Y7 by TR

23—10

(1987 12. 10)

FISEAS 459 P RAMOEBEO FEE 20T

Very Small Tight Bounds on the Time of
Uniform PRAMs with Simultaneous Writes

HH—#
Kazuo Iwama

REEEARF

Kyoto Sangyo University

B5FL. AGD £7vAh—<VvEREL, Kul) 2K:0) = (AG.J) = 1 THEEMN
D) TEHESHD (AG)) oN) BRET 2 RARESAEFL, WELLTH, -, By
FPIEDAND, By FTEOORD AEEFTUFIET 7 v 2 (PRAM) OFHMBEOT
L, >EOREEENT S {EBO cz 4L, TOX3BPRAM GERX7uk ¥
B kD O(Acm) AT v PCHE I NBIERILO n BEGHEIRSEET 2.

Let A (i,j) be the Ackermann function and let Az (n) be its inverse function defined by Ay (n) = least j such
that A (k,j)2n . We prove very small, nonconstant, tight upper (lower) bounds for the computation time of uni-
form PRAMs with concurrent writes and with operations +, —, bitwise OR and bitwise AND: For any constant

¢ 24, there is a nondegenerate Boolean function G, of n variables such that it takes @(A, (1)) steps to com-~

pute G, by such PRAMs with polynomial number of processors,

1. Introduction.

Let A(i,j) be the Ackermann function and let A, (n)
be its inverse function defined by A,(n) = least j such that
A(k,jy2n. CRCW-PRAMs denote parallel RAMs with
simultaneous writes and with operations +, —, & (bitwise
AND) and | (bitwise OR). It should be noted explicitly
that CRCW-PRAMs in this paper are uniform, namely,
each RAM has the same program not depending on the
size of inputs. We prove very small, nonconstant, tight
upper (lower) bounds for the computation time of such
CRCW-PRAMs:

Main Theorem. For any constant ¢24, there is a
nondegenerate Boolean function G, of n variables such
that it takes @(A—C (r)) steps to compute G, by CRCW-
PRAMs with polynomial number of processors.

The parallel random access machines (PRAMs) have
clearly become a standard model for parallel computation,
over which a huge number of fast algorithms were
developed. It seems, however, that studies on the model
itself have drawn interests of much less researchers and
there still remain a lot of unknowns. For instance:

(1) For PRAMSs without simultaneous writes (CREW-
PRAMs), one can show[8] that Q(loglogn) is the gen-
eral lower bound of the time to compute nondegen-
erate Boolean functions and at the same time it is an
upper bound for a number of specific functions [7].
As for CRCW-PRAMs, however, although it is known

)]

that some simple functions have interesting lower
bounds like Q(logn/loglogn) for the PARITY func-
tion{$5, 10] and that trivial functions like n-bit OR can
be computed in a constant time, almost nothing was
known about the large gap between them.

Note that the uniformity is the unique feature that dis-
tinguishes CRCW-PRAMs from unbounded fan-in cir-
cuits [9] and, in the author’s opinion, it is this unifor-

' mity that makes CRCW-PRAMs an acceptable paral-

lel model. However, it is again very difficult to find
literature explicitly investigating this feature. (Many
authors of recent papers [1,2,3,4,5,6,7,10] suc-
ceeded in achieving their nontrivial results, lower
bounds in most cases, without assuming the unifor-
mity. That is nothing but special cases. There seems
to be a lot of cases in which removing the uniformity
makes problems trivial, in other words, the uniformity
gives us interesting questions. Consider, for example,
the following Boolean function. f(xy, - -+, x,)=1 iff
exactly three variables are 1 and x;=x;=x;=1 implies
i=gcd(j,k). It is obvious that f is computed by con-
stant depth unbounded fan-in circuits (or nonuniform
CRCW-PRAMs) of polynomial circuit size but it is
unlikely that f can be computed by uniform CRCW-
PRAMs with a normal instruction set (such as +, —,
&, 1, %, =, etc.) in constant steps. Also for the PAR-
ITY function recently popular [1,5,10], it is not
known, to the best of the author’s knowledge, if we

can compute n-bit PARITY in constant steps by uni-
form CRCW-PRAMs of unbounded number of pro-
Cessors.)

