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Automatic Elimination of Backtracking

in Programming Systems with Backtracking
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Backtracking is a. popular sequential control mechanism to solve various search
problems involving nondeterminism. Automatic backtracking was introduced into
Prolog and Snobol as one of the major features of their programming systems.
Although the automatic backtracking is useful, it sometimes incurs ‘serious
degradation of computational efficiency in time and memory. This paper describes
an idea of eliminating redundant backtrackings by wusing "features" extracted
from input data and programs, and discusses its application to Prolog. Our basic:
idea is as follows. For a given input data we extract features such as its data
types and quantitative properties (e.g. Tength of data, etc), and then we use
these features to reduce the number of possibilities at many decision points in
nondeterministic searching. Our ‘'method reduces backtrackings by eliminating
useless possibilities 1leading to failures by using features extracted from input
data; thus our method differs from (so-called) intelligent backtracking.



1. INTRODUCTION

Backtracking has been a popular control
mechanism to solve various search problems in
many fields of information processing. In the
areas of symbolic processing and artificial
intelligence, we often encounter problems for
which we are required to write search programs
based on backtrackin?. Thus, in these areas,
there exist several programming systems with
automatic backtracking, like Snobol, Planner,
and Prolog. A programming system with
automatic backtracking allows a programmer to
write easily programs which involve searchin

and/or backtracking in the domains o

elementary data structures.

Although "automatic backtracking” is useful, it
sometimes incurs serious degradation  of
computational efficiency in time and memory.
"Automatic backtracking" is usually implemented
by the depth-first search procedure, so that

many redundant backtrackings will be conducted
in ~searching solution-paths in the problem
space.

This paper presents and discusses an idea of

eliminating redundant backtrackings by using
"features" extracted from input data and
programs.

Before moving on detailed discussions of our
idea, we briefly review apd discuss some
typical approaches to the problem of reducing

redundant backtrackings.

(1)Introduction of programming constructs to
control program execution

Cut operator in Prolog is an exampie of this
sort. As is well known, however, the use of
cut requires careful consideration about the
execution flow of programs, and its excessive
use causes loss of their readability.

(2)Utilization of partial results obtained'
during search

In many heuristic problem solving tasks, the
problem decomposition scheme is incorporated.
It divides recursively a complex problem into
a group of small subproblems and conquers-the
subproblems easy to solve. In this scheme,
many subproblems of the same kind are
generated during the decomposition, so that
the "blind" sequential search process based
on backtracking may solve the same probiem
many times. Keeping the solutions of such
subproblems, we can use them during the
search to increase the efficiency of the
search process. BUP of [1] employs this sort
of approach.

(3)Intelligent(dependency directed)backtracking

Usually, when a search has failed, the
control is returned back to the nearest
(1atest) decision point where alternatives
are found. With this simple backtracking
scheme, however, many redundant searches may
be conducted. This is because the real cause

of the failure often resides not in the
latest decision ~but in the one done fairly
before. In intelligent backtracking[z]ga].
the cause of a failure is analyzed to find
the decision point where that cause has been
introduced, and the control is directly
returned back to that decision point.

Our basic idea is as follows. For a given
input data we extract features such as its data
types and quantitative properties (e.g. Tlength

of data), and then we use these features to
reduce the number of possibilities at many
decision points in nondeterministic searching.

Our method reduces backtrackings by eliminating
useless possibilities Tleading to failures by

using features extracted from input data. Thus
our method differs from intelligent
backtracking. (This idea was first introduced
in [;g])and its general framework was discussed
in .

Section 2 describes the general framework of
our automatic elimination of backtracking with
i1lustrative examples. Section 3 discusses the

automatic feature determination from Prolog
programs. Section 4 demonstrates the
effectiveness’ of our idea with a Prolog
interpreter designed based on our scheme.
2. GENERAI _FRAMEWORK FOR
AUTOMATIC BACKTRACK ELIMINATION
In this chapter, we will describe the general
framework of our automatic elimination of
backtracking. Section 2.1 describes our basic

idea, taking a top-down string recognizer as an

example. Section 2.2 describes functional
modules in a general system for the automatic
backtrack elimination. In section. 2.3 we
discuss several problems of the automatic

backtrack elimination in the domain of parsing
str;ngs of context free grammars (in short,
CFG).

