UtiLisp O %1 U WEH Tk

&F —
SRR LA

UtiLisp 3 A Y 7 v —LZBHE L, 3= v Ca—Ehb -y
FAaYE 2 — X FECIRIA L BEIT 2 lisp DR TH %, %L, @
HWDAN—Y FAa v ¥ a— X Tk Motorola MC68000 K — F % Q488 & 4
5 DHEERTH o 7zo AN MC68000 A UtiLisp =2 — F & EEIL .
Z DR—YF a2y 2 —ZHCPU & LTEHL Tw 3% INTEL i8086
DA TEEMHL T Utilisp #_— YV Fra v ¥ a— X FCERBIX 4 3
FHERRRT 50 T7e. EBRICKOHOFEH ECRIEL 2R 5.
T O, BHEME, HREIC O T ET %,

A New Implementation Method for the UtiLisp System

Keiichi Kaneko

Faculty of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113 Japan

- UtiLisp is one of lisp dialects which is available on mainframes, mini-
computers, and personal computers. However, as for personal computers,
UtiLisp needs an extra Motorola MC68000 board, which is sometimes ex-
pensive only for this purpose. Therefore a new implementation was designed
for the INTEL 8086 series which are used widely for personal computers.
This paper proposes this new method and reports the results of actual
implementations on several machines.

~1~



1. Introduction

UtiLisp (University of Tokyo Interactive LISt Pro-
cessor) was originally implemented by Chikayama [1] for
mainframe machines. Then Tomioka et al. rewrote the
code for MC68000 {5, 6, 7]. Let us refer to this version
of UtiLisp as ‘UtiLisp68.’

Since these implementations depend on the machine
architectures deeply, a new UtiLisp was designed to fit
in with all 32-bit machines [3]. It is called ‘UtiLisp32.’

According to the flow shown in figure 1-1, UtiLisp
now works on mainframes, minicomputers, and even
personal computers. However, as for personal comput-
ers, UtiLisp requires an extra MC68000 board which is
sometimes expensive only for this purpose. Still another
implementation was, therefore, newly designed for the
INTEL i8086 series which are used widely for personal

computers.

FUJIITSU
Facom M200

IBM 3000

UtiLisp68 UtiLisp32

Figure 1-1 UtiLisp Family

This paper proposes this new method and also re-
ports the results of actual implementations on a cou-
ple of machines. UtiLisp for the i8086 series is lacking
several features which other UtiLisp systems have. For
example, it does not support two lisp objects (‘flonum’
and ‘bignum’). So, let us call it ‘cUtiLisp’ which is an
abbreviation for ‘compact UtiLisp’ to make distinction

from others.

2. Basic Design

cUtiLisp basically emulates a system designed for
32-bit computers by translating the code to fit in with
the i8086. First UtiLisp32 was selected as a candidate
system for its flexibility. And the following changes

turned out to be necessary:

o Taking account of the segmentation scheme of the
CPU, it is natural to allocate same type of lisp ob-
jects in a same segment. But it causes one restriction
that we can not allocate an area which is more than
64 kilobytes for each object except for ‘cons’ which is
treated in a special manner. The way of allocation,
on the other hand, makes the type checking easy.
That is, because same type of lisp objects are ac-
cessed by their unique segment and various offsets,
the segment infor'ma.tion represents the object type

and works as the pointer tag.

The initial target machine was NEC PC-9801 with
640 kilobytes main memory. Its operating system,
MS-DOS, and two interface boards occupy consider-
able amount of the memory. Often occurs the same
situation on the other personal computers. So it
was decided to eliminate lisp objects ‘lonum’ and

‘bignum’ to save the code area to process these ob-




jects. Now it is under way to transport the cUtiLisp
system to Fujitsu FM-R70 whose operating system
is XENIX. On this machine, cUtiLisp works under
the i80286 protected mode which allows huge ad-
dress space. So, the eliminated objects are going to

be added back to the system.