Our present result gives us a new knowledge about
those (1) and (2), that includes: (i) Although it is still
open if there is a general lower bound like that for
CREW-PRAMs (e.g., we cannot presently replace A, (n)
by A, (n)), the main theorem shows it must be very small
if exists. Note that the result fully depends on the unifor-
mity, in other words, such lower bounds do not exist trivi-
ally for nonuniform CRCW-PRAMs. (ii) In spite of the
restricting uniformity imposed, CRCW-PRAMs still exhibit
surprisingly high performance for a certain type of func-
tions. As shown later, they can compute, in a sense, A, (1)
from n in constant steps with the aid of input forms and
the bitwise operations & and 1. (It is another interesting
open question whether we can achieve similar upper
bounds without & or 1.) The proof includes several tricky
ideas.

2. The Model.

The following machine is a minimal structure neces-
sary to prove the upper bound of the theorem. In this
paper we define the machine as the one which computes a
mapping from Z* to X for a finite set X of symbols. A
CRCW-PRAM consists of processors Pg, Py, - -, all of
which hold the same program. In the program we can use
a finite number of local variables x, y, z, * - -, a common
array M[0], M[1], - - -, and the following instructions.

x ¢« constant (an integer or a character in Z)
‘X ¢ processor number

x«yz, -€{+-&,1}&andy
must hold inte £Ers)

Mix] <y

y « M[x]

GOTO label if x=y (x and y
may hold characters)

HALT
If more than one processor attempts to write into the same
element of the common array, the lowest numbered proces-
sor succeeds (PRIORITY). An input of size n is a string
agdy - - - a,_y, each a; € T is placed in M[i]. At time
zero all the processors, the number of which is limited by
some polynomial p (n), begin their computation. When the
HALT instruction is executed, it must be done at the same
time by all those processors. The answer (a symbol in %)
is placed in M[0]. (See e.g., [9] for more detailed general
description of PRAMs.)

" Remarks. (i) x « processor number is especially
important. That is only one possibility for each processor
to recognize the difference of itself from other processors.
(i) T may contain more than two symbols. Our machine
may be viewed as a recognizer of languages over Z. The
theorem holds for any ¥ including two or more (but of
course finite) symbols. (iii) {&,l} may be replaced by

{x, +} or { mod } and the proof becomes easier. Note that
bit-wise COMPLEMENT, which can create a large number
in a single step, is excluded. O(logn) bits are enough for
each variable. (iv) As for the lower bound, we do not
need the uniformity. It holds for the circuit model.)
The theorem is still true for the COMMON resolution
(simultaneous writes must be done for the same value).

3. Proof of the Theorem.

First we will sketch roughly what the function G, of
the theorem looks like and why that is desirable to our
goal. For simplicity the constant ¢ is fixed to 5 and the
generalization will be mentioned at the end. Note that
A s(n)=k means log*log* - - log*n (k times) becomes 1
but not by k—1 times and log*n=k means loglog - - - logn
(k times) becomes 1 but not by k—1 times.

What we want to do is as follows. It is known [5, 10]
that depth k PARITY circuits of m variables need
Q(2"‘W) gates. So, if m=(logn)% () then we need Q(g (n))
depth to make the number of gates polynomial. As g(n)
we now take As(n). Now consider language

L={0=00, l lol=n, 10-2|__.(10gn)/§5(n)

and o, contains odd number of 1’s}.

By the above known fact, to recognize L needs 9@5@ »
depth even by circuits, which achieves our lower bound.
Therefore we are done if we can achieve the upper bound
or if we (i) can compute A. 5(n) from © to determine the
small portion o, of the whole ¢ and (ii) can compute PAR-
ITY of that Gy, both very quickly (at most As(n) steps).
Note that those (i) and (ii) are trivial jobs for circuits or
nonuniform CRCW-PRAMs, but not at all for uniform
CRCW-PRAMs. As for (ii), for instance, it is very
unlikely to be able to compute PARITY of length
(logn)As(") in A s(n) steps. (The situation should be recog-
nized correctly. Imagine trying to compute logn-bit PAR-
ITY. In the circuit model, we can split all 21°¥"=n
different bit-patterns using O(n) gates and can select desir-
able (having odd number of 1’s) patterns by "us" or by e.g,
slowly moving TM’s having nothing to do with the model
involved. Namely how to do this selection is not included
in the algorithm. In the present situation, this selection is
included in the program, in other words, it must be done
by the uniform CRCW-PRAM program quickly.)

