Y7 Moo THBER 198
Tur53 vy /EE 9—8
(1986, 12 12)

LFIFLEE G DIREL 4 DHER

Plan of Verification System based on Parallel
Programming Language Oc

K # FE &
I — yisahir? Hirata
OB K & K ¥ A4
Institute of Mathematics, University of Tsukuba
55 AL %[1) ¥5|7o AN @%%éﬁ‘ﬁ??ﬁ’) 3,721 létg{ﬁﬂ%&f;é?‘l} T
O3 ZDIYATATRIHEEL 7077 L EHE Oc TEDASFHFXTH, <D
VAT LOBFGIEBELTAT B, TR Cc D220 WFTH 5o — 4l HLE

BREFTH), 707730 ER (H%.

Abstract: We are planning a new verification system of parallel programs. It is
based on the equivalence transformation. In the system, specifications and
programs are written in the language Oc. In this paper, we explain the
basic concept of our system. That is dual aspect of Oc. One is as a

specification language and the other is as a programming language.

Introduction [Sato 1985]), other is as a parallel

We are planning a verification system of program [Hirata 1986].

parallel programs. It is based on the

equivalence transformation. In the sys- In the next section, first aspect as the
tem, specifications and programs are specification language is explained. In
written in the language Oc. In -this the section 2, the other aspect of Oc as
paper, we explain the basic concept of a programming language is defined. At
our system. It is the dual aspect of last section; we show the one property
Oc. of Oc and its influence on the specifi~

cations of system programs.
Oc is a very simple parallel programming
language., But program in it accept dual
interpretations; one is as specification

(in the other word, 'formal systenm'
y

1. Oc as Specification Language
Syntax
The syntax of Oc is the same as pure
Prolog encoded in Symbolic Expression
(S-exp), but don't use the terminology
of it, because it is misleading about
the relation between the language and
formal logics.
term ::= constant variable |
(' term '.' term ")'.
conclusion t:1= term.
assumptions se= (" { term } ")'.
inference rule :i=
'(' conclusion '.' assumptions ')'.
formal system ::=
' '(' { inference rule } ")'.

denotes for some n

{e}

(n!?), n-times repetition of something

In the syntax,
that is deneoted by e.
In this paper, variables are denoted by
strings. beginning with capital letters.
that do include the

l)l

Other strings not

'('7

1
.

1
>

| 1

characters and denote

constants.

We use the usual abbreviations of S-exp.

For example, (a b) and (X Y . Z) are
abbreviations of (a . (b . ())) and (X .
(Y . Z)), respectively.

We sometime call a inference rule

'axiom', if it has null assumptions.

Example (Natural Number)

The following is a formal system UN
expressing éhe unary natural number and
successor function and equality‘function
on it.

(

((natural ()))

((natural (* . N))

(natural N))

((successor N S)

(natural N) (S (* . N)))

O = 0N
(((¥ . X) = (* . Y))

(natural X) (natural Y) (X = Y))
)

Definition of Proof

For given formal system FS, we define

the partial proofs of a term £ with

assumptions, recursively, as follows.

1.f is a partial proof of f itself with
assumptions (f).

2.When a member A of assumptioné AS of a
partial proof P of f is an instance of
a conclusion C of an inferénce rule L

‘ for

in FS (i.e. some substitution S,

A=S(C)), the following S-exp Pl is a

partial proof of f: S-expression that

is the same as P, except that A in it

is replaced by S(L)
‘3.When a member A of assumptions .AS of a

partial proof P of f is a form (X

Y) where X and Y is arbitrary terms,
and there is a most general unifier S

of X and Y that is not change any

variable in £, the S-exp S(P) is a

of £ with assumptions

partial proof

S(AS-{A}).

We call a partial proof with no assump-

tion 'proof', and a term which has proof
'theorem' of the system, respectively.
Example

The following are the partial proofs of
(successor (*¥) (* *)) in the above for-
mal system UN:

(*))

with (successor () (%)),

(successor ()

((successor () (*))
V (natural ())
((*) :=: (*)))

with ((natural ()) ((*) (*))),

((successor () (*))
((natural ()))
((*) :

last

(*))) with ().

The one 1is a proof. Its wusual

graphical representation is the follow-

ing:

(*)).

(successor ()

2. Oc as Parallel Programming Language

Syntax

We change terminology.

process 1:= term.

guard ti= term,

body ti= '(' [process } ')'.
clause ti= '(' guard '.' body ')'.
program ti= '"('" { clause } ")'.

