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Abstract

In our parsing scheme, a set of grammar rules is represented by a network of processor-like computing
agents, each of which corresponds to an occurrence of a non-terminal or terminal symbol appearing in
the grammar rules. Computing agents in the network work concurrently in processing partial parse trees.
This scheme is shown to be fast (0(n+h) time for the first complete parse tree, where n is the length of an
input sentence and h is the height of the parse free) and useful in various modes of parsing such as on-line
parsing, overlap parsing, on-line unparsing, pipe-lining to semantics processing, etc.

The code for the parser is given, which serves as an example program of the application of a program-
ming language ABCL/1 for object-oriented concurrent programming. f

1 Introduction

This paper presents a new approach to parsing for context-free grammars, which is conceptually very
simple. The significance of our approach is supported by recent trends in computer-related fields. In
computational linguistics, much attention has been drawn to parsing of context free grammars owing to
the progress of context-free based grammatical frameworks for natural languages such as GPSG [Gazdar85),
LFG [Kaplan82], FUG [Kay79]. Furthermore, many practical natural language interface systems such as
[Hendrix77], [Brown82] are based on context-free (phrase structure) grammars. In-computer architecture
‘and programming, exploitation of parallelism has be actively pursued; innovative computer architectures
utilizing a great number of processors [Hillis85] [Seitz85] [BBN85] [Gottlieb83] have been developed and
accordingly new methodologies for concurrent programming [Yonezawa87] [Gelernter86] have been actively
studied.

In our parsing scheme, a given set of context-free grammar rules is viewed as a network of terminal
and non-terminal’ symbols, and a corresponding network of processor-like computing agents (or simple
processors) is constructed. The node set of the network has a direct one-to-one correspondence to the set
of occurrences of symbols appearing in the grammar rules and the link topology of the network is directly

In this paper, the term ‘non-terminal symbol’ should be interpreted in a broad sense. Feature bundles are considered to
be non-terminal symbols.



derived from the structure of tis set of graxumar rules. Cur parsing scheme produces all the possible parse
trees for a given input string.

Since the notion of objects in object-oriented concurrent programming naturally fits the computing
agents composing the network, this parsing scheme has been implemented in an object-oriented language
for concurrent programming ABCL/ 1[Yonezawa86b] in a very simple and direct mannes. The code for a
simplified version of the parser and a sample session of the use of the parser are given in Appendix.

2 The Basic Scheme

2.1 A Symbol as a Computing Agent

Our approach is basically bottom-up. Suppose we have a context free grammar rule such as:
yp --> V NP (1
In bottem-up parsing, a usual interpretation of this kind of rule is:

In a substring of an input string, if its first half porticu can be reduced to a category (terminal /non-
terminal symbol) V and subsequently, if its second half portion can be reduced to a category
VP, then the whole substring can be reduced to a category VP.

This interpretation is implicitly based upon the following two assumptions about parsing process:

o asingle computing agent (processor or process) is working on the input string, and

e non-terminal or terminal symbols such as VP, ¥V, and NP are viewed as passive tokens or data.
Instead, we will take a radically different approach, in which

e more than one, actually, a number of compu}ting agents are allowed to work concurrently, each
performing a rather simple task,

o for each occurrence of a non-terminal or terminal symbol in grammar rules, a computing agent is
given, )

» such a computing agent receives data (messages), manipulates and stores data in its local memory,
and also can send data (messages) to other computing agents that correspond to non-terminal or
terminal symbols, and

¢ data to be passed around among such computing agents are partial parse trees.

Suppose that the computing agent which acts for the V symbol in Rule (1) has received a (token that
represents a) partial parse tree t1. Also suppose that the computing agent which acts for the NP symbol
in Rule (1) has received a partial parse tree t2. If the terminal symbol which is the right boundary of t1 is,
in the original input string, adjacent to the terminal symbol which is the left boundary of t2, then t1 and
t2 can be put together and they can form a larger partial parse tree which corresponds to the VP symbol
in Rule (1). ‘

For example, let us consider an input string:

I saw a girl with a telescope.