We first construct the following language Ls over
alphabet X. I includes 0, 1, #,a,b,c,dand 0, 1, #
with mark >, ", or @. (Moré than one mark may be placed
like 0"@) In order for a string ©,, to be in Ls, first of all,
it has to consist of five portions:

o,= afydr

Note that n of o, somehow shows the size but not the
exact length. The length of G, is about n* and as one can
see later n must be 2! for some /. Among the five por-
tions of G,, o is determined to make possible the quick

computing of As(n). 7y acts as 6, of L above. However
we do not try to compute PARITY of vy directly but use the
following trick.

B is of the form

B=dpwy paa @:e{01])
and - we consider this string defines a function f
{0,1)°8* (0,1} as f(0, -+ ,0=0 and f(xy, - " -, X1og,)
= Dbin(yg, - - - xy) Y TOUSE be of the form

Y=dq1q2c quE o #
(@€ (0,1}, 1yl=n, h=(logn)**™).

This is a key portion to determine whether G, is in Ls,
namely it is so iff f#(gy,q4 -+ ,qy)=1, where f% is the
usual composition of the above f. & and A are supplemen-
tary portions necessary to compute f quickly, which we
will mention later. The key lemma in this paper is (proof
is given later):

Lemma 1. Ls can be recognized by a CRCW-PRAM
in O(A5(n)) steps.

The next step is an easy extension. Let LSB be the
language over {0,1} obtained by the usual coding method
from Ls. (0 and 1 should be mapped to be adjacent like 0
—> 1110 and 1 — 1111.) The next lemma is almost a
corollary of Lemma 1.

Lemma 2. L2 can be recognized by a CRCW-
PRAM in O(A5(n)) steps. .

G5 is the Boolean-function version of this LE. Now
we prove the lower bound.

Lemma 3. If LSB can be recognized by a CRCW-
PRAM in d{(n) steps then the PARITY function of
(logn)A $®) yariables can be computed by unbounded fan-in
circuits of polynomial (on #) size in depth O(d (n)).

To prove this lemma we first construct the circuit of
depth O(d (n)) that computes L5B by the way of [35, 10] and
then fix the values of variables corresponding to o, B, 8, A
and other than the key bits of 7y (recall that 0 and 1 were
mapped to be the same but exactly one bit). As one can
see in a moment, o, 8 and v are, for ©, to be in Lg, com-
pletely determined only by the integer n. As for B, we
have to fix it so as that f computes the PARITY function.
Now [5,10] and simple calculation leads us to:

Lemma 4. The circuits (and therefore CRCW-
PRAMs by [9]) need (A 5(n)) steps to recognize L.

Proof of Lemma 1. What we have to do is to
describe the conditions for the strings o, B, v, & and A to
meet and to show that CRCW-PRAMs can check the con-
ditions quickly. We shall first take o. When r=16, o
looks like)

¢ Q000##HH##HH#HHH#a 1'000#HHHHHHEHHHE
a O1'00##H#H#HH#H#a | 10'OMHHHEHEHIHE - - -
a O1 L UHHEHHEHI #a 1L TIHEBHERHEHY

bO"O## - - - aVOWE -+ - aOlHE - - all¥# - --
a####'#

DO#'HE - - - al'#iH - - - ol - - -

Dt - - - al'#H - - -

cOPOMY - - - qVOHH - - - aOUHE - - - altbiht - - -

More formally

0=0g,0,000,0,1 * * * %0,0,,-1%0,1,0 " " O, 11 """
Q0n-1,0 * " Xon-1,2-1%1,1,0 * " Xnip-1n-1

The rule is as follows:

(1) loyjl=n for all 0<i,j, ksn~1. Hence lol=n®.
We make a group of o 0, %1, -, O
which we call (i,)-group.

(2) If k#0 then oy ;, begins with a, followed by n-1
symbols of 0, 1 or # and has mark ’ on the kth sym-
bol. Note that if k=n—1 then the mark is placed on
the last symbol of a; ; ;.

(3) If j#0 and k=0 (j=k=0, respectively), a; ;; begins
with b (with ¢) and has mark " on the jth @on the

ith) symbol. As before those marks are placed on the
rightmost symbol when j=n~1 or i=n-1.

