L4 r2)]ol n(k* 9 ¥ x) =
n(ﬁ;ﬂ)[n(ﬁ?ﬂ#’-{ /5)]

-~

2 (B3 [n Jﬁ4va)]~uﬁmuﬂ&&%4van.
a () n (RS v 2)] = 0k » & 2).

]

Tofhor ¥, ' BE.

hBELEKD .,
(BRABD) Czd¥n" . (BA) @R v 2)])RTT 3.
(BRARA v2) - a(@ARL v H) + 1

Fig.11 A intermediate program which is transformed from Fig.9

(9)

5. Conclusion

Ve have developed a subset of the NBSG/PD pre-compiler by the language
processor generator MYLANG. Entire parts of the pre-compiler are defined by
EARTF. Both the NBSG/PD pre-compiler and MYLANG are implemented on the personal
computer IF-800 model 50/60.Ye are presently developing the full set of the
NBSG/PD pre-compiler. The full set of the NBSG/PD includes enumeral types,
subrange types, block transference mechanisms, object oriented style and a
concurrent mechanism etc.. And we are planning to develop software development
assistance environment of NBSG and NBSG/PD.

In order to develop language processors and other softwares much easier,
we are planning to develop much better programming environments of MYLANG and
to extending EARTF to abstract data types and concurrent descriptions etc..

These softwares can be defined by EARTF and generated by MYLANG.

References

[1] Shiino,T.,Takeuchi,A.,Sugio,T.:"A Specification-Describing Language HKBSG

which is based on Japanese",¥GSE,30-2(1983) (In Japanese).

{2] Shiino,T.,Takeuchi,A.,Sugio,T.:"Procedure Description on a Specification-

Describing Language NBSG which is based on Japanese”,WGSE,43-13(1984)
(In Japanese). :
{3] VWatt,D.A. :"Rule Splitting and Attribute Directed Parsing,"In:Semantic-
Directed Compiler Generation, Lecture Notes in Computer Science 94,
Spring-Verlag.pp.363-392(1980).
{4] Knuth. D.E.:"Semantics of context-free languages,” Math.System Theory,
Vol.2, pp.127-145(1968).
[5] Manna,Z.:"Program Schema,"” In:Aho(ed.) Currents in the Theory of Computing,
Prentice Hall(1973).

[6] Jackson,M.A.:"Principles of Program Design,” Academic Press (1975).

[7) Shaw,A.C.:"Software Specification Languages Based on Regular Expressions,”
Technical Report, ETH Zurich(1979).

[8] Katayama,T.:"HFP:A Hierachical and Functional Programming Based on Attri-
bute Grammar,” 5th International Conference on Softwvare Engineering,
343 (1981).

[9] VWirth,N.:"Algorithms+Data structures=Programs,"” Prentice-Hall (1976).

[{10] Turing,A.M.:"0On Computable Numbers, with an Application to the Entsheidun-
gsproblem,” Proc. London Math. Soc.(2),42,pp.230-265 (1937).

[11] Johnson,S.C.:"YACC-Yet Another Compiler-Compiler,” CSTR 32, Bell

Laboratories(1975).

[12] Anzai,H.:"A theory of recursive descent translator generator,” Proc. of
the Int'l Comp. Symp. ICS80-II,pp.1171- 1182 (1980).

[11] Lewis,P.M.,Rosenkrantz,K.J. and Sterns,R.E.:"Attributed Translations," J.
Computer and System Sciences 9,pp.279-307 (1974).

[12] Anzai,H. Sugibayashi,N. and VYamanoue,T.:"Experimental Generation of A

Prolog Interpreter by MYLANG," Proc. of the Logic Programming Symposiunm
'84,5-2,Tokyo(1984).

(10)