2.1 Fundamental Idea
In order to give a clear understanding of our

problem and idea, we first discuss elimination
of  backtracking in a top-down string

recognizer; automatic backtracking is usually
used in the top-down depth-first search
procedure.

Given a grammar G and an input string x, a
standard top-down recognizer determines whether
x & L(G) or x & L(G) by analyzing x based on G,
where L(G) denotes the language generated by G.

Consider the following simple problem:

) I+I+1 € L(G1) ?
where E is the initial symbol and the rules of
grammar Gl are defined in BNF as follows:

E =T E+T

T ::=P | T*P

P =1 (E)
Even for this simple problem, a top-down
recognizer based on

backtrackin? generates a
fairly large search tree until it finds out the
answer. But if we know that the input string
#I+I+I" contains two special symbols "+" (and
no "#", (", or ")"), then we can eliminate all
of the backtrackings. That is, starting from
E, apply the rule E ::= E+4T twice to generate
two special symbol "+", which results in E+T+T.
Then use T ::=P and P ::=I, because no "*",
"(", or")" is included in the input string.

This fact suggests that the use of features

i.e. special symbols in the above example) in
input data enables us to eliminate all or most
of backtrackings in the top-down string
recognizer.

2.2 General Framework of Automatic Elimination
of BacEfracE1ng

Fig. 1 illustrates the general configuration of
a system for the automatic elimination of

backtracking. The task of the system is to
analyze input data based on a given rule set
(program).

Before the analysis of data, the rule analyzer

analyzes the rule set to determine what
features are useful to eliminate redundant
backtrackings (feature determination).
Although wuseful features vary depending on
problem domains, we can, in principle,
determine them by analyzing the rule set. The
features determined by the rule analyzer are

stored as rule features (Fig. 1). (Section 3.1
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describes
detail,)

roles of the rule analyzer in

Given an input data to be analyzed, first the
input analyzer examines it to extract features
included in the data (input features). Then,
the execution controller analyzes the data by
using the rule set. During the analysis, the
controller uses the input and rule features as
well as the execution history to eliminate
redundant backtrackings. The execution history
denotes partial solutions obtained during the
analysis. We will not discuss the use of the
execution history in this paper.

The rule organizer analyzes and accumulates
pairs of input data and output results and
reorganizes. the rule set. This is a kind of
learning to find useful rules. Here we will not
discuss this, either.

2.3 Backtrack Elimination in Top-Down CFG

Parsers
There are several problems to be answered in
the above scheme:

(a)What are features and how to determine them?

(b)To what extent can
eliminated by using
problems can we
completely?)

backtrackings be
features? (In what
eliminate backtrackings

¢)How much can the computational efficiency be

increased y the automatic backtrack
elimination? (MNote that certain overhead is
included in the automatic backtrack

elimination: to extract features from the input
data and to refer to them during the analysis.
Note also that the computation time for the
rule analyzer to determine features need not be
considered as overhead, because it is performed
only once before analyzing data.)

In this section we will discuss these problems
in the domain of top-down CFG parsers, :
As shown in section 2.1, special terminal -and
non-terminal symbols would be useful features
in the domain of string parsing. Since all. of
such symbols are defined in the grammar, we can
determine which symbols are useful features by
analyzing the grammar. Using these symbols as
features, an input string is represented by a
sequence of features. .

Fig. 2 illustrates a model of parser which uses
a sequence of input features to select
appropriate rules to apply. Note that "select
appropriate rules” means "inhibit . the
application of those rules lTeading to failure

and, as a result, eliminate redundant
backtrackings".