(NEAY

(4) If we ignore the marks, o; ; , can be written as
o j =UN @ K - #

where ue{a,b,c}, and N(i,,k) is the binary
representation of integer k (we will simply say
"N (i,jk)is k") or ## - - - # (we will say "N (i,j k) is
#s"). Hereafter the marks will often be ignored like
this when they are not important. N(iy,ji.kq,) and

_ N(igjpky,) have the same number of digits if i =iy
and j;=j,, which must be minimum enough to hold
the maximum integer in that (f,,j;)-group. (See
above example. IN(0,1,0)I=2 since the maximum
integer in that group is 3.)

(5) N(0,0,k)=k for all k£ and N(0,0,n—1)=11 - - - 1. Thus
n must be 2! for some /.

6) N(0,1,k)=k if k< the number of digits of N(0,0,0).
In general N(0,j,k) is k if IN(0,j—1,0)/=2 and
k<IN(@©,j-1,01. If IN(0,j-1,00{<1 then N(0,j k) is
#’s for all k. ,

(7) Let j=MIN{j | N(0,j,0)=#s}, namely, N (0,jy—1,0)
is not #’s and N(0,jo,0) is #’s. Then N(1,0,k)=k if
k<jg. In general N(@,0.k)=k if
JEMIN{j | N(-1,j,0)=#'s}22 and k<jo. N@.j.k)
(j#0) is determined by the similar rule as (6).

o might look complicated, but the idea is simple,
namely, we used the fact that [logn] = the number of
digits of the binary representation of n. Now.we claim the

following two facts to show such ¢ is desirable.

Claim 1. If o satisfies the rule above then A. s(n) =
MIN{i |V (@ ,0,0)=#s}.

Proof. Obvious by the rule above and by the
definition of As(n).

Claim 2. CRCW-PRAMs can check if o satisfies the
rule in constant steps.

Proof. The following description of the algorithm
may be a little informal but would be better for the reada-
bility. We assign one processor P; per each input symbol
held in M[i]. At the very beginning each P; reads M[i]
using its own processor number and save the input symbol
into some local variable. After that M[i] is mostly used
for the purpose of communication between processors, If
there is a case when each processor P; needs to read the
input symbol originally held in M[j] (i#f), the saved input

symbols are reloaded to the common array at the preceding -

step.

Step 1. Remember that we have to do everything in
constant steps. In the first step, we verify symbols a, b
and ¢ are placed at the same intervals. Each processor
introduces four variables, say, v,, V,2 v,s and v,s. Now ail
the processors reading input symbol a (i.e., those which
saved symbol a at the beginning) write their processor
number to M[0]. Thanks to the PRIORITY resolution of
the simultaneous writes, we can get the position of the left-
most a in M{0]. All the processors then read M [0] and
save the value into v,. Similarly for v,2 (the position of
the leftmost b), v,s (the second leftmost ¢) and v,+ (the
leftmost d that is the first symbol of). Next all the pro-
cessors P; reading input symbol a or b or ¢ (i.e, not
reading 0 or 1 or #) send a "signal” to Py, (write e.g.,
some special integer to M[i+v,]). Then all the processors
P; check whether the following two conditions are met:
(i) The first processor P is reading c. (ii) If P; received
the signal then it is reading 2 or b or ¢. (i) If did not
receive the signal then it is NOT reading @ or b or ¢ (..,
is reading 0 or 1 or #). To check (ii), all the processors
that received the signal and is reading O or 1 or #, write,
say, 1 into M [0] which bas to be cleared in advance. Then
by reading M[0] all the processors can tell whether condi-
tion (i) is met. If either of the conditions is not met then
all the processors halt and reject the input. This basic
technique to check in constant steps if some symbol
appears in the same interval, is used frequently below also.
Similar check is done for the intervals of b and ¢ using v,z
and for the intervals of ¢ using v,;3.

As before we make grouping of the processors. We
define (i,j.k)-group ((i,j)-group and (i)-group, respec-
tively) as a set of n (n2 and n3, respectively) processors
which are reading the symbols of &; ;& (% j0* " ®i,jn-1
and O 0" O n-1-1, Tespectively). @,j k)-groups,
(i,j)-groups and (i)-group are sometimes called s-group,
m-group and 1-group, respectively.

