VI MY > 7EBR 16— 2
TulS I USEE 4- 2
(1986, 2. 7)

L-attributed LL{1) grammars are LR-attributed

Ikuo Nakata and Masataka Sassa
University of Tsukuba

1. Introduction

-Attribute grammars are an extension of context-free grammars which unify syatax and
semantics of programming languages. This paper concerns classes of attribute grammars for
which attributes can be evaluated in a single pass during parsing without making a syntax tree.
They are becoming atiractive due to their efficiency and practicality and the fact that most
modern programming languages are now designed around the easier one-pass processing
techniques.

A class of attribute grammars called L-attributed grammars which can be easily combined
with LL(1)-parsers, or recursive descent parsers, is well known. However, another class of
attribute grammars called LR-attributed grammars {4, 6] has not been well known because of the
difficuity of their definition and the restriction posed on their inherited attributes. LR-atiributed
grammars can be combined with LR-parsers which are more powerful than LL-parsers, but has
been considered less powerful as tools for semantic analysis.

In this paper we will show that LR-attributed LR(1)-grammars are more powerful than L-
attributed LL(1)-grammars by proving that L-attributed LL(1)-grammars are LR-atiributed. In
proving the theorem we use several lemmas which can also be used to prove the well known
theorem that an LL(1)-grammar is an LR(1)-grammar [1].

2. Notation

In the following, upper-case letters such as A, B, C, .. are used as nonterminals; lower-case
letters such as a, b, ¢, .. as terminals; X, Y, .. as grammar symbols (either nonterminals or
terminals); ¢, 8, ¥, ... as strings of grammar symbols.

An aitribute a of symbol X is represented by X.a. The set of inherited and synthesized
attributes of symbol X are represented by Al(X) and AS(X), respectively.
Definition 1 For the production Xo~X;..X, (Where X, is a nonterminal), Al(Xo) and AS(X;) (j=1, ...
,n) are called inpu? atiribute occvrrences

As in much of the literature, we assume the following.
Assumption 1 Only input atiribute occurrences appear in the right side of a semantic rule of a
given grammar (ofien called Bochmann normal form).

L-attributed grammars are defined as foliows under Assumption 1.

(1)

Definition 2 An attribute grammar is Z-afiribured if for any production Xy—X;.X, the
following conditions hoid:
(1) The attribute occurrences in Al(X) (l'sksh)‘ depend only oﬁ the values of atiribute occurrences
in
Al(Xg) U Uk TAS(X)).
(2) The attribute occurrences in AS(X,) depend only on the values of attribute occurrences in
Al(Xg) U Uiy "ASKX;).
For a given grammar, LR states can be constructed as usual. We assume that the start symbol
of the grammar is 7 and the grammar is augmented by the production "Z'=Z".
An LR(1) item (LR itemor itemfor short) of a grammar G is [A~oc- B,a] where "A=oB" is a
production of G, and a is a terminal. Define a relation 4 on items by
i3 iff 3B: i=[A-ex- BB, a] and j=[B-- ¥, b]
where beFirst(Ba)=(cl Ba =* c8).
The closure set of an item set is given by the reflexive transitive closure +*. For an item set R
* Closure(R)=(jl JieR: i +* jJ.
An LR automaton is given by putting
So=Closure({lz'~- Z, §1})
Next(S,X)=Closure{Succ(S,X})
where
Suce(S,X)={[A=ocX - B, al | 3[A=0¢- XB, aleS)
These item sets such as S, or Next(S5,X) are called states of the LR automaton or LR states. The
kernel and the nonkernel of a state is defined as
Kernel(So)={1Z'~-Z, 81}
Kernel(Next(S,X))=Suce(S,X)
Nonkernel(S)=S - Kernel(S) ‘ ‘
As in [5, 6], we subdivide an LR state into (LR-) partial states according to lookahead
terminéls. '
Definition 3 The partial state of an LR state S with lookahead a, PS(S,a), is defined as
PS(S,a)-(il i-lAox - B, bleS; First(Bb)sa) | |
Next, we define a set of inherited attributes, IN(PS), which should be evaluated at partial state PS
as follows:
Definition 4
IN(PS)=(B.b] 3[A=cx- BB, alePS: B.be Al(B)}

3. LR-attributed grammars

An LR-attributed grammar is defined as follows:

(2)

Defimition 5 A grammar G is said to be L#-atiribuied i1
(1) G is L-attributed
(2) For any partial state PS of the LR automaton for G, and for any inherited attribute
A.ae IN(PS), the evaluation rule of A.a can be uniquely determined.
Note: More concrete definition of LR-attribute grammars than the above one is given in [6).
However, the above definition is sufficient for the present purpose.