If t1 is a parse tree constructed from ‘saw’ and t2 is a parse tree constructed from‘a girl’, then the right
boundary of t1is adjacent to the left boundary of t2. But if t2 is a parse tree constructed from ‘a telescope’,
then t1 and t2 are not adjacent and a larger parse tree cannot be constructed from them.

Now, which computing agent should check the boundary adjacency, and which one should perform the
tree-constructing task? In our scheme, it is natural that the computing agent acting for the NP symbol
does the boundary checking because, in many simple cases, the NP agent often receives t2 after the V
agent receives t1 (due to the left-to-right nature of on-line processing). In order for the NP agent to be
able to perform this task, the V agent must send t1 to the NP agent. Upon receiving t1 from the V agent,
the NP agent checks the boundary adjacency between t1 and t2 if it has already received t2. If t2 has not
arrived yet, the NP agent has to postpone the boundary checking until t2 arrives. If the two boundaries
are not adjacent, the NP agent stores t1 in its local memory for future references. Later on when the N P
agent receives subsequently arriving partial parse trees, their left boundary will be checked againt the right
boundary of t1.

When the adjacency test succeeds, the NP agent concatenates t1 and t2 and. sends them to the com-
puting agent acting for the non-terminal symbol VP in Rule (1). The VP agent constructs, out of t1 and
t2, a partial parse tree with the root-node tag being the non-terminal symbol ‘VP.’ This newly constructed
partial parse tree is then distributed by the VP agent to all the computing agents each of which acts for
an occurrence of symbol VP in the right-hand side of a rule. This distributed tree in turn plays a role of
data (messages) to the computing agents in exactly the same way as t1 and t2 play roles of data i.e., t1
and t2 to the V and NP agents above.

This is the basic idea of our parsing scheme. It is very snmple It is the matter of course that every
single computing agent acting for a non-terminal or terminal symbol can work independently, in parallel
and asynchronously. Rule (1) is represented as the computing agent network illustrated in Figure 1. (This
is part of a larger network.) Boxes and arrows denote computing agents and flows of trees, respectively.
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2.2 A Set of Rules as a Network of Computing Agents

Tt should be clear from the previous subsection that a set of context-free grammar rules (even a singleton
grammar) is represented as a network of computing agents each of which acts for an occurrence of a non-
terminal or terminal symbol in a grammar rule. More precisely, the correspondence between the set of
computing agents and the set of occurrences of symbols in the set of grammar rules is one-to-one; for each
occurrence of a symbol in a rule, there is one distinct computing agent. For example. the following set of
rules (including Rule (1)) is represented as the network depicted in Figure 2.

S --> NP VP (2)
S --> S PP 3
NP --> DET N (4)
PP --> PREP NP (5)



A box drawn with dash-lines corresponds to the computing agent acting for a symbol in the right-hand
side of a grammar rule and a box drawn with star-lines corresponds to the computing agent acting for the
non-terminal symbol in the left-hand side of a grammar rule. Note that the box labeled with ‘NP’ drawn
with star-lines (at the bottom of the figure) is linked to three boxes labeled with ‘NP.” This meats that a
partial parse tree constructed by the computing agent acting for the left-hand side symbol NP in Rule (4)
is distributed to the three computing agents acting for the three occurrences of symbol NP in Rules (1),
(2), and (5). Note that Rule (3) is left-recursive, which is represented as the feed-back link in Figure 2.

2.3 Three Types of Computing Agents

As the reader might have already noticed, there are three types of computing agents: Type-1 corresponds
to the left-hand side symbol in a grammar rule, Type-2 corresponds to the left-corner (i.e. left-most)
right-hand side symbol, and Type-3 corresponds to other right-hand side symbols. (If a grammar rule has
more than two right-hand side symbols, each of the right-hand side symbols except the left-corner symbol
is represented as a Type-3 agents.) For example, in Rule (1), Type-1 corresponds to VP, Type-2 to V, and
Type-3 to NP. )

A Type-1 computing agent Al receives a concatenation of parse trees from the Type-3 agent acting
for the right-most right-hand side symbol (NP for the case of Rule (1)) and constructs a new parse tree
with its root node being the non-terminal symbol that Al acts for and distributes it to all the Type-2 or
Type-3 agents acting for the occurrences of the same non-terminal symbol (e.g., ‘NP’ in the above case).