The feature table stores the control
information for the rule selection. The

execution controller refers to the feature
table to select rules, using both _input feature
and internal state as access keys. For
example, we can represent the feature table by
an array: 1its row and column indices are
specified by the input feature and the internal
state, respectively, and each element of the
array stores applicable rules under a given
pair of input feature and internal state.

This scheme 1is the same as the model of
deterministic _ parsers for LL(1) and LR
grammars[5]. That is, our scheme of backtrack
elimination works completely (i.e. eliminate
all backtrackings) in parsing strings of these
classes of grammars. Since the construction of
the feature table can be done. before the
parsin?, the run-time overhead is ust the
table ookug. This enables fast and efficient
parsing without backtracking.

Execution
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Execution
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Rule
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Fig. 1 General framework for the automatic
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Fig. 2 Model of parser

Single terminal / nonterminal symbols are too
primitive features to eliminate backtrackings
in the case of general CFG. Thus we have to
extract more complex features from input data.
In the problem of parsing string, it would be

reasonable to regard a sequence of primitive
features as_a higher order feature, and a
sequence of. higher order features as a still

higher order feature.
regarded as
given grammar.

What sequences should be
features can . be determined by a

For example, consider the problem of parsing
English sentences by the grammar shown in Fig.
3. We first assign grammatical category(sg,
such as N _ and V, to each word in the input
sentence. This process is the extraction of
first order features from the input data. Then
each pair of consecutive first order features
is  grouped into a second order feature based on
the rules. For example; a sequence, V- NP, can
be . grouped into VP by using the rule VP ->
V,NP. - The feature extraction can be continued
until n-th order feature is extracted for an
input sentence consisting of n words.
Structures of higher  order features are
represented hierarchically in terms of lower
order features (Fig. 3

This process of extracting
features is the same as
algorithm[5]. The triangular

higher order
well-known CYK
table in CYK

algorithm corresponds to our input features.
Thus, our method can eliminate all
backtrackings even in the case of general CFG.

(Note that our scheme of feature extraction can
stog )when k-th order features are extracted (k
< n).

In this scheme most of the computation time s
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used to extract features from input data, and
in the extreme case, where the process is
performed until extracting all n-th order

features, no computation time 1is required by

the execution controller (Fig. 1) to determine
whether or not a given input string € L(G).
That is, all substantial computation 1is
performed by the input analyzer. As is well
known in pattern recognition, this phenomenon

shows the trade-off between feature extraction
and recognition processes; the use of complex
features reduces the computation necessary for

the recognition, while their extraction
requires lots of computation.

The two case analyses described above shows
that our scheme includes deterministic parsers
for LL(1) and LR grammars and CYK parsing
algorithm, where all backtrackings can be
eliminated. Note that our scheme will be more
powerful than these ordinary parsing

algorithms; we can recognize a string belonging
to a class of context sensitive 1anguages such
as {a"b?c™| n>1} by using quantitative features

the ength o character sequences.
That is, features we can use are not limited to
symbol sequences, but structured and
gquantitative features can be used 1in complex
problems.

3. AUTOMATIC FEATURE DETERMINATION

such as

This chapter discusses automatic determination
of features useful for the backtrack
elimination. Section 3.1 gives detailed
discussions on roles of the rule analyzer. In
section 3.2 we describe a method of automatic
feature determination from Prolog programs.

3.1 Roles of The Rule Analyzer

From a practical point of view, the followings
would be typical useful features to eliminate
backtracking:

1)special (terminal) symbols

2)data types (non-terminal symbols)
3)special sequences of symbols
4)length of string

5)number of occurrences of each symbol in
input data
(6)structural information (e.g. Tevels of

parentheses)

Since all symbols and their combinations to be
used as features are defined by the rule set
(program), we can determine all possible
candidates for useful features by analyzing the
rule set. The first role of the rule analyzer
(Fig. 1) is to determines useful features by
analyzing the rule set.

In order to eliminate redundant backtrackings,
the execution controller requires the control
information about which rules should be used in
what situations. In Fig. 2, this information
is represented by the . feature table and
situations are described in terms of input
features and internal states. The second task
of the rule analyzer is to add such control
information to the rule set.

