V7 b 7EBR 26— 6
(1988 10 14)

CCSkBIIBHNRBEZH SHico0T
HREL IR e 44 fiEEE
BHERELER

Afgclk, HiITryrxyLosoERANERONMAA THSMilneroCCSEILEL, WBEY V7
OBPRYIVBIEIEBETNRATE2LDILT 5. MilnerOCCSRIEFFENIRMATH D,
HIEREEA2BICLSTOEEOZUMBBIRRELTVRFAERS RV, EBAR Y X7 A
2CCSIKRE-THAL, 2OERANIBHRMATRIE - EBRFEETIEVWIEHOIBRA»S T
2L, COEBRELVYWEOTHEEEDLDNS., COHWEED DI, ABIBY Ik
TR, BEOCLZH2EHZELHETRIEL, @ERL-TRHEINIHEEZ C0EHKERAT
BCETHECLZAMARET S, MEINALBEROERIZ, EEOGHERITHONy L
NNV OIS I, HEKLBEEORKABLEWNIE T 3B EE VS CE I Lick-TIT
3, T, BEOBWHEE EMilnero CCS EFLHBKICERSC & T, MilnerdC CSic
BUZ2HRESEMBRICESWTEREERT 2. Rikic, BECAKAM SOOI L->T, WK
Eh7zCCSoaHMN=E=HEX 5.

Dynamic Communication Naming in CCS

Shoji YUEN, Toshiki SAKABE, and Yasuyoshi INAGAKI

Faculty of Engineering, Nagoya University

Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464 Japan

In this paper, Milner’s CCS, a formalism for concurrent systems, is extended so that commu-
nication linkages between agents can be changed by the values passed by communications. Milner’s
CCS is a formalism with a static framework, where all the communications must be explicitly de-
termined when a behaviour expression is given. When we try to apply CCS to describe a practical
system, this restriction is very strict. In order to reduce this restriction we propose an extension of
CCS, where a communication name is represented as a term allowed to have variables. By inter-
preting the term as a communication, the semantics of an expression in our extension is given. In
this interpretation, a function from values to communications is assigned to each term at the top
level symbol of the term representing a communication name. By taking the same communication
domain as in Milner’s CCS, the semantics of our extended CCS is given through the strong con-
gruence of Milner’s CCS. Finally, we give a direct semantics of our extended CCS with respect to
the coarseness of the assignment of communication linkages to communication names.

(1)

1. Introduction

Milner’s CCS|[1] is a formalism for concurrent systems whose computing mechanism is modelled
by communications. An agent synchronously communicates with some other agent. In CCS, an
agent is represented as a term, called a behaviour expression which is built from the CCS operators
and the terms over the value-domain. The semantics of the CCS operators are defined by the
derivation relation, called the action relation.

An obvious application of CCS is to model and reason concurrent and/or distributed systems
within the formal framework of CCS [1(Chapter 9)},[5],[6], [7],[8]. But in CCS the communication
is restricted to be static. This restriction is very strict, when we try to apply CCS to reason
practical systems. For this problem, in [5],[6], and [8], the framework of CCS is extended to
allow communication linkages between agents to be changed dynamically to some extent, but the
semantics is only informally outlined. They show that such an extension of the framework is needed
in order to describe practical systems in a simple and natural way.

Here, we intend to formally give the semantics of extended CCS. The point of the extension
is that a term possibly having variables is allowed as a communication name. The variables in the
term are instantiated by importing values on communications. If all the variables are instantiated,
the term is mapped to a communication. Thus, a communication can be changed by the value of
the variables.

An extended behaviour expression is interpreted by assigning a naming function to each term
occurring in it, according to the top level symbol of the term, where a naming function is a function
from the value-domain to the communication-domain. A name assignment is a function from the
top level symbols of those terms to naming functions. Given a set of extended behaviour expressions
interpreted by one fixed name assignment, we define the action relation as in Milner’s CCS, which
is the basic semantics of our extended CCS. Under a name assignment we can define a strong
congruence over the extended CCS, which is consistent with that of Milner’s CCS. Thus, under
one name assignment we can say that the semantics of our extended CCS is equivalent to the one
given in Milner’s CCS. We use Milner’s strong congruence to relate the interpretations given by the
different name assignments. Two extended behaviour expressions are said to behave equally if their
interpretations behave equally in the sense of the strong congruence under the name assignments
associated with them.