A Type-2 computing agent A2 receives a partial parse tree from some computing agent that is acting
for the occurrence of the same symbol as A2 acts for, and simply passes it to the computing agent acting
for the symbol occurrence which is right-adjacent to the symbol occurrence that A2 is acting for. In the
case of Rule (1), a Type-2 agent acting for V simply passes the received partial parse tree to the computing
agent acting for NP, In the case where a grammar rule has just one right-hand side symbol as in

NP --> N, S (8)

a Type-2 agent acting for N sends a partial parse tree to the Type-1 agent acting for NP.

A Type-3 computing agent has two kinds of sources of parse trees to receive: one from Type-1 agents
and the other from the Type-2 or Type-3 agent acting for its left-adjacent symbol occurrence. In the case
of Rule (1), the Type-3 agent acting for NP receives partial parse trees from Type-1 agents acting for
occurrences of symbol NP in other rules and also from the Type-2 agent acting for V. Upon receiving a
partial parse tree t1 from one of the sources, a Type-3 agent A3 checks to see if it has already received,
from the other kind of source, a partial parse tree which clears the boundary adjacency test against t1. If
such a parse tree t2 has already arrived at A3, then A3 concatenates t1 and t2 and passes them to the
computing agent acting for the symbol occurrence which is right-adjacent to the symbol occurrence A3
acting for. If no such parse tree has arrived yet, A3 stores t1 in its local memory for the future use. In the
case where no right-adjacent symbol exits in the grammar rule, (which means that the symbol occurrence
A3 is acting for is the right-most right-hand side symbol in the grammar rule), A3 sends the concatenated
trees to the Type-1 computing agent acting for the left-hand side symbol of the grammar rule.

The keen reader might have already noticed that Figures 1 and 2 follow the convention in which boxes

"drawn by star-lines are Type-1 agents and ones drawn by dashed-lines are Type-2 or Type-3 agents.

2.4 Terminal Symbols as Computing Agents

It should be noted that we do not make any distinction between non-terminal symbols and terminal
symbols. In fact, this uniform treatment contributes to the conceptual simplicity of our parsing scheme.
We do not have to make a special treatment for grammar rules such as:

NP ~-> NP and NP n

where a lower case symbol ‘and’ is a terminal symbdl. The urniformity implies that a word of a natural
language, say ‘fly’ in English, which has more than one grammatical category should be described as follow:
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v --> fly ®)
N --> fly (9

where Rules (8) and (9) indicate that a word ‘fly’ can be a verb or noun. The two rules are represented
by two Type-1 agents acting for V and N; and two Type-2 agents acting for the two occurrences of ‘fly’
in Rules (8) and (9). Thus, in our parsing scheme, the grammatical categories of each word in the whole
vocabulary in use are described by grammar rules with a single right-hand side symbol. This means that
conceptually, one or more computing agents exist for each word. (Those who might worry about the
number of computing agents acting for words should read Subsection 4.2.)

2.5 Input to the Network

In our parsing scheme, a given set of grammar rules is compiled as a network of computing agents in the
manner described above. Then how an input string is fed into the network of computing agents? We
assume that an input string is a sequence of words, namely, terminal symbols.

In feeding an input string into the network, two things has to be taken into account. One is: for
each word in an input string, appropriate computing agents, to which the word should be sent, must be
found. Of course, such computing agents are ones that act for the occurrences of the word in the grammar
rules. Notice that there can be more than one such computing agent for each word, due to multiplicity of
grammatical category and the multiple occurrences of the same symbol in the right-hand side of grammar
rules. Since the set of appropriate computing agents can be known in compiling a given set of grammar
rules, such information should be kept in a special computing agent which does the managerial work for
the network. Let us call it the manager agent. The manager agent receives an input string and sends (or
distributes) each word in the input string in the on-line manner.

The other thing needed to be considered in the input feeding is: the information about the order of words
appearing in an input string must be provided to computing agents in the network in an appropriate way.
This is because Type-3 computing agents need such information to perform the boundary adjacency test.
For this, each word to be sent (or distributed) to computing agents in the network should be accompanied
with its positional information in the input string. Suppose an input string is I saw a girl with a
telescope. Then a word girl should be sent with the pair of its starting position number and its ending
position number. The actual form of data (message) for the word girl may look like (3 4 girl). See
Figure 3. This data form convention can be adopted in dealing with more general parse trees. (In fact, a
single word (terminal symbol) is also the simplest case of parse trees.)