Analyzing the rule set, the rule analyzer
enerates a set of "rule selection rules" (the
eature table in Fig. 2) in the following form:

If (situation),

THEN apply specific rule(s) in the rule set.
(i.e. discard useless -rules leading to failure)
where situations are described 1in terms of
features. Thus, features are used to describe
conditions to apply rules as well as to
characterize input data.

Input Data
1st order

Time flies like an  arrow
N,V,NP,VP N,V,NP,VP V,P,VP ART N,V,NP,VP
features ‘
2nd order
features
3rd order N
features

S,vp,PP

sessesersoscresssssscsennen

(a)Extracting higher order features

N -> Time | flies | arrow

S -> NP, VP

VP -> VP,PP ¥V -> Time | flies |like | arrow
VP -> V,NP P -> like

VP >V ART -> an

NP -> NP,PP NP -> ART,NP

NP -> N,NP NP > R

PP -> P,NP

(b) Grammar

Fig. 3 Extraction of higher order features

@)P ([, %x,%y) 2= +o

P([sulsv] tw, %z) 3= oo

)P (a,#x,[1) = +=+  P(b,xy, [*ultv]) :- <o
()P (xx, *y) es P (xu,*u) 1o oees
Ci Cj

Fig. 4 Feature determination from head predicates

3.2 Automatic

Feature Determination from Prolog

Programs

Backtrackings in Prolog are caused by
inappropriate selection of clauses; since there
are multiple clauses with the same head
predicate, a Prolog interpreter (execution
controller in our scheme) selects one of them
according to the predefined order among the
clauses. It is this selection of clauses that
we want to make "smart" by using features;

features are used to select appropriate clauses

(i.e. apply promising ones first, and discard
useless ones leading to failure).

3.2.1 Feature Determination from Head
Predicates

Let {C1,C2,...,Cn} denote a set of clauses with
the same head predicate P. The simplest way to
determine features is to apply unification for
q;ery pair of head predicates of Ci and Cj (i #
i).

(a)If the unification fails, then the cause of
the failure is the feature to discriminate the
application of Ci and Cj. For example, in the
case of Fig. 4(a), the cause of the failure is
the difference in the data type of the first
argument. Thus we generate the following
"clause selection rules".

IF the first argument of predicate P is
THEN select Ci
IF the data type of the first argument of P s
LIST, THEN select Cj.

NIL,

The interpreter uses these clause selection
rules to select appropriate rule to apply.

Since clause selection rules directly examine
argument(s) useful for the clause selection, it
will take ‘less computation time to select
appropriate clauses than the ordinary
unification. For example, suppose predicate P
has N arguments and k-th argument of the head
predicates of Ci and C have features (i.e.
could not be wunified). Then, given a goal
predicate P(x1,x2,...,xN) to be resolved, the




rule selection rules first examine its k=th
argument to select applicable clause(s). On the
other hand, the ordinary unification checks the
arguments one by one from x1.

Note that the unification to extract features
should be continued until the last argument
even if a certain intermediate argument fails
to be unified; multiple arguments may have
features useful for the clause selection. For
example, since the first and third arguments of
the head predicates in Fig. 4(b) cannot be
unified, clause selection rules examine both of
these arguments of a given goal predicate.

(b)If the unification of two head predicates
succeeds, then it is very hard to find useful
features without modifying the semantics of the
program. This s because Prolog programs are
usually written so that they may be correct
when they are executed according to the
s$quentia1 top-to-bottom examination of
clauses.

For example, two head predicates in Fig. 4(c)
can be unified while the lower (right) one has
a feature that the first and second arguments
are the same. If a current goal predicate has
the same value in these two arguments, then it
would be reasonable to apply clause Cj first.
This, however, is only a heuristic, because the
application of the upper $1eft) clause may
succeed. Thus it would be safe not to modify
the order of the application of clauses when
their head predicates are unifiable.