Another notion to be extended is the restriction operation. In CCS formalism, the module
structure can be described by the restriction operation, which have the semantics of restricting
communications within a certain part of a behaviour expression. In Milner’s CCS, a communication
is restricted directly by its name. But in our extended framework, a name of a communication is
not completely known even after interpretation. Thus, here we propose to restrict by the top level
symbol of a communication name. All the communications in the range of the naming function
assigned to this top level symbol become restricted.

Further, we give a direct semantics of our extended CCS. It is shown that an extended be-
haviour expression is given its meaning up to relabelling if the coarseness of a name assignment is
specified. As the direct semantics of an extended behaviour expression, We take the interpretation
given by the finest name assignment as its semantics. '

This paper is organised as follows. In Section 2, we have a brief overview of Milner’s CCS. In
Section 3, we define the extended CCS and relate its semantics with that of Milner’s in the sense of
the strong congruence. And in Section 4, the structure of name assignments is studied to introduce
a direct semantics of our extended CCS.

2. An overview of Milner’s CCS

In this section, we take a brief view over Milner’s CCS[1]. Here the syntactic elements of CCS
are listed and their informal semantics are outlined. ’

€2y

e Value
A valueis a term conventionally built from function symbols standing for known total functions
over values. [

e Value expression ’

A value expression is a term same as a value, but a value expression may contain variables to
set values. For variables we shall use z,y, »

For convenience, we allow tuples (Ey,..., E,) of value expressions to be treated as a value
expression. An empty tuple (the case of n = 0) is denoted as <>. Usually, an empty value tuple
is omitted when a communication is handled. [

These two elements above are used to describe objects to be passed when communications
occur between agents.

e Name, co-name

A fixed set A of names is assumed. Names are ranged over by a lower case greek letter
as a,f,7,.... Another fixed set of co-names A is associated with A by a bijection called the
complementary function, (') :

_ a(ed) —» a(ed)
A is disjoint from A. We say & is the co-name of . We also use () as the inverse of the
complementary function. Thus we have & = o. [

A name represents a porton an agent to communicate with its environment. A port is specified
to communicate with the port complementarily named. A name is also called positive label and
a co-name negative label where the complementary function is treated as the sign of a name.
Conventionally, a positive label is used for an input port and a negative label for an output port.

¢ Relabelling
A bijection S from a set of labels L to a set oflabels M is a relabellingif it respects complements.

(ie. S(o)=a).

o Behaviour expression

A behaviour expression B is recursively built from the following operators. (B, By,... are
also used to denote behaviour expressions.)
Inaction: NIL represents the agent which has no possibility to communicate with the envi-
ronment.

Summation: ‘+? is the operation of the nondeterministic choice. B; + B3 is the agent which

: behaves like either B; or B,.

Input action: «z.B is the agent which behaves like B after importing a value to £ by the
communication with name «. The free occurrences of z in B is set to the imported
values by the communication. Thus the variable z is bound to o, and they are
not free in az.B any more.

Output action: @v.B is the agent which behaves like B after exporting a value v by the commu-
nication with name o.

Internal action: 7.B is the agent which behaves like B after an internal communication, denoted
as 7, which is a special communication representing a communication between a
pair of complementary labels. 7 does not belong to A U A.

Composition: ‘|’ is the operation of the parallel composition. B; | B, behaves as B; and B,
are running concurrently communicating with each other. If a communication
between a pair of the complementary labels in B, and B,, an internal communi-
cation can occur.

€3)

Restriction: B\ A, where A is a set of names, represents the agent in which the communications
of B with names in A are restricted. Note that an internal action is never
restricted because 7 will never be in A. This operation gives the scope of a

communication.
Relabelling: B/[S] is the application of a relabelling S to B.
Identifier: b(E1, ..., En(p)) is the procedure call by the symbol b,
where Ej, ..., E,3) are actual parameters to be passed. b’s body is determined

by an identifier declaration explained below.
Conditional: if E then B; else Bs is the conditional branch, where F has a boolean value.

O

o Identifier declaration

An identifier declaration has the form:
b($1, .)zn(b)) ~ Bb’

where 1,...,Zq(p) are the formal parameters. The free occurrences of 21, ...,Zy(s) in By will
be substituted when a procedure call occurs. O

The formal semantics of CCS is given as the derivation relation between behaviour expressions,
denoted as B _€9™ , B, where com is either a pair of a name and a value or 7. This relation
means that an agent B will be B' after the communication com. 9™, is defined formally in
[1(Chapter 5)).

