Tuss I EE 151

(1988 2 19)

EFUZ 4 27 5 2 0D 52N w227 2 PERESE{dR
Xk &%

ZERERBEASE ERE TR
®247 HWATHAMS—1—1

—RRZ, BFITR T T ADF N 7 EWERRIRR S 0S5 L0 NL0 BHLY. 2
OEHOD 1 2, RS RERETZA XY PHERIBETCH B 20853, AT
2, BEA TV 27 P NOBRCERL, $—1CF Ny 7 LRI T A B FE D
WTHERE, COFEOFYVFAEBTAFTE, T. J. LeBlanc& J. M.
Mellor—CrummeyitkoTRESNInstant ReplayTHR
INLDBDOTHS. nNBBHNIr Y5 L0ETEY VAT EFRERIETZH07T,
WRLDBRT7 7S5 LOMBIAOONTOBZFA 2 Y o 2BF Ny V5D ENT
3. Instant Replay THREIALTYAF7IEASE CHIERMC I
RLZHAS., RIELETRIT 0 S 20HERTY—N, BXT, ZO0MEERICOL
THHET 5.

A Unified Approach to
Debugqging and Performance Evaluation of
Parallel Programs

Taks I"n' de Tthkarni

Infarration Systems and Electronics Development Laboratory
Mitsubishi Electric Corporation
5-1-1 Ofuna, Kamakura City, Japan 247
Metwor k dddress: ohkami Bisvax.islab. melco junet@uunet uu net

Abstract

I general, tasks of debugging and performance evaluation of parallel programs sve more
difficult than those for sequential ones. One of the reasons les in asynchronous
occurrences of events to parallel processes. This paper describes a unified approach to
debugging and perforreance evaluation of parallel programs, focusing on opersations on
shared objects. The original ides was developed by T. J. LeBlanc and 1. M. Crummey for
Instant Replay, which provides repestable executions of & parallel program for cyclic
debugging. 1t was extended to the evaluation of parallel perforrmance. Some results from
experiments are also described.

~1~\.

1. Introduction

Parallel computing systems are now available
for a wvariety of applications: for example, BBN
Butterfly [14], Sequent Balance [8], and
alliant F¥ [13]. Programmers write parallel
programs for these systems to exploit their
potential parallel execution capability. Parallel
programs use parallel processes running in
parallel on different processors. Parallel
processes usually coordinate to complete a
simyle job. Process intersctions are under
control of some synchronization mechanisms,
such as semaphores and monitors. This is a
typical scenario for parallel programrnd).

we have been involved in sequential
programming for three decades and have
compiled many know-hows and tools for that,
although there are st11 many issues o be
addressed. However, parallel programming is
relatively new 1o us, and we do not have much
krowledge and experience. I it were not much
different from sequential programmming, there
would be no problems; conventional techniques
developed for sequential programrming swould
suffice for parallel programming. It becomes a
new awareness that parallel programraing
presents new problems that are not fournd in
sequential programming. &s pointed out by
Carver and Tai in [4], considerable reseatrch
efforts have been devoted to the design and
implementation of parallel systems; few
efforts have concentrated on debugging and
performance evaluation of parallel programs.
we focus on these areas in this paper.

Debugging parallel program is more difficult
than debugging sequential programs, because
asynchronous events occur to parallel processes
running on different processors. The execution
status of one run of a parallel program is not
always the same a5 that of the other run of the
same program; that is, prograrm execution is not
always trepeatable. 1t implies that an ervor
found ina runof a program may not be found in
another run, making a debugging task hard. In
sequential programming, programners usually
g0 through several debugging cycles to remove
Thiz conventional cyclic debugging
technigue is bazed on the repeatability of
program execution. The problem is that this
assumption does not hold in parallel execution.

EFrars.