Step 2. Only the leftmost m-group ((0,0)-group) of
processors check whether the marks ’ are placed on proper
symbols of ¢y g t0 Qg ,-1- (Other processors whose pro-
cessor number 2 v, sleep during this step.) (i) The left-
most processor P that is reading ¢ of ¢ and each pro-
cessor P; reading a symbol marked by ’ sends a signal to
Piyy,+1. (i) All the processors which received the signal
check if they are reading the marked symbol. (iii) All the
processors but those of above (i) must not be reading the
marked symbol. (iv) Pv,,rl must be reading the marked

symbol. If this test is passed then it is guaranteed that
V2=V XV, .

Step 3. Do the same thing as Step 2 for the leftmost
l-group of processors and the mark ". v, =v,xv, is
guaranteed.

Step 4. Do the same thing as Step 2 for the entire o
and the mark @

Step 5. Check the position of mark * for the whole
string o. Each processor P; reading the marked symbol
sends a signal to P;,, ,.

Step 6. Do the same as Step 5 for the mark ". 7;
sends a signal to Py, .

Step 7. Only the leftmost m-group of processors
check whether N (0,0,0) - - - N(0,0,n—-1) are proper. (i)
Each s-group of processors determine their representative
(the processor of the least processor number within the
group). To do so, each processor calculates

(its own processor number 1 (v,~1))~(v,~1),

that is the processor number of the representative we
wented. (ii) Check whether IN(0,0,0)! = IN©Q,O,D)I =

= IN(0,0,n—1)I. Within each s-group, processors
can know the lefimost # by the simultaneous writes to the
representative. Thus all representatives hold the length of
the binary number of their group and then they send the
value to the next representative of each. If the value sent
is equal to the value of its own in all the representatives
then the test is passed. (iii) Check if N(0,0,0)=00 ---0
and N (0,0,n-1)=11 - - - 1. (iv) Each s-group calculates the
binary number N (0,0,k) of that group plus one and sends
its value to its next s-group. To do so, processors in each
s-group first find the leftmost O within that s-group. Then
each processor (reading 1) placed to the left of that O sends
0 to the processor of the same position of the next s-group.
Similarly, the processor reading the leftmost O sends 1 and
each processor to the right of the leftmost 0 sends the same
symbol as it reads. Check if the symbol sent = its own.
Now it is guaranteed that n=2} for some {. The reason
why this condition is needed will be given later.

Step 8. All the m-groups ((i,j)-groups) check
N{.j, 0, -, N(,j,n—1). What should be done is
almost the same as Step 7 but the following. (i) Each m-
group also has to determine its representative. Unlike Step

7, ‘only a part of s-groups of each m-group hold binary
numbers. We have to find the rightmost s-group for which
N(i,jk)##'s. Although the rightmost binary number in
each m-group does not have to be 11 1, its most
significant bit must be 1.

So far we have verified that the binary numbers in
each m-group are increasing properly. What we have to do:
next is to check the number of digits of those binary
numbers.

Step 9. Each m-group that is reading b (not c) at its
leftmost position checks whether the number of digits of
the binary numbers is correct. (i) The representative of
each m-group knows the number of digits of the binary
numbers of its own group. (It may be 0, i.e., only #’s may
appear.) (ii) The representative knows the leftmost s-group
in its own m-group in which only #’s appear. (How to do
is not so difficult: Each processor reading O or 1 writes 1
to its s-group representative. Then each representative to
which no processor wrote 1, writes its processor number to
its m-group representative.) Then that s-group reports the
position of the ’ mark to the representative. (If no ’ exists
then it reports O as the position.) (iii) The representative
checks if that position reported is equal to the number of
digits of the binary number of ‘the preceding m-group.
(However, if the number = 1 then it is regarded as 0.)

Step 10. Each m-group that is reading ¢ at the left-
most position checks the number of digits. (i) Each I-
group finds the leftmost m-group in its own l-group which
consists of only #’s and then knows the position of mark "
in that m-group. (ii) Each l-group finds the position of
mark ’ in the leftmost s-group consisting of only #’s in its
leftmost m-group. It checks that position is equal to the
position of (i).

That concludes the test whether the string o is proper.
If the test is passed then we can get As(n) as the position
of mark @ in the leftmost I-group which contains only #s.