Our theorem can be stated as follows:
Theorem 1 Attribute grammars which are LL(1) and L-attributed are LR-attributed.

To prove the theorem, we notify that for any production A~xB8, the semantic rule for any
B.beAI(B) is unique (by the definition of atiribute grammars). Therefore, it suffices if the
following can be proved for any partial state of an L-attributed LL(1) grammar:

For any partial state PS and for any nonterminal B, there exists at most one item of the form
[A=0(- BB, al
in PS.
Each LR state is constructed by repeating the operations Succ and Closure. We will prove the

above property along the sequence of these operations after proving the following lemmas.

Lemma 1 If PS(S,a)31 then there exists jeKernel(S) such that j1*i and je PS(S,a) '

Proof: For any i€S there exists jeKernel(S) such that j¢*i from the construction method of LR
states. Let j=[A~oc-BB, bl If j=i, the lemma holds trivially. If j=i then ji*i. Therefore, i can be
written as [C~-y, d] and First(BRb)DFirst(yd). PS(S,a)»1 means First(yd)aa, therefore,
First(Bpb)aa, thus jePS5(S,a). O

Lemma 2 If, G is an LL(1) grammar, and for an LR state S of 6, PS(S,a)nKernel(S) has at most
one element for any terminal a, then
(1) if there are two items i,,i; in a partial state PS of S, then i;4%ip or iyl *i;
-(2) there is at most one item in PS of the form [C~¥ - X8, b] (for some C, ¥, &, ignoring the
difference of b) for any partial state PS of S and any grammar symbol X
(3) for any grammar symbol X, if iy,iz€S, i1=[Cy=¥ X8, byl, ig=[Co=¥5- X85, byl and iy=i; (ie.
Ci=Cy or Y=Y, or 8,=8,) then X is a ﬁonterminal, X genérates only € and
First(8 b, JFirst(5 ,0,)=g. '
Proof: Let us take a partial state PS(S5,a5) of S. From lemma 1, there exists an item i such that
ieKernel(S)NPS(S,a;). This i is the unique element of Kernel(S)WPS(S,ay) from the given
condition. Therefore, for any j&PS(5,3,) i4*j holds. Let i=[A=cx- BB, al.
| We will prove (1) first. Let i;,io€PS(5,3p). If one of them is equal 1o i then (1) holds.
Therefore, we can assume that i=i;, i=i,and i,,i,€Nonkernel(S). Let ij=[Cy~-8,, by}, ip=[C=- 8,

(3)

bpl (Cy=Cp or §=8,). From lemma 1 i4*i; and i1*i, hold. If neither ty4*1y nor 1,4 *1; holds then
there exist two derivation sequences
B=. . =C,.25,.
B=- - =C,.25,..
and none of them is a subsequence of the other. Therefore, there exist two productions and
two derivation sequences |
Comny, Commz (M=)
B =* Co..2m;.. =* (i.28;.. (i=1,2; Co may be equal to C; and C,).
These sequences can be imbedded in sequences
=% 0pAa.=xBBa.. =% 0(1Co.. 200 M;... =* 0 Ciby.. =0 BiDy... (0¢;=0Xp0X).
This means C, can be expanded to either n, or N, during the top down parsing by lookahead
symbol ap€Firsi(8;b;). This contradicts the LL(1) condition [1]. This completes the proof of (1).
We will prove (2) next. Let j=[C-y - X8, blePS(S,aq). (i) Let X=B. If there exist two such J's,
al least one of them is in Nonkernel(S) since Kernel(SInPS(S,a,) has only one element. Thus we
assume that j§Kernel(S), therefore, y=¢. It means there exists a derivation
B =*C.=BS..
because i1*j. This means the existence of a left recursion which contradicts the assumption that
the given grammar is an LL(1) grammar [1]. (ii) Let X=B. If there exist two such j's, they
should be in Nonkernel(S), namely
J1=ICi=- X8, by), jo=ICo=- X84, bl € PS(S,20), C1=C, of 255
then we can assume j;1*j, by (1). Therefore, there exists a derivation
Ci=X8 ;="Cy..=XD...
which shows a left recursion. This contradicts the LL(1) condition.
Now, we can prove (3). If there exist i;,i2€5 such that i;=[C;~y j*X8j, b;l and iy=i, then they
do not belong to the same PS5 by (2). If there exists a terminal a€First(X) then both i; and i,
belong to PS(S,a). This contradicts the above. Therefore, X generales only €, and X is a
nonterminal. Since iy and i, do not belong to the same PS First(X3 b)NFirst(X8,b,)=0. Therefore,
First(8 b)nFirst(8 ,b,)=0 because Firsi(3;b;)=First(X§;b;). O