The main purpose of parallel programming is
the increazed performance. In general,
however, it is not necessarily an easy task to
achiewe high performance with parallel
programming. Parallel performance heavily
deperds on the efficiency of coordinations of
parallel processes in many cases; inefficient
coordinations waste time for interprocess
communications, which would be spent for
raking more progress. bnorder o achieve good
parallel performance, programmers also go
through several iterations of code improvement.
One of the issues in parallel perforiance
evaluation is to find an efficient way to obtain
parallel execution profile so that programmers
can easily find bottlenecks in their programs.

LeBlan: and Mellor-Crumrmey proposed a new
et hod for debujging parallel programs,
termeed Instant Replay [10]. 1t prowvides
repeatable execution of parallel programs and
allows programmers to use the conventional
debugging technique for debugging parallel
programs. 1 focuses on the objects shared by
parallel proceszes, which are guarded by some
synchronization mechanisms. B records the
history of accesses to each shared object in the
monitoring phase (the first vunof 3 programl,
and controls the accesses to shared objects 1o
keep the recorded relative order of ac =
the replay phase {the subsequent runs of the
programy. This idea can be natually e
for performance evaluation of
programs. The record of the accesses to shared
objects clearly shows a parallel
profile, which can be used to pinpoint the
bottlenecks in parallel execution. Therefore, we
can use a single unified model of parallel
execution for debugging and performance
evaluation of parallel programs.

235 in

execiution

In the next section we discuss debugding and
performance problems and previous work to
address some of them. Section 3 gives a brief
review of lnstant Replay. Section 4 describes a
riethod for performance evaluation of parallel
programs, based on the ides of Instant Replay.
in Section 5 we present the prototype
performance evaluation tools developed for BEN
Butterfly processors and some experience with
the tonls. Section 6 summarizes the advantages
of our approach and describes our plan for
future swork.

~D~

2. Problems
Z_1. Debugging Problems

Parallel processing is provided with parallel
processes in many computing systems; parallel
programming specifies how parallel processes
coordinate to complete a single job. It is
reasonable that no assumption is made about the
relative speed of parallel processes; we only
assume finite progress by each process [10].
Therefore, parallel programs are not
necessarily deterministic, and hence, debugging
parallel programs is moke difficult than
debugging sequential programs, which is based
on the determinstic nature of sequential
programs. Mon-determinism does not guarantes
that executions of parallel programs always
produce the same results for the same input. In
the successive executions, one may not be able
to find the error swhich occutrred in a previous
execution. Thus, it complicates debugging tasks
for parallel programs. This issue has been
addressed by two approaches: snapshot and
repeatable execution appoaches.

The first approach selectively takes snapshots
of program states during execution for later
analysis, with a focus on the program behavior.
Bates and Wileden proposed the Zedevierss
sedractios approach which monitors the
specified events that are hierarchically defined
in terms of primitive events and provides an
abstract view of the program behavior [3].
Baiardi, DeFrancesco, and Yaglini developed a
debugger for a concurrent language, which
makes it possible to compare the expected
behavior and the actual behavior, using the
description of program behavior [1]. Chandy
and Lamport proposed an algorithom to
determine the global state of a distributed
cormputing systern from the recorded process
states and messages exchanged amon) processes
[5]. One of the major disadvantages of the
snapshot approach is that the snapshots taken in
a program execution do not necessarily indicate
the general behavior of the program, but
merely the behavior in the single execution.
Amother disadvantage is that it is very difficult
to specify in advance 11 the events which may
cause errors. Yet another disadvantage is that
the amount of information collected during
execution terds 1o be large.

The second approach provides repeatable
executions of a program. This is a relatively
new approach, while the snapshot approach is
basically an extension to the sequential snapshot
approach. Carver and Tai proposed a method to
reporoduce a sequence of synchronizations for
testing parallel programs, focusing on shared
variables, like semaphores and monitors, to
control synchronizations [4]. Chu proposed a
technique to replay program execution in
atomic transaction systems, which checkpoints
each wversion of atornic objects and records a
timestamp for each atomic action {6]. LeBlanc
and Mellor-Crummey proposed fuasdssi Leplsy
[10], which will be reviewed in the next
section. One of the advantages of the repeatable
execution approach is that it allows
programmers to go through conventional
debugging cycles and to use the debugging tools
developed for sequential programnning.