We show an example of derivation to illustrate a behaviour of an agent:

(| 9\{B} where p &« az.fz.p, and ¢ <= v.fy.0y.q

_(@®v1) - (BuyBurp | 7.y-8y.0)\{B}
_<>) | (Burp | Byby.0\{B}
—T (plévig\{B}

_Gm) | la\(B)

The first derivation can be interchanged with the second because they can do communications
concurrently. In the third derivation, only the internal action is possible because the communica-
tions with the names of B are restricted. And by this internal action, a value is passed to y. The
complete derivation of this agent is infinite because it is defined recursively.

3. Extended CCS

In this section, we extend Milner’s CCS to allow communication names to be changed dynam-
ically by the values by communications. For this purpose, we put terms, possibly with variables, in
place of names of CCS behaviour expressions. The values passed by communications are applied to
a naming function, and the names are determined by evaluating the terms by the function assigned
to them.

3.1 Syntax of Extended CCS

The extension made here is to introduce a term expression to be interpreted as communications.
First we give a form of a term.

€4)

Definition (name expression)
A name expression is a term whose form is:

f(E1,...,Ep)

where E;,..., E,, are value expression. We call f a naming function symbol, to which an arity
n(f) is preassigned. (Namely, m = n(f) here.) We denote the set of name expressions H, ranged
over by 5. The variables occurring in % are written as Var(n). And the set of name expressions
without variables is denoted Z, ranged over by &.

For a name expression 7 = f(E1,-.., Em), we shall use the notation: frame(n) = f
and for a set of name expressions M:fnames(M) = {frname(m) ; m € M}

Definition (extended behaviour expression)
An estended behaviour expression B,, are given by the following BNF.

B ::=NIL (inaction)
Ber + Bes (summation)
1%.Beg (input action)
1’7177.3eI (output action)
T.B., (internal action)
Bes| Bes {composition)
Beo\F _(estriction)
b(E,..., Eppy) (identifier)

where T does not belong to the set of naming function symbols, and F is a set of naming
function symbols.

In the extended behaviour expressions, a behaviour identifier is also defined in the same man-
ner, but the body is an extended behaviour expression. An identifier declaration has the following
form:

b(z1,.-+;%np)) & Bes, where B,, is an extended behaviour expression.

3.2 Interpretation of Extended behaviour expressions

The interpretation of an extended behaviour expression is given by a name assignment, by
which the meaning of a name expression is determined. We call a function to be assigned to a
name expression, a neming function.

Definition (naming function)

An n-ary naming function 1 is the total function over n-tuples of values to return names (an
elements of A). Especially, a nullary naming function returns just a name.

ie.y : VP> A
The arity of the function is expressed as n(y).

Definition (name assignment)

A name assignment g is a total function from a naming function symbol to a naming function,
preserving its arity.

g : f — o, where n(f) = n(y)

The application of a name assignment g to-an extended behaviour expression B.. is denoted
as [B.;], where all the naming function symbols appearing in B,, are evaluated by g. We call
[Bez],y the interpretation of Be, by g.

€5)

3.3 Semantics by derivation of Extended CCS

Under one name assignment g, the action relation _€9™., ~between extended behaviour ex-

pressions is given as the one given in Milner’s CCS. Only the action axioms and the restriction rule
are.changed due to the extension of the syntax.
Here label and value are the projection functions that:

label(com) = {a, if com = (Cl 'U) , value(com) = {’U, if com = (o, v)

7, if com = <> fcom=r1
(Action) .
(a1) [¢z.Becly 9™, [Bec{value(com)/z}], (9(¢) = label(com), value(com) = v)
(a2) [év.Bes]y <0 ez [Beslo (9(£) = label(com), value(com) = v)
(a3) [T'Bez]g —T—>,, [Be:]l, ‘
(Summation)
(sl) [Bezllg —c-?-ni»w [Bizllg (s2) [Beﬂ]g ﬂn, |[Blz2]g
[Bczl+Bez2]g —Cgﬂt“ [B;zl]la [Bex1+Bez2]g —ﬂu [B x2]9
(Composition)
(cl) [Bezlly ﬂ»w [Bézlly (c2) [Bez2]y ﬂn—n, [B .1:2]9
[Bez1|Bez2ly —2™,.. [Bez1lBez2ls [Beo1|Bez2ly 2™, [BesilBesols
(c3) [Ber1], 0™ [Bezilo) [Bes2]s —c—(-)ﬁ—)w [B...]s label(com,) = label(comy),
[Bea:llBe:2]g .. [BiilBlals value(comy) = value(comy)