The original code for UtiLisp32 bases on the exis-
tence of fifteen or sixteen 32-bit registers, while the
i8086 has only eight 16-bit registers. So 32-bit reg-
isters, except for stack pointer and frame pointer,
are allocated on memory and used as pseudo regis-
ters. Accesses for these registers are so frequent that
the data segment register ‘ds’ is selected to hold the

value of this segment.

However, the first change is not compatible with Uti-
Lisp32 which utilizes the object tag scheme in se\;el'al
parts, while UtiLisp68 adopts the pointer tag scheme
completely. As a result, cUtiLisp became a mixture of
UtiLisp68 and UtiLisp32. That is, cUtiLisp emulates a
new system which is a combination of those two systems.

The code translation proceeded followingly. Origi-
nal codes for UtiLisp68 and UtiLisp32 are both written

in LAP (Lisp Assembly Program) form. For example:

evandret
(pea return)
eval
(iflist A evrec)
(ifnotsy A evret)
(valuea)
evret
(rts)

is the entrance part of evaluator. So, first of all, it was

necessary to rewrite LAP expander to generate the i8086

~3~

assembly code which is accepted by Microsoft MASM

assembler. The above code was expanded as:

evandret label near

push cs
mov ax, offset return
push ax
eval label near
mov ax, word ptr [A+2]
iflist ax, evrec
mov ax, word ptr [A+2] —(})
ifnotsy ax, evret
les bx, dword ptr [A]
mov ax, word ptr es:[bx+2]
tst ax
jnz L0000
jmp near ptr ubverr
L0000 label near
mov word ptr [A+2], ax
mov ax, word ptr es:[bx]
mov word ptr [A]l, ax
evret label near

retf

where instructions such as ‘iflist’, ‘ifnotsy’, ‘tst’
and ‘retf’ are defined as macros elsewhere. And after
this stage, the redundant instruction which is marked
with dagger (1) was omitted by hand optimization. This
optimization is mainly based on usual techniques which,
for example, include the eliminations for common subex-
pressions, chain branches, and loop invariants and the
peephole optimization. The translation basically pro-
ceeds like this. However the critical changes as men-
tioned above were necessary. The sections below explain

them in detail.



3. Evaluator
3.1 Memory Configuration

Figure 3-1 shows the memory fnap of cUtiLisp. Note
that there are a few constraints caused by the lambda
binding mechanism. ‘Bound symbol’ objects appear in
the stack area and are represented by setting the highest
bit of the symbol segment according to the manner of the
UtiLisp32 system. To distinguish it from ‘fixnum’ whose
highest two bits are set, the symbol segment must be less
than 0x4000 in unsigned comparison. And the stack seg-
ment must be less than 0x8000 in unsigned comparison
not to confuse a bound symbol with some stack frame.
Satisfying these two restrictions is the condition to sup-

port the cUtiLisp system.
3.2 Type Checking

Figure 3-2 shows all lisp objects of cUtiLisp. And

figure 3-3 shows the heap area of memory map in detail.

(segment)
cUtiLisp Kernel

Heap Area

(Symbol, ..., List)

Stack Area

Unused
Unbound Symbol

symbol+0x8000

Unused

0xC000

Fixnum

Figure 3-1 cUtiLisp Memory Map

Each lisp pointer consists of a segment and an offset.
Then it is easy to check the type of objects: ‘symbol’,
‘string’, ‘code piece’, and ‘stream’ in a segrnént compari-
son. A reference is a lisp pointer which directly points to
one element of a vector (see figure 3-4) and accordingly
has the ‘vector’ segment. So, it is a problem to know
whether a lisp pointer which has the ‘vector’ segment is

a ‘vector’ or a ‘reference’. The answer is: if the segment

Cons

— Fixnum
= Symbol
b= String

— Code Piece
— Stream
- Vector

L— Reference

Figure 3-2 cUtiLisp Objects

Vector

Cons (first)

Cons (last)