2.2. Performance Problems

we expect to speedup our programs by using
parallel systems. However, the FAusdsscndsl
Lgw o Fargfiel Compudsdion states that a
parallel solution utilizing P processors can
improve the best sequential solution by at most
a factor of P [15]. Current parallel systems
only offer low-order polynomial parallelism;
the number of processors is bounded by a
low -order polynomial. On the other hand, many
problems 1o be solved on these parallel systems
require medium- 1o high-order polynomial
parallelism. Thus, there is a gap between the
requirernents and the actual capability of
parallel systems. All we can do is to exploit as
much parallelism of parallel systems as
possible by reducing overhead. Parallelism
offered by current parallel systems is so
elugive that overhead easily 2ats it up. Usually,
programring is the main source of overhead.

The primary rotivation of parallel
programming is the high performance oblained
by parallel processing. It seems obvious that we
obtain higher performance with parallel
programming. However, this is not always the
CASE in reality. Inefficient parallel
programming incurs too much overhead 1o
exploit parallelism or misses the potential
capability of parallel systems; parallel
performance may be even worse than sequential

performance in some cases.

To our best knowledge, there is no widely
accepted general programming method to obtain
the best performance from any parallel
computing system. Therefore, programmers
resort to a conventional method that has been
used for sequential programming; they go
through performance-tuning cycles to improve
their programs until the expected performance
is achigved.

When we don't obtain high performance in
executing a parallel program, we may call it a
performance s+rws. Then, we may think of
performance tuning as part of program
debugging. Howewver, we don't know yet how to
describe the expected performance as part of
the program specification. This is compared
with the situation in the hardware area, where
the notion of #ming sreor is now widely
accepted. If an integrated circuit doesn't work
with the expected performance, it is defined as a
defsy Bufd [9]. Current hardware design
systems deal with this type of faults {errors).
More research efforts are required to deal with
performance error in software.

One of the previous research efforts on parallel
performance evaluation is the Miller's [11].
He developed a systern for monitoring the
behavior of distributed programs, which is used
to measure the amount of parallelism that
occurs in o the execution of a distributed
prograrn. His model, called the - 5058¢
(Ristrituted Programs Monitor), traces the
history of selected events in the life of the
processes in a program, where the sefschasd

sivesfy are those that have blocking
dependencies between Processes for
synchronizations. From the history of the

events, one can construct a program history
graph that shows the process interactions with
timming data. Programmers can check the
performance prob]erﬁs with the graph.

3. Instant Replay — A Review

fasdend Resdaris a debugging approach proposed
by LeBlanc and Mellor-Crummey [101, 115 main
goal iz 1o provide repeatable execution of
parallel programs and to allow programmers to
go through conventional debugging cuycles to

FEMOVE programming errors. 1ts prototype was
implemented for parallel programs written for
BEN Butterfly processors. The following is a
brief review of Instant Replay.

Instant Replay models all interactions among
parallel processes a3 operations on shared
objects. Each shared object is associated with a
version, which is updated by write operations,
but not by read operations. Operations on shared
objects form a sequence of versions, which is
totally ordered. Actually, it is partially ordered
since we do not need to impose an ordering on
multiple processes that read a particolar verion
of each object. From the recorded sequence of
write operations on each shared object, it is
possible to reconstruct the proper sequence of
state changes for all shared aobjects. Similarly,
from the recorded version number of esch
shared object read by a process, it is possible to
reconstruct the proper input walues for that
process. Therefore, by recording the sequence of
wersions of each shared object accessed by each
process during the execution of a parallel
program, one can replay the execution of 5
parallel program. Since program execution can
be repeated without recording data generated
during execution, the wolume of recorded
information is very small.