(restriction)
[B.:l, £, [Bc:l,
[B..\Fl, ™, [B.\F],’

In the following argument, we handle only closed expressions, namely those expressions, B and
B., with FV(B) = 0 and FV(B,) = 9. In CCS[]], closed expressions are called programs. A
program in CCS is closed under ™ ,. A program in the extended CCS is closed under _¢9™

label(com) ¢ range(g(F)) U range(g(F))

3.4 Strong congruence over Extended CCS

We give a congruence relation ~,, over the extended behaviour expressions, when they are
interpreted by one fixed name assignment. This congruence is given in the same way as the strong
congruence ~ over the original behaviour expressions. Here we use a bisimulation as a proof
technique, following Milner[2].

. Definition (strong bisimulation over Buz)

A binary relation R C B,,? is a strong bisimulation under g if, whenever B.;;RB.,, and for
any communication com,

(i) i [Besls —ﬂn—re, [B..1lg, then 3B, 5[Bes2], —g—r—n—»e, [B..2]s and B, RB.,,
() if [Bes2ly _Cgﬂ’w [B:.2l,) then 3B, .2, Bez2]g -——-——»u [B.:2]y and B;; R B;.,

We are dealing with €9, which is isomorphic to _COT | under one fixed name assignment.
Due to Milner[2], the followmg Iesults are straightforward.

Proposition 3.1

For a name assignment g, there exists a mazimum bisimulation [~.;]; under the set inclusion
ordering. [~c;]; = U{R ; R is a bisimulation under g.}

€6

Proposition 3.2

[~ez]s is an equivalence relation for any g. [

Proposition 3.3
For a given g, [~.:], is a congruence for the operations of the extended CCS. |

3.5 Relation between Extended CCS and Milner’s CCS

We study how the extended CCS is related to the original one, with respect to the labelled
derivation _€9, . The extended CCS is different from the original CCS, when there are variables
in the value expression tuples to be applied to a naming function. Although they are different
relations, they are labelled by the communications. Thus, they can be related with each other in
respect of their behaviours.

Another bisimulation between B,, and B relates a CCS behaviour expression and an extended
behaviour expression.

Definition (strong bisimulation over B., x B)
A binary relation R C B.; x B is a strong bisimulation under g, if
whenever B.,RB and for any communication com,
(i) if [Bes]y £, _ [B..],3B' : B ™, B' and B,,RB'.
(i) if B_Mm, B, 3B,, :[B..], 2™, [B..], and B,,RB'.

As for the extended behaviour expressions, there is a maximum bisimulation over B,, x B.

Proposition 3.4

There exists a maximum bisimulation:
[~], = U{ R ; R is a strong bisimulation under g}. [I

Proposition 3.5 »

[~eclg o [=)y = [2]go ~= [=],
(Proof)

It is clear from the definition that both [~.;],o[~], and [~], 0 ~ are strong bisimulations over
Bey x B. Thus [~ez]g 0 [~]; C [~], and [~]g0 ~C [~],. Now suppose < Bey, B >¢ [~e]s o [~],
and < B.;,B >€ [~],. But this contradicts that the identity relation over B.,? is a strong
bisimulation. And suppose < B, B >¢ [~],0 ~ and < B,,, B >€ [~], Slmllarly, this contradicts
that the identity relation over B2 is a strong bisimulation.

Based on this theorem, we can establish the semantics of the extended CCS for different name
assignments. A pair of extended behaviour expressions B,, and B!, behave equally under the
name assignment g and g’ respectively if there exist CCS behaviour expressions B and B’ such
that B..[~],B, B, [~],B' and B ~ B'.

4. The structure of name assignments

In this section, we shall give a preorder over name assignments. It is shown that the coarseness
of an interpretation by a name assignment g specifies an extended behaviour expression up to
relabelling. Then, giver a program (i.e. a closed extended behaviour expression) the finest name
assignment can be derived. We will take it to be a direct semantics for our extended CCS.