Operational Semantics
Each state of Oc is a pair of the con-
trol state and a data state, A control

state 1is a 1list of processes. A data

states is a substitution [Hirata 1984].
If the control state is the null list,
that called final.

state is A computa-

tion is a change from a given state into

the final state through repeated state
transition. The final data state is
called the result of the computation.

State transition means concurrent appli-

cation of the following rules to each

process P in a state.

rule 1. (receiving)

if P is an instance of a guard of some
clause, substitute the embedded body
processes of the clause for P in con-

trol state; Note: variables local

to the body should be replaced by

fresh ones.,
rule 2., (broadcasting)

if P is of the form (tl :=: t2),

remove P from the control state; if tl
and t2 are unifiable, merge the most

general unifier S into.the data state

and apply S to all other processes
within a finite time; if not unifi-
able, abort all the computation at
once.

Example (Filter)
(
((Filter () F 0)
0 :=: ()
((filter (X . I) F 0)
(F X &)

 (filter_decide A X I F 0))

((filter_decide true X I F 0)
(0 :=: (X . P))
(filter I F P))
((filter_decide false X I F 0)

(filter I F 0))

3. Interference Freeness and Its Influ-

ence

The following is an obvious but impor-
tant property of the operational seman-
tics of Oc: After an process P in a con-
trol state become to be an instance of
guard G of a clause, unless P is not
removéd, this property is preserved by

the rest of the computation.

This pfoperty means the interference
freeness ([Hoare 1972}, [Owicki 19761)
of the possibility of transforming of
processes, By thé property, we can con-
clude that the strongest post-condition
for a given pre-condition is disjunction
(with respect to ‘all possible computa-
tions) éf the conjunction of following
ones:

'l. a pre-condition,

2. all guards of successful transitions

in the computation, and,

3. equivalence relation generated by

the result of the computation.

In the current version of Oc, the inter-
nal feature is only the unification (X
=2 Y). (Theoretically, the version is
sufficiently Vstrong in the sense that
all recursive functions are encodable.)
More over, every extension of the
language should preserve the above pro-
perty. Because, this property permits
partial analysis of the compound paral-
lel program. Modularity .is one of the
best tools for the construction of com-

plex systems.

By the above limit, we can not introduce
some features: common in usual. Prolog
systems, for example, var (X) (i.e.
recognizer of assignment to X) or strong
simulate feature (i.e. control other
process to suspend and/or elimiqate from
the control state). These features are
sometime necessary for writing system

programs.

We treat this problem as the following.

0.Every process can modity only the data
state. it can access neither its pro-
gram nor the control state.

1.The controlled processés and its con-
troller in not in the same control

state.

2.If the former's state should be fully

analyzable by the latter, the former
considered to be simulated the latter.
all the former's

3.In the above case,

program, the control state and the
data state should be encoded into the

latter's state.

One example of second stuation is user
process U and the manager process M for
U in the operating system. M initiate U
and accept the system request of U and
resend it to some other system process
Sometimes, M

of charge, if necessary.

must be abort U because of some cause.

In the principle, M can access (the cod-

ing of) the program of U as the data.

Conclusion

We represent dual semantics of Oc.
Because of the aspect, We may use Oc to
describe both the data states and the
algorithms. But, there is one deep gap
between them, It is the aésignability

of the variables.

We hope that the explicit direction of

the information flows of Doc [Hirata
1978a] make an uniform semantics for the

both purposes.
Reference

[Hirata 1986] Hirata M., Letter to Edi-
tor, SIGPLAN Notice, May 1986

[Hirata 1986a] Hirata M., Programming

Language Doc and its Self-Description,

or, X=X is considered harmful, in Proc.

of 3rd National Conf. of Japan Society
of Software Science and Technology, pp.
69-72

[Hoare 1972] Hoare C. A. R., Toward a

theory of parallel programming, in

Operating Systems Techniques, Hoare and
Perott (Eds.), Academic Press, New York,
1972

[Owicki 1976] Owicki S. and Gries D.,

Verifying Properties of Parallel Pro-

grams: An Axiomatic Approach, Comm. of

ACM, Vol. 19, No. 5, May, 1976
[Sato 1985] Sato M.,Theory of Symbolic
Publ. RIAMS,

Expressions, i1, Kyoto

Univ., 1985