Instant Replay requires that the set of
operations on each shared object has a walid
serialization, which is achieved if the result of
each individual operation is the same as it would
be if the operations had all been executed in
some sequential order. Every process has to use
a protocal that ensures a valid serialization for

access 1o each shared object. & CREW
{Conccurent Read and Exclusive Oafrite)
protocol [?] iz a good example. It ensures a
total order of writers with respect to each
shared object, a total order of readers with
respect to writers of gach shared object, and a
partial order of readers with respect to each
shared object.

There are two phases in Instant Replay:
monitoring and replay phases. The monitoring
phase is the very first execution of a parallel
prograrm. In this phase all the accesses to shared
abjects by a process are recorded in the
history tape of the process, and the wversion
number of each shared object is updated by

~4~

stract
lock; f* for P and ¥ *f
RIS ion; f* object wersion *fF

_‘;".Q'
t_readers; £
% other data *7
} objectk;

Figure 1. 5tructure of Shared Object.

sctive readers *¢
total readers *f

a_readers;

Entyy Bead {object, process) {
if {mode == MORITOR) then
FP{object. lock);
Add_Atomic{object. a readers,
{object. lock);
Tape Write{process,

1};

object. version);
else s in replay mode */
Tape Read{process);

keyp
while
end_if;
¥
Exit Bead {object) {
Add_atomic{object. £t readers, 1);

{object. wversion 1= kep) do delay;

if {mode == MONITOER) then
add_atomic{object. a_readers, -1);
end_if;
¥

Figure Z. Entry and Exit Procedures for Readers.

Entry Write {object, process) {
if {mode == MORITOR) them
FPi{object. lock);
while [{object.s readers
Tape Write{process,

= 0) do delap;
object_wversion);
Tape Write{process, object.t readersj);
else /¥ in replap phase */

kep Tape_ PReadiprocess);

while {object.wversion != kep) do delay;
key

Tape Pead{process);
while {object.t readers < kep) do delay;
end_if;
¥
Exit_Write {object) {
n -

r

object. t_readers
if i{mode == MORITOR) thewn
object wersion += 1;
¥iobject. lock);
else /% in replay mode */f
Add_nAtomic{object.wversion, 13%;
end_if;
¥
Figure 3. Entry and Exit Procedures for Writers.

every write operation. The replay phase is the
subsequent execution of the same program,
which is the replay of the first execution. In
this phase the information recorded in the
history tapes is used o control accesses of each
process to shared objects so that the first
execution be repeated.

e now show a CREW access protocol for shared
objects. It uses four procedures: entry and exit
procedures for readers, and those for writers.
Figure 1 shows the structure of shared objects;
Figures 2 and 3 show entry and exit procedures
for readers and those for writers, respectively.
Each process has to use the entry procedure
when it reads/writes a shared object and the
exit procedure when it finishes
readingfwriting. These procedures use
semaphore operations (P and ¥) and atomic add
operations (Add_Atomic) for synchronizations.

4. Parallel Performance Evaluation

In Instant Replay the behavior of parallel
programs is determined by the interactions
among parallel processes, which are modeled as
operations on shared objects. This basic idea is
naturally extended for parallel performance
evaluation; the timings of operations on shared
objects are measured [12]. Measurements
reflect the efficiency of synchronizations in
parallel programs. If a programmer finds
unreasonably long synchronizations, he can
improve his program o shorten them.

We focus on process interactions, because they
are the main source of difficulties in debugging
and performance evaluation of parallel
programs; the difficulties that are also found in
sequential programming are not considered
here, but left to the conventional techniques
developed for sequential prograrmming over
years.

