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A term rewriting system is said to be rpo-terminating if it’s termination is proved with
the recursive path ordering method. We prove that the direct sum R; & R; of term rewriting
systems R; and R, is rpo-terminating iff both R; and R; are so. The result is novel in that it
depends only upon how we proved both R; and R, terminating, rather than explicit syntactic
properties of the terminating systems, such as non-collapsing, non-duplicant, and left-linear.



1 Introduction

A term rewriting system® R is a finite set of rewrite rules M — N, where M and N are terms
constructed from variables and function symbols. The direct sum R; @ R, is the union of two
term rewriting systems with disjoint function symbols. A term rewriting system is terminating
iff there is no infinite reduction sequence. Since establishing termination is in general a difficult
task, it had been desired that we could construct terminating systems from smaller ones:

[Conjecture] Ry @ R, is terminating iff both Ry and R, are so.

Unfortunately, however, Toyama(®) recently discovered a counterexample in which R; and R,
are terminating while R; @ R, is not. The conjecture was modified:

[Conjecture] (Toyama) R; & R, is terminating and confluent iff both Ry and Ry are so.

However, it was also refuted by Klop and Barendregt.(®) Very recently, Rusinowitch® and
Toyama, et. al.(") presented positive results on this material:

[Theorem] (Rusinowitch) Ry @ R, is terminating and non-collapsing iff both Ry and Ry are so.
[Theorem] (Rusinowitch) R; @ R, is terminating and non-duplicant iff both Ry and R are so.

[Theorem] (Toyama,et.al.) Ry @ R, is terminating, confluent, and left-linear iff both Ry and
R, are so.

where a system is collapsing if it contains a rule whose right-hand side is a variable, and duplicant
if it contains a rule whose right-hand side has strictly more occurrences of one variable than its
left-hand side.

These results explicitly depend upon the syntactic properties of the systems such as non-
collapsing, non-duplicant, and left-linear. In this letter, we present a new result discovered
from another point of view:

[Theorem] R; @ R, is rpo-terminating iff both Ry and R, are so.

where a system is rpo-terminating iff it is proved to be terminating with the recursive path
ordering method.?) " The result is novel in that it depends only upon how we proved both R,
and R, terminating, rather than explicit syntactic properties of the terminating systems.

2 Rpo-termination

Let V be a set of variables, denoted by z,y, 2, ..., and F be a set of function symbols, denoted
by f,g,h,.... A term, denoted by s,t,u,..., is defined as usual® in terms of variables and
function symbols. T(F) and T(F,V) denote the set of terms on F and F' UV, respectively. A
substitution, denoted by 6,0, ..., is a mapping from V to T(F,V). As usual,® it is naturally
extended to a mapping from T'(F, V) to T(F, V).

[Definition] The depth is the function from T'(F, V) to the set of natural numbers defined as




follows: . o - o
depth(s) = { ) if 5 is a constant or a variable;

1+ max;{depth(s;)}, ifs= f(s1,...,5n)

[Definition] ® Let > be a partial ordering (ie. irreflexive and transitive relation) on a set F'
of function symbols. The recursive path ordering induced by > is the ordering >* on T(F)
defined recursively as follows:

5= f(s1,...,8m) =" g(t1,. .., tn) =1

iff

s; =* t for some i (1 <i<m),or

f>gands>*t;forall j(1<j<n)or

f=gand {s1,...,8m} > {t1,...,ta}
where >>* is the multiset ordering(!) induced by >*, and >* means -* or permutatively con-
gruent (equivalent up to permutation of subterms).

The following properties of >* are well-known:
e s >"1iftis a proper subterm of s.

o if s and t are constants, then s =*t iff s > t.

Lemma 1] Let 1 and be partial orderin s on the same domain F. Then 1C implies
s > g 1>
=1C-* .

(Proof) Assume that >;C> and s >} t (s,t € T(F)). We show that s =* ¢ by structural
induction on T'(F).

When depth(s) = depth(t) = 1, both s and ¢ are constants and we have from s >* ¢ that
s =1 t. Hence, s > t. Therefore, s >*¢.

Assume as an inductive hypothesis that »>;C> and s’ >} t' implies s’ >* t' for all terms
s' and t' such that depth(s’) < depth(s) and depth(t') < depth(t) but (depth(s’), depth(t')) #
(depth(s), depth(t)). Let s = f(s1,...,5n) and ¢t = g(t1,...,t,). From s > t, we have three
cases:

(i) s; =1t for some i
(ii) f>gands>7¢; forallj

(iii) f =g and {s1,...,5m} »=1 {t1,.- -, tn}

In Case (i), by the inductive hypothesis, s; =* . Hence, s =* ¢. In Case (ii), we have s >* ¢
again in a similar way. In Case (iii), we have s >* ¢ by using the inductive hypothesis and the
definition of multiset ordering »~1:
AX,Y: 0#XC {s1,---,5m},
{tl,...,tn} = ({S],...,Sm}—X)UY,
(VyeY)3Fz € X) z > v.