In short, the backtrack elimination using
features determined from head predicates can be
considered as an extension of the popular
indexing mechanism for fact clauses. That is, a
set of clause selection rules can be considered
as an indexing structure for  selecting
appropriate clauses.

3.2.2 Feature Determination by Program Analysis

The feature determination from head predicates
is not so powerful to eliminate backtrackings;
the features we can use are superficial, and
only so-called shaliow backtrackings can be
eliminated. Thus, we have to analyze the
entire pro$ram to determine features useful for
substantial elimination of backtrackings.

In what follows, we will describe a method of
feature determination from Pro1og programs,
taking Fig. 5 as an example. Fig. 5(b) shows a
Prolog program for the top-down string
recognition, where the original grammar rules
are given in Fig. 5(a). In ‘this program,
strings are represented by lists, and variables
are marked with *

Fig. 5(c) i1lustrates the network structure to
represent mutual relations among the clauses
(1)-(8) (except the guery clause). Nodes E, T
etc. denote names of head predicates, which we
call head predicate nodes. Clauses with the
same head predicate are represented by bold
arcs attached to these nodes. The number
associated with each bold arc corresponds to
the clause number in Fig. 5(b).

Variables associated with solid arcs such as
*sE and *eE denote formal arguments of head
predicates. Variables in each set braces such
as {*sE, *s1} denote those which are unified
when a clause” is applied. Each solid arc
connects a pair of a variable in a clause and a
formal argument of a head predicate, which are
unified “when the .body of the clause is
activated. Each broken arc connects a functor
and its arguments.

This network represents all dependency
relations between clauses and variables. The
sinformalz algorithm for the feature
etermination using this network is as follows:

Es:=T | T+E Tis=id | (E)
(a)Grammar

(1) E(#sl,%el):-T(2sl,%el)

(2) E(#s2,%e2):-T(#s2,%12),PLUS (#12,%22) ,E (222, %2)

(3) T(#s3,%e3) :-ID(3s3,%e3)

(4) T(xs4,%ed) :-LP (+s4,14) ,E (+14,%24) ,RP (224, *ed)

(5) PLUS([+|%x5],%x5).

(6) LP([(1*x8],%x6).

() RP(D) 1#x7],#x7) .

(8) ID([idi*x8],%x8).

©9) 7-E(((,id,+,id,),+,id], (D)
(b)Prolog program

*sE *ek
E
(63} )
#sE, #s1) {*ek, tel) *sE, ¥s2}{%12) (222} {*eE, #e2)
*sT *eT *sPLUS *ePLUS
T PLUS
3) “ (5)

M
{#sT,*s3) {*eT, 2e3) #sT,#s4) (*14} (224} {%eT, %e4) #sPLUS, cons} (*ePLUS, #x5}

to{+)
#sID| |*eID *eLP eRP
(8) ®) ]
*sID, cons) {elD, *x8) (*sLP,c?ns {*eLP,*x6} (#skl’,cclms (=eRP..$x7)
Ltia) {0 -0)

(c)Network structure for the feature determination

Fig. 5 Feature determination from a Prolog program

STEP 1] '
onsider constants and functor names as
fundamental features. Starting from those

clauses with such features, propagate the
features backward to those clauses which may
call them. For example, the first argument of
predicate ID in clause (8) has a feature, *sID
= cons(id,*elID) g= [id|*eID]). This feature is
propagated to clause (3) through the solid arc
attached to head predicate node ID. Then
clause #3) is given a feature *sT = [id]*eT].
Similar feature propagations are performed from
clauses (6), (7), and (5) to (4), (4), and (2)
respectively. Note that only +those features
associated with formal arguments of head
predicates can be propagated.

ESTEP 2]
xamine such head predicate nodes that have
multiple bold arcs (clauses), and then
determine features to discriminate the clauses
by comparing propagated features. The feature
determination is done by the same method as
described in 3.2.2, If features are found
$i.e. a pair of head predicates with propagated
eatures cannot be unified), then generate and
store clause selection rules . in corresponding
head predicate nodes.