£7)

4.1 Preorder over name assignments
Here we use these two notations.
By a name assignment g, a derived function H(g) is defined:

H(g) : ¢ — o, where £ = f(vy,...,vns)) and a = g(f)(v1,--.,Vn(s))
and the kernel of a name assignment g, Ker(g), is defined:
Ker(g) = E/(Rg 0o Ry™") where Ry = {< {,a > ; H(g)(§) = o}

Definition (preorder <)

For a pair of name assignments g; and go, g; < g, iff
Ker(H(g2)) is a refinement of Ker(H(g1))
ie. VX € Ker(H(g2)).VY € Ker(H(g1)): X NY # 0 implies X CY

Informally , g1 < g, means that the information of g1 about communications is less than g,.

Lemma 4.1
If g1 4 g2, the following (a) and (b) hold.

(a) if [B.ols 9™, [Be:lg,; then

1
Elcom’ : [B,z g2 ______’com ex [Bez]yz:)
label(com') € {g2(¢) ; € € H(g1) " (label(com))}, and value(com) = value(com').
(b) if [Beo]g, 9™, [Bc:]y, then
Jeom" : [Besly, —20™", [BLLly., V€ € H(g2)~(label(com)) : H(g1)(¢) = label(com"),
and value(com) = value(com'').
Here H is defined in the definition of «.
(proof)
Induction on the number of applications of the inference rules. The relations between com and
com' are derived from the induction base, which is the application of the action axioms.

Theorem 4.2 (monotone)

g1 4 g implies [Nez]gl 2 ["‘ez]gg
(proof)
What is to be shown is that [~.:]s, i3 a strong bisimulation under g;. Let < Bez1, Bez2 > be
an arbitrary pair in [~cs2]4,. Suppose [Bezily, —°2™,, . [Bis1lg,- Then label(com) € domain(g;).
Thus, from Lemma 4.1(a),
!
Zeom' : [Besslyy <2, [Blayl, and label(com') € {9a(£);€ € H(gr)™*(label(com))},
and value(com) = value(com').
ey !
From the definition of [~.z]y,, 3BL,0-[Bes2ly, 2™ ., [Bisale, and Blyil~ezlg, Beso-
Then from Lemma 4.1(b),
"
Jeom" : [Ber2]g, 2™, [B..2)g, V€ € H(g2)" (label(com")) : H(g1)(§) = label(com™),
and value(com') = value(com"). Since com' is an image by g, of the terms whose image by g; is
com, label(com) = label(com"). And value(com) = value(com') = value(com'’). So com = com”.
The case that [Bez1]g, 2™, [B.;1]s, is proved symmetrically.
Thus, [~ez]y, is a strong bisimulation under g;. Then [~.:];, € [~ec];, from the definition

of [~eslg,- U ‘

Based on this theorem, we can establish a class of extended behaviour expressions, which,
informally speaking, behave in the same pattern along with coarseness of a name assignment.

€8

Definition (name assignment variant <)

g1 > g2iff gy < g2and gy a gs

Corollary 4.3
If g, oa g, then [Nez]gl = ["‘ez]gg O

With Proposition 3.5, it can be seen that based on the original CCS the semantics of the
extended CCS is given enough if it is interpreted by g within oa.
Two name assignments under the relation < make the same behaviour within a relabelling.

Proposition 4.4
If g; oa gy, for any (original) CCS behaviour expressions B and B’ such that B, [~],, B and
B, [~],, B', there exists a relabelling S and B' = B[S] [

4.2 The finest name assignment of the extended CCS

In this subsection, given an extended behaviour expression we take its interpretation by the
finest name assignment as its meaning. Note that we only deal with a fixed set of values in the
following argument.

The restriction of name assignment g by F is denoted as g |,., F. Namely, the domain of g is
restricted to F'. We also use the same notation for a set of name assignments:

GlreaF = {g’ H g'=‘g|resFy geG}

Here G | s writes Gr for short.

The quotient set of Gr by the equivalence v« is denoted as Gp/ va. A partial order < over
Gp/ v is introduced by < as follows:

For G1 € Gp/ 4, G2 € Gp/ 4, G1 X G2 iff Vg1 € G1 Vg2 € G2 : g1 492

Proposition 4.5

Gr has the maximum element maz(Gr) under the order of <. A name assignment in maz(Gr)
has the following properties.
: domain(gmaz) = F
V9maz € maz(Gr) : { V¢ € range(gmaz)-¥ is an injection.
- Vi1, f2 € F.fy # f; implies range(gmas(f1)) 0 range(gmas (f2)) = 8

Theorem 4.6

Vgmaz € maz(Gr) : gG%F["‘es]g = [~ezlomae
(proof)

For any name assignment g € Gr, § 4 gmas- Then from Theorem 4.2, [~..]y D [~ez]lgme. -
Thus ok p[~°”] 9 2 [~eclgmes SincCe grnaz € GF, then I["_fex]gm., o} gerc];pll~5’] g

Together with Corollary 4.3 and Theorem 4.6, it is seen that the unique name assignment
Imaz Up 10 [~ez]g,... is given for a name assignment class Gr. Thus, we write [~e;]r instead of
[~ez)gme. fOI sSOmME grror € maz(Gr).