For performance evaluation, we model a single
read/wtite operation on a shared object as a
sequence of three procedures: the safry, wors,
and &x7¢ procedures. The entry and exit
procedures are the same as defined for a CREW
protocol in the prewvious section. The work
procedure performs the user-specified
opetration on the shared object. We mezasure the
timimgs for the entry and work procedures in

each parallel process; the exit procedure
usually executes so quickly that we don't need to
measure it. The timings are recorded in the
history tape of each process.

We nw show a data structure for performance
evaluation. Ewvery time a parallel process
accesses a shared object, the following 6-tuple
i5 recorded:

(soid, vrsn, opid, stime, eti me, wiime),
where

so#d = the shared object 1D;

vrsz=the version number of the shared object;
$p7F = the (read/write) operation 1D;

s#7me = the start time of the operation;

#fimre = the time spent by the entry procedure;

wiimre = the time spent by the work procedure.

S. Parallel Performance Analysis Tools

Based on the idea described in the prewvious
section, we implemented a prototype version of
parallel performance analysis tools, called the
PARPAT <{PARallel Performance Analysis
Tools}, for performance analysis of parallel
programs written for BBN Butterfly processors
[12].

we model an access to a shared object as the
sequence of three operations: the safry work,
and £x77 operations, as described in the
previous section. The definitions of these
operations are basically 1eft to the user; typical
grfrgand ex7# operations for a CREW access
protocol are provided through a library. The
user has to define the word bhe’ration.

A parallel program to be monitored has to be
instrumented with "the monitor procedures,
which take care of creation and deletion of data
structures and recording performance data. The
“main procedures for users are as follows:

- mon_init{)

- mon_fin()

- mon_process{)

-~ moen_sobj{)

- mon_sobj_access{)

The mon_init{} procedurs opens the data
structures for performance monitoring and
initializes them. It must be called at the
beginning of the master process. Mote that we
assume that every parallel program begins
execution with a single master process, which.
eventually spawns parallel child processes. The
mon_fin{)} procedure closes the data
structures; the data blocks storing performance
data are retained after execution of the
program, and the others are deleted. The
men_process{} procedure stores the ID
numbers of newl g created parallel processes in
the process table. Similarly, the mon_sobj{)
procedure stores the ID numbers of netwrly
created shared objects in the shared object
table. The mon_sobj_access{) procedure
takes the safeye word, and sxffprocedures and
invokes thern in that order for the specified
shared object. The sfimes, sfimes, and wiines
are measured and recorded within this
procedure. The recorded performance data are
stored in the data blocks {tape) of each process
and retrieved after program execution. & print
procedure is provided for display of the data.

Figure 4 shows an example of a simple parallel
program {producer-consumer program}. In
this example, the mEsfer process spawns
Sroduesr and SEGSLERES processes and
cormmunicate with them through the sed7- £ the
SEFLCEr AT LORTUaTEr processes communicate
with each other through the sedsi-=

Figures 5 and 6 illustrate the master{) and
child{) procedures, respectively. The
Seodieer and conrpmer processes share the
code of the child() procedure. After creating

"two shared objects and spawing two processes,

the master process starts the two processes by a
write operation on swdf- # by using the first
mon_sobj__access{) procedure and then
performs a read operation by using the second
mon_sobj_access{) procedure to check the
end of the activities of the two processes. The
Srodueerand consdares processes produce and
consume, respectively, items by using sedsf-=
The #w, ww, and xurin the code are some £,
werrk, and sxiF p}'ocedures for write access;
similarly, the £~ we, and xrare those for read
ACCESS.