Lemma 3 If Gis an LL(1) grammar, for any partial state PS of any LR state S, PSnKernef(S) has

only one element

Proof: The initial state So=Closure({IZ--Z, $1}) has only one item in its kernel, therefore, it
satisfies the condition of lemma 3. Assume that an LR state S satisfies the condition. Then we

can show that S'=Closure(Succ(S X)) also satisfies the condition for any X as follows. If S' has only
one item in its kernel, S’ satisfies the condition. If there exist two items J1, Jo in Kernel(S'), then S

has two items {,, i5 such that i,=ICy~¥ - X8, b{], io=ICo=¥5- X85, bsl, 1421, and J1=ICy=y X - 8,4, bj]_
(4)

Jo=ICo=¥2X - 85, byl. Since the condition of lemma 2 holds for S, First(5 ;b)nFirst(5,b,)=a by (3) of

lemma 2. This means that every item in the kernel of S' belongs to different PS. . [

Proof of theorem /: By lemma 3 any LR state S of G satisfies the condition of lemma 2.
Therefore, by (2) of lemma 2, for any partial state PS and for any nonterminal B, there exists at
most one item of the form

[A-cx - BB, 2
in PS. The proof is thus complete. [

By using the above lemmas we can also prove the well known theorem as follows.
Theorem 2 LL{1)-grammars are LR{1)-grammars

Proof: The theorem can be proved by showing that there is no conflict in any reduce state. Let
G be an LL(1)-grammar, S be an LR state of G and PS(S,a) be a partial state of 5. Let i=[A~ot-, 2]
be an item in P3(S,a). This means that S is a reduce state with lookahead symbol a and there is
no item j such that is*j. If ieKernel(S) then PS(S,a)=(i} by lemma 3 which means there is only
one item | with lookahead a, therefore, there is no conflict. If ieNonkernel(S) then for any
J€PS(S,a) j4*i hold by (1) of lemma 2. Therefore, j is the form of [B~f-C¥, b] where C is a
nonterminal which means that j causes no reduce or shift action, hence no conflict. This

completes the proof. [

Note: There are not much differences between the proofs of both theorems. In the form
[A-0c- BB, a] in the proof of theorem 1, if [A~x-Bp, alePS(S,a,) and B shrinks to € the form may
be [A-oc-ag..,] or [A=x-, ag). These forms correspond to the ones in the proof of theorem 2.
This fact seems to correspond to the fact that an evaluator of an L-atiributed LL(1) grammar can
be simulated by that of an S-attributed LR(1) grammar because an LL(1) grammar augmented by

marker nonterminals is an LR(1) grammar [2].
4. Concluding remarks

We have proved that L-attributed LL{1) grammars are LR-attributed. It is worth notice that
this has only become possible by defining LR-atiribuied grammars using LR partial states [6]
instead of LR states as in the criginal definition [4].

We have developed a compiler generator called Rie based on a subclass of LR-attributed
grammars {3]. Translators and compilers are being built using Rie. The result of this paper
ensures wider applicability of such a class of attribute grammars based on LR grammars.

(5)

References

{1] Aho, A. V. and Uliman, }. D., 7he Theory of Parsing, Iransiation and Compiling, Vol. 1.
Parsing Vol. 11. Compiling, Prentice-Hall, 1972, 1973.

[2] Aho, A. V., Sethi, R. and Uliman, J. D, Compilers, Principles, Techniques, and Tools,
Addison-Wesley, 1985

[3] Ishizuka, H. and Sassa, M., A compiler generator based on an attribute grammar, Proc. 26ih
Programming Symposivm of [PS Japan, Hakone, 69-80(1985), (in Japanese).

{4] Jones, N. D. and Madsen, M., Attribute-infiuenced LR parsing, Lecture Notes in Comp. Sci.
94, 393-407(1980).

[S] Purdom, P. and Brown, C. A, Semantic routines and LR(k) parsers, Acza /nf 14, 299-
315(1980).

[6] Sassa, M., Ishizuka, H. and Nakata, 1, A contribution to LR-attributed grammars, / /nf.
Process. 8, 196-206(1985).

(6)