Now we describe the condition strings 8 and A should
satisfy. (The conditions for B and y were already given.)
"We need 8 as an aid to get value ixn from i quickly. It
can be written as:

88081 By
where 8;=d0"! and for i21 8=b0""L & (i21) has
mark ’ on the ith symbol (=0) and mark " on the (ixn)th
symbol.

A is needed to assign processors appropriately when
computing the function f A Tt is of the form:

7"'_')“0,0)‘0,1 Tt }"OJOgn—I)"I,O T }‘l,logn—l v)"imfo‘
@) 1A jl=n forall i and j. (i) iylogn+jg+l=n, namely
IAi=n2 (i) Xi,j=u0"_1 where u=d if i=j=0, u=b if
j=0 and u=a if i=0 and j=0. (v) In each A;; but Agp
mark ’ is placed on the (ilogn+j)th symbol and mark @
on the jth symbol. Furthermore each A; ; such that j=0
has mark " on the ith symbol. Some of them look like:

X 0=d 0000000 - - - - - - 0

Ao, =a0"®0000 - - - - - 0 ("and @ on 1st)
Aojogn—1=a0 - - - 000@0 - - - - 0 (on (logn—1)th)

A =b0®"0---000--- --- 0 (on (logn)th)

Ay =b0®0"0 - - - 000 - - - 0 (" on (2logn—1)th)

=g Qo e e 0’ (on the rightmost). '

c,jo_-
Claim 3. CRCW-PRAMs can check whether 8 and A
satisfy the conditions above in constant steps.

A;

Proof. For 8, it will be enough to point out that the
interval for mark ’ is n%+1 and is n%n for mark ". As for
A, (i) we first set a variable, say, v,o,, = the position of
the leftmost b (of A1) — the position of d (of Agp). (if)
We verify that a’s and b’s are placed properly, ie., they
appear every Vv, symbols. (iii) Check if the mark ’ is
placed in the same interval v,+1. (iv) Check if the value
of Vyiog, is correct, by testing whether the last s-group of
the first m-group (similarly as before for the definition of
s- and m- groups) has the symbol marked by ’ at the
(logn—1)st position. Recall that we already know the value
of logn as the number of digits of N(0,0,0). (v) Check if
mark " is properly placed. The interval is nlogn+1. (vi)
Check mark @, This mark is placed at the same position
in all the m-groups.

Claim 4. CRCW-PRAMs can compute the value of

the function f* (h=(logn)**™)) described before in O(
As(n)) steps.) '

Proof We first make a preparation on string & which
helps computing ixxn. In each group of n? processors, the
one that is reading mark " sends its processor number to
the representative of the group. (ii) Each representative
computes the value sent — the processor number of itself.
Let this value be p. (iii) In each group, the processor
reading mark ’ knows the value p by communicating with
the representative. Then it reports this value p to the pro-
cessor at the same position in the first group. Thus in the
first group, the ith processor holds the value ixn.-)

Now we compute f h using n2 processors reading A.
Recall that each m-group consists of nXlogn processors.
The first m-group is responsible to compute
Qg2 ’qlogn) where g1, g9, s Glogn ATC Sym-
bols (0 or 1) of v. It might be helpful to imagine a
matrix-like arrangement of processors, logn columns of n
processors, each column corresponds to Ag ,j and is respon-
sible to the jth bit g;. Note that a row of this matrix con-
sists of logn processors whose processor numbers have the
same least significant logn bits. Similarly for the second
and further m-groups.

Before computing f % we check the number of 0 and
1 (in other words the number of #’s) in Y. (i) We find the
leftmost #. (ii) The. processor reading that # must be a
representative of some m-group (the upper-left corner of
the matrix above). (iii) That representative finds the posi-
tion p of mark " in its first s-group, computes pxn using 3
(see above) and sends a signal to the (pxn)th (from the
one reading the leftmost d of A) processor. Namely we
divide the position of the first # by logn. (iv) Repeat this
division exactly A5(n) times. If the processor reading the
leftmost symbol of Ay is sent the signal after the Ag(n)th
repetition, then the test is passed, namely we know 7y con-

tains exactly (logn)" 0/1°s in its left-half portion. After
this test is passed, we rewrite the right-half portion of A
from #’s into 0’s to make easier the job from now on.
Note that those #'s are introduced to make the length of ¥
appropriate with keeping the function G, nondegenerate.