For example, after the feature propagation,
head predicate T has the feature *sT = [1dl‘eT]
for clause (3), and *sT = [$|'14] for clause
(4). Note that here again we only have to
examine features associated with the formal
arfuments of head predicate T: the feature, *24

)I*eT], which have been propagated from
clause 7) to (4), need not be used for the
feature determination. Since the unification

of two *sT's of clauses (3) and (4) fails, we
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can obtain the

following
rules:

clause selection

IF the first argument of T 1is [id|*eT], THEN
ggplg c}aus: (3%.

e first argument of T is _]. THEN appl
STacse (4) [ (-1 pply

where *eT and _ denote the second
head predicate T and an unnamed variable,
respectively. These rules are stored in head
predicate node T in. the network. The execution
controller (Prolog interpreter) refers to them
when its current goal predicate to be resolved
is T. In this sense, this network corresponds
to the feature table in Fig. 2.

STEP 3
gince the one-step feature propagation is_ not
enough to obtain useful features and clause

argument of

selection rules, we have to iterate the above
processes.

The feature propagation involves several
complicated processes:

(i)Multiple different features may be

propagated through a head predicate node.

For example, as described above, two features
are propagated to the first argument of T:
*sT = [id|*eT] from clause (3) and *sT =
[(|_} from clause (4). These two features

should be combined and propagated to clauses
‘1) and (2). W represent such combined
eature by *sT = [id|*eT]/[(].], where /

denotes "or".

(11)Multiple features may be propagated to a

variable.
For example, variable *12 in clause (2) has
two solid arcs from T and PLUS. Feature *12
= [+|'22; is propagated from PLUS, while no
feature from T. Since a solid arc connects a
pair of argument and variable to be wunified,
this feature should also be propagated to the
second argument of head predicate T, *eT.
Then, the feature is propagated downward
through head predicate node T, and features
are recomputed for clauses (6), (7)., and (8):
*sID = [id.+}_] for (8) and *sRP = [),+]_]I.
These new features, in turn, are propagated
upward to clause (3) and (4). As the result
of this propagation of the new features, the
feature of clause (3) becomes *sT = Eid.+|_].
Note that the feature of clause ) is not
changed. Note also that since the feature of
clause (3), *sT = [id,+|_], is obtained by
combining clauses (2) and ({3), it 1is not
propagated to clause (1) from node T: the
- feature propagated to clause (1) from (3) is
the old one: *sT = [id|*eT]. Finally, the
features of clause (1) and (2) become_ *sE =
[idl‘eE]/[gl_] and "*sE = [id.+]_1/[(I-1.
respectively.

[STEP 4]

In general, the network has many loops, so that
the feature propagation does not terminate.
Thus we have to stop it after a certain number
of iterations of the feature propagation.

To investigate the effectiveness of the
features determined by this method, we compared
the search trees in the following three cases:

(A)The normal execution without backtrack
elimination
(B)Backtrackings are eliminated by using the

c¢lause selection rules associated with node T.

(C)Although there is no distinguishing feature
between clauses (1) and (2) (1.e. two features
of *sE's shown above can be unifiedz, we used
the following (heuristic) clause selection rule
in addition to (B):

Prolog

IF the first argument of the
[1d.+]_]. THEN select clause (2

Fig. 6 illustrates the search trees in the
above three cases given the goal clause (92 in
Fig. 5(b). The trees represent the depth-first
search processes with backtracking. Each arc
in the trees denotes an applied clause and is
labeled with its clause number. Although not

gredicate E is

all backtrackings were eliminated, even simple
features coul eliminate many redundant
backtrackings.

REMARKS :

The process of the feature determination
described above can be regarded as a method of

partial evaluation of ProIog programs. While
the method described in [6] performs the top-
down partial evaluation starting from a goal
clause, our method is purely bottom-up starting
from those clauses with primitive features
(i.e. constants and functors). Moreover, ours
extracts the explicit control information (i.e.
clause selection rules) by analyzing a program.