Figure 7 shows pari of displayed performance

~~

Master
1
o sobj-1 -————--- +
1 I
Eroducer ----- so0bj-2 --—--- Consumex

Figure 4. Producer -Consurmer Prograrm.

master:)y {
mown_init{);
create sobj-1 and sobj-2;
mon_sobj {sobj-1);
mon_sobj {sobj-2);
create producer and consvmer;
mon_process{prodocer);
mon_process{consuvmer) ;
mon_sobj_access{zobj-1, ew, ww, xw);
mon_sobj_access{sobji-1, er, wr, xI);
mon_Kini);

H

Figure 5. Producer-Consumer Prograr Master Code.

child{) {
mon_initd();
mon_sobj_saccess{sobji-1, er, wr, Xr);
if this is the producer process
thewn producerd);
else consumeri);
mon_sobj_access{sobj-1, ew, ww, xw);
mon_Kim{};

1
¥

producer{) {
while there are still items to produce
mon_sobj_access{sobj-2, ew, wv, xw);
¥
consumer{y §
while there are =till items to consume
mom_sobj_saccessi{sobj-2, ew, ww, xw);
¥
Figure 6. Producer-Consumer Program Child Code.

data for the producer-consumer program. |t
shows the recorded accesses on two shared
objects with times; the 8331as object
corresponds to swdf- /4 and the dc30ce to
swdi-Z Al timings are measured in ticks with
the tocal clock. The Z97%0r Operation 1D is the
number assigned to each access operation, which
is passed to the mon_sobj_access() as an
argument for easy identification of the operation
in performance anal ysis.

FEREEFT ME: Producer

ME object ID: 0x0114356a
Process Object ID: Ox01682a7c
Procéss User ID: 0x00000200
Processor : ox0001

Frocess Start Time: 0Dx315057db {(ticks)
operations on Shared oObjects:

Time ERSW OPID SOID YESH ENTERY WOEREK

288 B 0200 5331aa 0001 377 1
1598 w 0201 de30ce 0001 2 2
1966 W 0202 dec30ce D002 Z 1
2223 W 0203 dc30ce 0003 2 2
2691 W 0204 dc30ce 0004 2 1
2025 w 0205 dc30ce D0DB 4 2
3393 W 0206 de30ce 0008 1255 2
4980 W 0207 dc30ce D00a 1282 1

19687 W 0210 de3fce D01c 1302 1
20995 W 0211 8331sa 0002 2 2

Time: 21037 {(ticks)
Processes Created: Hone
shared Objects created: Rone

gperations on Shared objects {Summary) :

Processor Life

S50ID BSY #0ps Total ERNTEY WORK
8321asa E 1 978 977 1
dc30ce W i6 14131 14108 23
8331aa W 1 4 2 2

Figure 7. Displayed Performance Data.

A5 a major experiment using the PARPAT, we
implemented the odd-even sort [2], based on the
butterfly connection. This parallel sort
algorithm is well described in Chapter 6 of
[18]. e ran the parallel sort program
instrumented with the monitor procedures for
data sizes 1024, 2048, and 4096 using 2, 4,
8,16, 32, 64, and 128 processes/processors
on a Butterfly processor.

Wwhen we checked the performarce data for
various runs of the parallel sort program , we
found that the parallel performance got better
a3 the number of processors increased, but in
the range of up to 64 processors. IT the program
used more than 64 processors, then the
performance decreased as the number of
processors increased. When the program used
128 processors, the parallel performance was
ruch worse than the sequential performance.

After careful analysis of the monitored
performance data, we found the problem. The
problen was the start signal, which was sent by
the master process 1o all the child processes o
start their tasks. When the program used 644
processors, the longest fime for a child o get
the signal was 30-90% of its lifetime. Without
the PARPAT we could not have found this
problem. We were very surprized to see the
importance and usfulness of the parallel
performance analysis tools,

6. Conclusion

wie have presented a unified approach to
debugging and performance evaluation of
parallel programs. it models the behavior of
parallel programs as operations on shared
objects. 1t allows progrmmers to go through
conventional debugging and performance-tuning
cycles to remove programming errors and to
obtain high performance with the help of the
tools developed for sequential programming.

For future, we plan to refine our approach for
efficient implementation and to efficiently
combine Instant Replay and PARPAT. On the
other hand, we think we need to investigate the
advantanges and disadvantages of our approach
for a wariety of contexts in more depth.