To compute f* we again repeat A5(n) times the main
loop described in a moment. In its first execution of the

loop, (logn)"“(")‘l matrixes of processors compute f for
(logn)As(")‘l

tains logn bits. The (logn)XS(")_ ! values of f computed
are wriiten back to y by cramming from the left end. In

consecutive portions of 7y each of which con-

the second execution, (logn)*s®)2

on.

matixes work and so

In more detail, each matrix of processors do the fol-
lowing. Suppose that a processor P is placed at p th row
and ¢gth column of some matrix. P can tell value p as the
logn least significant bits (use & operation) of its processor
number and g as the position of mark @ jn its s-group. (i)
P wants to find whether the gth bit of its own processor
number is 0 or 1. We utilize the first m-group of o as fol-
lows. (It will become clear why n must be 2! for some 1.)
One can see the answer is obtained by looking at the
(pxn+q)th bit of o (Again we use 3 to compute p xn).
(ii) Now P checks if the bit obtained above is equal to the
bit of y which P is now reading. If it differs then P sends
a signal to the processor at the pth row (the same as P) in
the first column of the matrix. It should be noted that
exactly one processor in the first column receives the sig-
nal from none of the logn processors at the same row, that
means the values of the logn bits of y to which that matrix
is responsible is coincides with the values of logn least
significant bits of the processor number of that row. (iii)
That processor (having received no signals) looks at the
pth bit of P and knows the value of the function f .

That concludes the proof of Claim 4 and also the
proof of Lemma 1.

Remarks. (i) Note that the proof in this section fully
depends on the fact that ¢ of /Tc(n) is a constant. Thus we
cannot replace A,(n) by A, (n) which grows more slowly
-than A, (n). (i) The bitwise operation & is actually not
necessary. It was used only when we get the logn least
significant bits of a processor number. Obviously we can

get that by computing the processor number — the proces-
sor number of the representative. (iii) As for the resolution
of simultaneous writes we assumed the most powerful one,
i.e., PRIORITY. However we can show the weakest one
(COMMON) is enough. Much more processors are needed
(within polynomial) but no essentially new techniques are.
Details are omitted. (iv) We can use the standard tech-
nique (padding characters) to make G, have an arbitrary
number of variables.

References

1. P. Beame, ‘‘Limits on the Power of concurrent-write
parallel machines,” Proc. 18th ACM Symp. on Theory
of Computing, pp. 169-176, 1986.

2. S. Cook and C. Dwork, ‘“Bounds on the time for
parallel RAM’s to compute simple functions,”” Proc.
14th ACM Symp. on Theory of Computing, pp. 231-
233, 1982.

3. S. Cook, C. Dwork, and R. Reischuk, ‘‘Upper and
lower bounds for parallel random access machines
without simultaneous writes,”” SIAM J. Comput., vol.
15, pp. 87-97, 1986.

4. F. Fich, F. Meyer auf der Heide, P. Ragde, and A.
Wigderson, ‘“‘One, two, three .. infinity: Lower
bounds for parallel computation,”” Proc. 17th ACM
Symp. on Theory of Computing, pp. 48-58, 1985.

5. J. Hastad, ‘‘Almost optimal lower bounds for small
depth circuits,”” Proc. I8th ACM Symp. on Theory of
Computing, pp. 6-20, 1986.

6. "M. Li and Y. Yesha, ‘“‘New lower bounds for parallel
computation,”” Proc. 18th ACM Symp. on Theory of
Computing, pp. 177-187, 1986.

7. R. Reischuk, ‘“‘Simultaneous WRITES of paralle! ran-
dom access machines do not help to compute simple
arithmetic functions,”” J. Assoc. Comput. Mach., vol.
34, pp. 163-178, 1987.

8. H. Simon, ‘‘A tight OMEGE (log log n)-bound on
the time for parallel RAM’s to compute nondegen-
erated Boolean functions,”” Inform. Control, vol. 55,
pp. 102-107, 1982.

9. L. Stockmeyer and U. Vishkin, ‘‘Simulation of Paral-
lel Random Access Machines by Circuits,”” SIAM J.
Comput., vol. 13, pp. 409-422, 1984.

10. A. Yao, ‘‘Separating the Polynomial-Time Hierarchy
by Oracles,” Proc. 26th IEEE Symp. on Foundations
of Computer Science, pp. 1-10, 1985.

BRI EN BT