2.6 How Symbols Flow

To get a more concrete feeling of how symbols are processed in the network, let us look at the flows of
words a and girl in the initial phase. Assuming that the following rules are compiled into the network,

DET --> a (10)
N -->girl (11)

the manager agent sends (2 3 a) and (3 4 girl) to the Type-2 computing agent acting for a in Rule
(10) and the Type-2 computing agent acting for girl in Rule (11), respectively. They are in turn sent
to a Type-1 agent Detl acting for DET in Rule (10) and a Type-1 agent N1 acting for N in Rule (11),
respectively. These Type-1 agents construct a parse tree with its root node label being DET or N. Then
the parse tree constructed by Detl is sent to a Type-2 agent Det2 acting for DET in Rule (4). Similarly,
the parse tree constructed by N1 is sent to a Type-8 agent N2 acting for N in Rule (4). In both cases, the
positional information is accompanied. That is, the data forms actually to be sent are (2 3 (DET a)) and
(3 4 (N girl)).

Agent Det2 simply passes the parse tree to agent N2. N2 performs the boundary adjacency test between
(2 3 (DET a)) and (3 4 (N girl)) and finds the test to be ok. Since the test is ok, N2 concatenates
the two data forms, constructing a new single data form:
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(2 4 (DET a) (N girl))

This new data form is then sent to the Type-1 agent acting for NP in Rule (4). This agent constructs a
data form of the parse tree for NP, which looks like:

(2 4 (WP (DET a) (N girl)))

This data form will be distributed among Type-2 and Type-3 computing agents acting for symbol NP in

the network. (See Figure 4.)
' At the end of this section, it should be reminded that actions taken by computing agents such as Detl,

Det2, N1, and N2 are performed all in parallel. Also note that such computing agents keep being activated
as long as data continue to arrive.

3 Applications

3.1 On-Line Parsing and Overlap Parsing

In starting parsing process, our scheme does not require the network of computing agents to be fed any
token that indicates the end of an input string. That is, an input string can be processed one by one from
the beginning in the on-line fashion. Even if feeding an input string to the network is suspended in the
middle of the string, partial parse trees can be constructed based on the part of the input string that has



been fed so far, and the feeding of the rest of the input string can be resumed at any moment. Thus,
our parsing scheme is quite useful in real-time applications such as interpreting telephony (simultaneous
interpretation). (Notice that our scheme does not require that an input string is fed in the left-to-right
manner; words in the input string can be fed in any order as long as the positional information of each
word in the input string is accompanied. See Subsection 2.5.) : )

Our parsing scheme has no difficulty even when more than one input string is fed to the network
simultaneously as long as different input strings are fed separately. The separation can be easily made by
attaching the same tag (or token) to each word in the same input string. Such a tag is copied and inherited
to partial parse trees which are constructed from the same input string. When a Type-3 computing agent
tests the boundary adjacency between two partial parse trees, the sameness of the tags of the two partial
parse trees are checked additionally. The capability of handling the multiple input strings is useful in
processing the overlapping utterances by more than two persons engaging in conversation.

This way of handling the multiplicity of input strings is similar to the idea of color tokens used in
data-flow computer architectures.

3.2 Unparsing

Suppose the user is typing an input string on a keyboard and he hits the ‘backspace’ key to correct
previously typed words. In the case where these incorrect words have already been fed to the network, our’
parsing scheme is able to unparse the incorrect portion of the input string and allows the user to retype
it. Furthermore, the user can continue to type the rest of the originally intended input string.

This unparsing capability is realized by the use of anti-messages. The anti-message [Jefferson85) of a
message M sent to a computing agent A is a message that will be sent to A in order to cancel the effects
caused by M. The actual task of cancelling the effects is carried out by A. (Thus A has been programmed
beforehand so that it can accept cancelling messages and perform the task.) If necessary, A must in turn
send anti-messages to cancel the effects caused by the messages A itself has already sent. In implementing
the unparsing capability, the express-mode message passing in ABCL/1 [Yonezawa86b] is useful, which is
a kind of interrupt-like high priority message passing.