4. PERFORMeNCE EVALUATION
WITH A

4.1 TU-Prolog

In this section we will
effectiveness of our idea of backtrack
elimination with a Prolog 1interpreter, TU-
Prolog. Tu-Prolog 1is implemented on MC63000
based UNIX workstation (U-station E15). Its
characteristics are:

a)Prolog interpreter written in C
b)Binary 1ist for the internal
representation
c)Structure copying method
d )DAP (Dynamic Program
monitoring the execution
programs.
(e)Automatic backtrack elimination facility

demonstrate the

data

Analyzer) for
flow of Prolog

It is often useful to monitor the execution
flow of Prolog programs. DAP in TU-Prolog
displays the depth-first search tree (the
execution flow of a program) on_a graphic
display. For example, all trees in Fig. 6 and
Fig. 8 were drawn by DAP, where numbers
associated with branches denote selected
clauses. DAP enables a user to understand the
execution flow of programs and to find useful
features to eliminate redundant backtrackings.

backtrack

4.2 Automatic elimination in_ TU-

elimination
in TU-Prolog.

A simpie automatic backtrack
facility has been implemented

Since the major objective of this facility 1s
to examine the effectiveness of our idea of
backtrack elimination, the implemented facility
is very limited. Firstly no automatic feature

2
4 4

(b) (c)

Fig. 6 Search trees




determination is implemented, so that a user

has to ‘specify features. Secondly we assume

that the first argument of each head predicate

1: talgiit and that features are extracted from
2 st.

The process of the backtrack elimination
consists of the following steps:
(1%Feature specification

i -1)Feature declaration

1-2)Declaration of clause selection rules

(zzixecution
s -1)Feature extraction from input data
2-2)Execution of the program based on the
in?ut features and the clause selection
rules

Predicate "feature-class” is used to declare
features. The following two kinds of features
can be specified:

i12type specification for constants
ii)type specification for a
consecutive features.

For example, (feature-class + 2) defines symbol
"+" as a feature of class 2, and (feature-class
(2 3) 4) a pair of features of classes 2 and 3
as a feature of class 4. Note that since TU-
Prolog uses the 1ist structure, a clause P:-
01,Q2,03 is represented by (P Q1 Q2 Q3).
Besides these user specified features, the
system regards symbols "(" and ")" as special
features specifying levels of the structure of
input data.

pair of

To define clause selection rules, we use
(select-clause head-predicate-name
((feature-class-1 clause-number)

(feature-c]ass-% clause-number)

(feature-c]ass-ﬁ clause-number)))

This works as follows. First associate the

pairs of feature-class and clause-number with
the head predicate specified by head-
predicate-name. In selecting a clause to

apply, examine those pairs associated with the
current goal predicate. If current data under
analysis has a feature of feature-class-i, then
apply its corresponding clause. If no clause
selection rule is associated with the head
predicate or no feature 1is included in the
data, the interpreter applies the clauses in
the standard order.

Given a goal clause (input  data), the
interpreter first extracts features. Fig.
shows the internal data structure (feature
table? to represent input features, where
symbols “*" and "+" are declared as features.
The feature table is the same 1ist structure as
the input data. Each element of the Tist
records such features that

i)appear in the right portion of the input data
from that element
ii)and are at the same
On  execution, the

~

level of parenthesis.
interpreter refers to both

this input feature table and the clause
selection rules.

4.3 Performance Evaluation

Fig. 8(a) shows a Prolog program for syntactic
analysis of English sentences. We used the

following two features for this program:
(1)a sequence of VERB and PREPOSITION
e.g. ran through)
(ii)a sequence of NOUN and PREPOSITION
wolf with

e.g.
where VERB, NOUN, agd PREPOSITION denote the

types (feature classes) defined for constants
"ran", "wolf", "through", and "with",
respectively. The clause selection rules we
used are

(a)IF there exists a feature of type (i),
THEN select clause (2) (Fig. 8(a)).

feature + x 2 +

Data ( Id Id ) + 1d
Fig. 7 Internal representation of input features

3

7- S([a,wlf,vith,red, eys,ran, through, the,bush], [1)