Therefore, in all cases, we have that s =*t. [J



[Definition] Let F; and F be sets of function symbols such that F; C F, and >; be a partial
ordering on Fj. The eztension of 1 from F; to F is the partial ordering > on F defined below:
frgiff fLlg€eFiIA fr1g.

[Lemma 2] Let Fy, F, >1, and = be the same as those in the above definition. Suppose s and ¢
be two terms in T(Fy, V) such that s8 =7 t6 for any substitution § : V — T(Fy). Then sa =" to
for any substitution o : V — T(F).

(Proof) First, note that the term s cannot be a variable; otherwise, we would have t6 =} s for
some @, which contradicts s@ > t6. .

By structural induction. When depth(s) = depth(t) =1, both s and ¢ are constants. (If ¢
were a variable, we would obtain s§ = t6 for 8 = {t «— s}.) Hence s > ¢, s0 s > . Therefore,
sa »* to for any substitution o.

Assume that the claim holds for all terms s’ and ¢’ such that depth(s') < depth(s) and
depth(t') < depth(t) but (depth(s'), depth(t’)) # (depth(s), depth(t)).

(Case 1) When ¢ is a variable, s must contain ¢ as its proper subterm. Therefore, {rom the
property of recursive path orderings, so >* to for any substitution o.

(Case 2) When ¢ is not a variable, let s = f(s1,...,sm) and t = g(t1,...,ta). From s6 >7 ¢6
for all 8, we have three cases:

(i) si0 =3t6 for some ¢ for all &
(i) f> g and sf >3 t;6 forall j and @
(iii) f=g and {510, ...,5m0} > {t:6,...,t.0} for all 6.

By the inductive hypothesis and the definition of multiset orderings, it is easy to verify that in
all cases we have that so >* to for any substitution o : V — T'(F). O

It is well known that recursive path orderings can be used to establish the termination of
term rewriting systems:

[Lemma 3] (@) A term rewriting system R over a set of terms T'(F) is terminating if there exists
a partial ordering > on F such that 1§ =* rf for each rule | — r in R and for any substitution
6:V — T(F).

The existence of a partial ordering > in this lemma may be checked mechanically. If such
an ordering exists, then we may conclude that a given system is terminating. Note that such
an ordering may not exist even when the system is terminating. If it exists, we say that the
system is rpo-terminating. ‘

[Theorem] Ry @ R, is rpo-terminating iff both Ry and Ry are so.

(Proof) The only-if part is trivial. We prove the if part. Let Fy and F; be the disjoint set of
function symbols contained in R; and R, respectively, and let F' = F3 U F3. Since R, and R
are rpo-terminating, there exists a partial ordering >3 on Fy such that 136 >3 r10 for each rule
l; — r1 in Ry and for any substitution g :V — T(F;). Let >} be the extension of »; from
F, to F. Then by Lemma 2, l;a = r10 for each rule i; — ryin R and for any substitution




o : V — T(F). Similarly, there exists a partial ordering >, on F, and its extension >} from F;,
to F" such that l;0 >5 ry0 for each rule [, — r, in R, and for any substitution o : V — T'(F).
Let > be the union of >} and >~). Obviously, > is a partial ordering on F. Since >,C»> and
>5C>, we have =C>* and =5 C>* by Lemma 1. Hence we have that lo >* ro for each rule
in Ry ® R, and for any substitution ¢ : V' — T(F). Therefore, R; @ R, is rpo-terminating. [J

[Example] Let

Ri={z-z2—z, z-(y+2)—z-y+z-2z}and

Ry ={(z7Y)1 - z}.
The first rewrite rule in R, is collapsing and non-left-linear, and the second is duplicant. Hence,
the three theorems by Rusinowitch and Toyama, et. al. described in the introduction cannot be
applied. By the way, R, is shown to be rpo-terminating by defining >, as - >; +. R, is also
rpo-terminating. Therefore, by our theorem, R; @ R, is rpo-terminating.

3 Conclusion

We have presented a novel result on the termination of the direct sum of term rewriting systems.
The authors claim that not only the result itself is novel but also the kind of the result is novel in
that it focuses on the termination proof method (recursive path ordering), rather than explicit
syntactic properties (e.g., being linear, non-collapsing, etc.). Also, the result is independent of
the confluence. Proof with recursive path ordering is one of the most powerful methods that are
suitable for semi-mechanical termination proof. Therefore, our result is very useful {or appli-
cations which require semi-mechanical termination proof procedures. (Induction-less induction
theorem proving based on the Knuth-Bendix completion procedure(® is an example.) You can
load and merge several disjoint, rpo-terminating systems together without losing termination.
We believe that similar results will be obtained for many other termination proof methods, and
it is left as future work.
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