3.3 Pipe-Lining to Semantic Processing Agents

Our parsing scheme produces all the possible (partial) parse trees for a given input string. In fact, if each
Type-1 computing agent in the network stores, in its local memory, all the parse trees it constructs, all the
components of the triangle matrix used in CKY parsing method (i.e., all the possible parse trees) are in
fact stored among the Type-1 agents in the network in a distributed manner. If the semantic processing is
required, these partial or complete parse trees can be sent to some computing agents which do semantics
processing. o

Actually, parse trees can be sent to semantic processing agents in a pipe-lining manner. Suppose a
Type-1 computing agent Np1 is acting for an occurrence of a non-terminal symbol NP. Instead of letting
Np1 distribute the parse trees it constructs to Type-2 or Type-3 agents acting for occurrences of the symbol
NP, we can let Npl to send the parse trees to the semantics processing agent which check the semantic
validity of the parse trees in the pipe-lining manner. After filtered by the semantic processing agents, only
semantically valid parse trees (possibly with semantics information being attached) are passed to Type-2
or Type-3 computing agents acting for NP. See Figure 5.

‘These semantic filtering agents can be inserted at any links between Type-1 agents and Type-2 or
Type-3 agents. The complete separation of the semantic processing phase from the syntactic processing
phase in usual natural language processing systems corresponds to the placing semantic processing agents
only after the Type-1 computing agents that act for the non-terminal symbol S that stands for correct
sentences.
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4 Analysis
4.1 Complexity Analysis and Degree of Parallelism '

It is hard to analyze the complexity of our parsing scheme in an exact manner because much parallelism
is involved in various ways. It can, however, be shown that the first complete parse tree is produced
from the network in 0(n+h) time, measuring from the beginning of feeding an input string, where n is
the length of the input string and h is the height of the parse tree (not the height of the network)?. In
this analysis we assumed that both processing of a partial parse tree by a single computing agent and a
message transmission between two computing agents take a single unit time.

Since all the possible complete parse trees for a given input string are produced from the network in
the pipe-lining manner, the second and subsequent complete trees are expected to be produced in a short
interval, possibly a single unit time interval. But more precise estimation requires more careful analysis
including simulation, which is found in [Yonezawa87a].

Also it should be pointed out that the degree of parallelism in processing an input string is 0(n*h).

4.2 The Number of Computing Agents

As is obvious from the construction of the network, the number of computing agents is exactly the same
as that of the nodes of the network. Since the node set of the network has one-to-one correspondence to
the set of symbol occurrences in a given set of grammar rules, the number of computing agents can be very
large if the grammar is complex. But not all these agents can be active simultaneously. The number of
all the agents that can be active in processing an input string is small compared to that of the computing
agents consisting of the network.

Since the main task of the Type-1 agent acting for the left-hand side symbol of a grammar is just to

distribute a constructed parse tree, this task can be performed by the Type-3 agent which acts for the

2Usually, the order of the height of a parse tree is the same as the left boundary of the length of an input string.



rightmost right-hand side symbol of the grammar rule. Thus the Type-1 agent can be eliminated. This
reduces the number of computing agents.

Of course, there are number of other ways to reduce the number of computing agents at the sacrifice
of processing speed and the conceptual clarity of the parsing scheme. We, however, believe that maturity
of the technology for exploitation of parallelism will dispel the apprehensions regarding the number of
computing agents.

4.3 Generality of the Parsing Scheme

Our parsing scheme can handle the most general class of context free grammars except cyclic grammars.
If a set of grammar rules has circularity®, infinite message passing may take place in the network. To
detect or avoid such infinite message passing, a special provision must be made. But fortunately such a
provision can be done at the time of compiling the set of grammar rules into the corresponding network of
computing agents.

As suggested in Subsection 2.2 and Figure 2, left-recursive grammar rules can’ be handled without any
modification to the grammar rules. From the nature of bottom-up parsing, our parsing scheme cannot
handle an e-rule (a rule that produces a null string). But as is well known[Hopcroft79], all the e-rules can
be eliminated from a given set of grammar rules by transforming the set of rules without changing the
generative power of the original set of rules.4
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