(1) S(2s,%e) :-NP (3s,%1), VP (51, 2e)
(2) S(2s,%e) :-HP (25, %1) VP (*1,%2) ,PREPS (#2, %e)
(3) NP (2s,%e) :-DET(#s,%1) NP2 (21, %)

(4) NP (s, %e) :-NP2 (21, %e)

(5)  NP2(ss,%e) :-N(#s,%e)

®) NP2(#s,%e) :-ADJ (#s,21) , NP2 (%1, %¢)
(7)  NP2(#s,%e) :-N(¢s, %1}, PREPS (*1,%e)
(8) PREPS(2s,%e) :—PP(ss,%¢)

(9) PREPS (¢s,%e) :-PP(#s, %1} ,PREPS (x], %)
(10) PP(%s,%e):-P (*s,%1) NP (21, %c}

(11) VP(#s,%e):-V(#s,%e)

(12) WP(*s,%e):-V(%s,%1) NP (51, %e)

(13) ADJ ([redl#x],#x).

(14) DET([al*x],*x).

(15) DET([thel#x],*x).

(16) N([bushizx],*x).

A7) N(leyesl#x],2x).

(18) N([wolflx),%x).
(19) P([throughl#x],*x).
20y P([withl|sx],%x).
(21) V([ran|#x],%x).

(a)A Prolog program for English sentence analysis

o
b
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Fig. 8 Backtrack elimination in English sentence

analysis

(b)IF there exists a feature of type (ii),
THEN select clause (7) (Fig. 8(a)).

experiment using these features showed
reat improvement in computation time: 96 msec
y the standard execution with backtracking
Fig. 8(b)) was reduced to 30msec (Fig.a(cg).
ote that the latter includes the computation
time (overhead) for the feature extraction from
the input data. The overhead in this example
was 7msec. This means that the overhead for the
feature extraction is not negligible.

The

Table 1 summarizes the performance of the
backtrack elimination 1in the recognition of
several arithmetic expressions by the program

shown in Fi?' 5(b)., where we used constants "+"
and "*" as features.



[Observationl]

The computation time by the normal execution
varies very  much. This means that many
redundant backtrackings were conducted
depending on input data.

Obvervation2}

he computation time by the backtrack

elimination is almost proportional to the
length of input data. This implies that the
features we used properly characterized input

data and that almost all redundant
backtrackings were eliminated.
EObservationa]

n the second example, the backtrack
elimination took more time than the normal
execution. This means no redundant
backtrackings were eliminated and that the
overhead for the feature extraction increased
the computation time by the backtrack

elimination. This is because "(" and ")" are

not regarded as features to eliminate
backtracking but are used only to specify the
structure of dinput data. Of course we can

declare these symbols as features. With such
features, the computation time for the second
example by the backtrack elimination became
16.3msec.

5. Concluding Remarks

The idea  of automatic elimination of
backtracking has been proposed and its
effectiveness has been demonsirated in several
Prolog programs. The followings are the
summary of the discussions given in this paper
and future problems to be studied.

Ei]Our idea of automatic elimination  of
acktrackin includes efficient deterministic
parsing algorithms of CFG, where all

backtrackings can be eliminated.
[2]Expeﬁimenta1 results have shown that even
simple features can eliminate considerable
amount of redundant backtrackings. This is the
essence of our idea of backtrack elimination.

£3]The complete algorithm  of determining
eatures by unifying head predicates should be
devised; it is not trivial to find causes of a
failure in the unification.

[4]The process of the feature propagation
described in 3.2.2 cannot find such features as

matched parentheses and quantitative features
such as 1length of data. Since these features
will be really effective in complex problems,

the feature declaration facility as described
in 4.2 would be necessary to_ incorporate the
automatic backtrack elimination into
programming systems.

[5]1In [8], we proposed an extended unification
in~ Prolog, where nondeterminism is introduced

in the. unification process. The automatic
backtrack elimination will also be very
effective to impiement the extended
unification.
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