The finest name assignment makes a standard interpretation for an extended behaviour ex-
pression. For example, a .NIL and b.NIL are equal because there are the finest name assignments
fitay =[a — o] and g2 = [b —] respectively, and [a.NIL]y, ~ [b.NIL],,.

Proposition 4.7
VF' CF : maz(Gr') = maz(Gr) |res F

£9)

Proposition 4.8

Given two extended behaviour expressions B., and B!,
if fnames(Bez) C Fi and fnames(B.;) C Fi, and Bez[~ez]r, B!, then VF; D Fy.Bey[~e:1r, B..
where fnames(B.:) is the set of the naming function symbols appearing in B.. (generally not
equal to L(B.:)).

The two propositions above can be used for a program to be embedded in a larger context by
the finest name assignment of the context. However, the renaming operation of naming function
symbols is necessary to avoid conflict of naming function symbols with its context. This renaming
is always possible because gnq, just specifies whether two name expressions mean equal or not.
Thus, an appropriate name assignment can be taken out of maz(Gr) and rename its domain not
to conflict with the context in which the program is embedded.

5. Concluding remarks

We have proposed an extension of Milner’s CCS, in which the values of the communication
names can be dynamically determined. And we have investigated the relation between the origi-
nal CCS framework and ours. This extension is motivated by modelling and reasoning practical
concurrent systems by CCS. In such cases, the descriptions become simpler and more natural by
introducing the means to identify communications by the value passed by the communications. In
the syntax of the extended CCS, a term with variables is allowed as a communication name. The
semantics is given by interpreting a communication name as a communication. This interpreting
procedure is called a name assignment which assigns a naming function to each term at the top
level symbol. By a naming function the meanings of a term is determined. It is shown that if
the coarseness of name assignment is given, the meanings of an extended behaviour expressions
is specified up to relabelling. Based on this fact, we proposed a direct semantics of the extended
CCS, namely the interpretation given by the finest name assignment.

Acknowledgement

The authors wish to express their gratitude to Dr. Namio Honda, President of Toyohashi
University of Technology and Dr. Teruo Fukumura, Professor of Chukyo University for their en-
couragements to conduct this work. They also thank Assistant Professor Tomio Hirata, Dr. Tohru
Naoi of Nagoya University and Mr. Olav Aanderaa of Nagoya University for helpful discussions.

References:

[1] R.Milner:“A Calculus of Communicating Systems”, LNCS 92

[2] R.Milner:“Calculi for Synchrony and Asynchrony”, Theoretical Computer Science 25 (1983)
pp-267-310 (North-Holland)

[3] C.A.R.Hoare:“Communicating Sequential Processes”, Comm. of ACM 21 (8) (1978) pp.666-677
[4] C.A.R.Hoare:“Communicating Sequential Processes”, Prentice-Hall (1985)

[5] S.A.Smolka and R.E.Strom:“A CCS Semantics for NIL”, IBM Journal of Research and Devel-
opment 31 (1987) pp.556-570

[6] T.W.Doeppner Jr. and A.Glacalone:“A Formal Description of the UNIX Operating System”,
Proc. of the 2nd Annual ACM Sym. on Principles of Distributed Computing (1983) pp.241-253
[7] M.C.B.Hennessy and W.Li:“Translating a Subset of Ada into CCS”, Formal Description of Pro-
gramming Concepts II (Bjgrner ed.) (1983) pp.227-249

[8] S.Yuen, T.Sakabe and Y.Inagaki:“A Formal Descriptin of Monitors by CCS”, IEICE Tech. Rep.
COMP87-84 (1988) (In Japanese)

[9} N.Francez: “Extended Naming Conventions For Communicating Processes”, Science of Computer
Programming 3 (1983) pp.101-114

[10] I.Castellani:“Bisimulations and Abstraction Homomorphisms”, LNCS 185 (1985) pp.223-238

§10)