Acknowledge ments

This work was done while the author stayed at
Departrment of Computer Science, University of
Rochester {Rochester, Mew York), from the
summer of 1985 to the spring of 1987. The
author is grateful to Prof. R. Fowler, Prof. T.
LeBlanc, and their Ph. D. students, especially .J.
Mellor-Crummey, for fruitful suggestions and
dissussions.

References

[1] F. Baiardi, N. DeFrancesco, and G. ¥aglini,
Development of & DEIugeer oF & Lomcarient
Ezngusge, \EEE Trans. Software Enginesring,
Yol SE-12, Ho.4, Apr. 1986, pp.547-553.

[2] K. E. Batcher, Suerding Medworks oimd Their
Aoofications, Proc. Spring Joint Cormnputer
Conf., 1968, pp.307-314.

[31 P. Bates and J. Wileden, Aigh-Leved
Lebugaing of Disfrihetes Swlemwsc The
Sl ieral Abrivection Soorvack,, TR COINS
53-29, Depart. CI5, Univ. Massachusetts,
19583,

[<4] R. H. Carver and K. C. Tai, Resroducidie
FesPing oF Lofoiitrrefl Frograms Bssed ofF

Sharesd Verisdiesr, Proc. b6th Int. Conf.
Distributed Computing Systems, 1956,
pp.425-433.

[5] K. M. Chandy and L. Larapotrt, D7isdeidwtsd
Suanslkots: Defermining GHiobsl SiEtes of
Disdeibuted Spsfears, ACM Trans. Computer
Systems, Yol .3, No.1, Feb. 1985, pp.63-75.

[6] 5. ¥. Chu, Dedugging Disfeiluwted
Lompislicis o & Mested Afvmic SAotios

Susdeny, MIT/LCSATR 327, Depart. EECS, MIT,
1954

[?] P.J. Courtois, F. Heymans, and D. L. Paras,
Conzurrent Control with Readers and YWriters,

Comm. ACH, VYol.14, No.tD, Oct. 1971,
pp.667-HH65.
[8] G. Fielland and D. Rodgers, 35-&72

Lpmpuder Syusteny Sheres Lood Lgusily Qmong
1o fy A& Provessors, Electronic Design, Sepl.
6, 1934, pp.153-168.

[9] E. P. Hsieh, B. A, Rasmussen, L. .} ¥idunas,
and W. T. Davis, Deisy Fesd Seasraficn, Proc.
14th Design Autormation Conf., 1977,
pp.486-491.

[10]T. J. LeBlanc and J. M. Mellor-Crumrmey,
Debigaing FBrEfle? FProgrsms witd foasissd
&epfsy, |EEE Trans. Computers, ¥olC-36,
Mo.4, &pr. 1957, pp.471-4582.

[11] B. P. Miller, Ssraffelism in Disfridutes
Progiafits. Measurenreid snd Lredic?ic, TR
574, Depart. CS, Univ. ¥Wisconsin at Madison,
May 1985.

[t2] T. 0Ohkami, R T - Faralief
Prrivrmanee Ansfpsis Toofs, THM, Depart. C3,
Univ. Rochester, Apr. 1987.

[t3] R. Perron and C. PMundie, Fis
Qerchitecture of the Aifisnt FX/E Lompuler,
Proc. COMPCON Spring, 1986, pp.390-393.
[14] Q. E. Schnidt, Fhe Butterify Forsiiel
Froeesnsor, Proc. 2nd Int. Conf.
Supercomputing, 19587, pp.362-3A5.

[15] L. Snuder, e Qrohitectures. Sharss
Memoi ST e Loroiiary sF Modes? Folential,
TR 86-03-04, Depart. CS, Univ. Washington,
March 1986, :

[16] J. D. Mman, Sompueistionsl Asgects of
V£54 Computer Sience Press, 19584,

~8~