Figure 3-3 cUtiLisp Heap Area



[——

vector

size 0

first element

i-th element

[—T—

reference

last element

Figrure 3-4 Vector and Reference

part of the cell which the pointér is pointing to is zero,
then the pointer is a ‘vector’, otherwise it is a ‘reference’.
‘Fixnum’ is a special object which is coded in a pointer.
It is a signed 28-bit integer. The highest two bits of its
segment part are set on for the type checking and the
lowest two of its offset part are reserved for the gafbage
collection. That is, a lisp pointer is a ‘fixnum’ if and
only if the segment is greater than or equal to- 0xC000
in unsigned comparison. Users can augment the area
for ‘cons’ in blocks of 64 kilobytes as much as possible.
Though ‘cons’ objects occupy more than one segment,
these segments are continuous and only one signed com-
parison can check the type for ‘cons’ (or ‘atom’). That
is, if the segment of the pointer is less than the list seg-

ment, it is an ‘atom’, otherwise it is a ‘cons’.
3.3 Lambda Binding

cUtiLisp uses the stack area for the lambda bind-
ing mechanism. Figure 3-5 illustrates this mechanism.
For every function call, it is necessary to store the val-
ues of lambda symbols and set new values to them on
entrance, and to restore the old values on exit. So, for
each symbol, its value is pushed on the stack. Then-the
pointer to the symbol is also pushed on the stack with

setting on the highest bit of the segment part. To undo

~B5~

the lambda bindings, cUtiLisp searches the stack area
to find a cell whose highest two-bit pattern is ‘10°. It
is peculiar to bound symbols. Then cUtiLisp pops the
pointer to the lambda symbol with setting off the high-
est bit of the segment part, and restores the old value

to the symbol by poping it from the stack area.

O\

offset

10[Symbo!

Old Value

-

Figure 3-5 Lambda Bindings

4. Garbage Collector

cUtiLisp adopts a compaction-type garbage collec-
tion as well as UtiLisp68 and UtiLisp32 do. The garbage
collector consists of marking phase and compaction one.
The former marks the alive objects recursively using the
preordered marking technique. As this marking phase
consumes the stack area for recursion, it is to be shifted
to adopt a reversed link method.

The compaction phase uses Morris’ algorithm [4].
The algorithm, generally, is not good at coping with a
several objects such as ‘string’ and ‘code piece’ which
are variable-length and have non lisp pointer cells. The
reason is as follows: The garbage collector traverses the
heap area from both ends. The moment it visits a cell,
it is necessary to know whether the cell contains a lisp
pointer or not. When it approaches a variable-length
object from the side which does not have a tag, it is

impossible to know the contents of the object.



The garbage collectors of UtiLisp68 and UtiLisp32
exchange the object tag and the content of the last cell
for each variable-length object in preparation for the re-
versed order traversal. Fortunately, objects of cUtiLisp
are allocated separately according to their types. Each
‘string’ object has no lisp pointer, and each ‘code piece’
object has a lisp pointer which has another segment
value. It suffices, therefore, to traverse the heap area
twice from same direction and this brings the same ef-

fect as if one of the traversals were from opposite one.

5. Portability

Though cUtiLisp was developed on the NEC PC-
9801 machine, it is machine independent. Therefore it
works on every computer whose CPU belohgs to the
18086 series and whose operating system is MS-DOS,

provided that the following two conditions are satisfied:

o The symbol segment is less than 0x4000 in unsigned

comparison.

o The stack segment is less than 0x8000 in unsigned

comparison.

These restrictions are somewhat severe for a personal
computer with RAM disk and/or interface boards. Sec-
tion 7 describes the relaxation of the constraints. Cur-
rently, cUtiLisp works on NEC PC-9801, EPSON PC-
286, and IBM-5550 machines in our laboratory.

It is under way to transport the cUtiLisp systern‘to
a XENIX machine which supports Microsoft MASM as-
sembler. The target machine is Fujitsu FM-R70. In this
environment, cUtiLisp works under the 180286 protected
mode. Each segment, therefore, has no relation with the
actual memory of the machine. It is a very little number
called a segment selector. So the previous two restric-

tions was redundant in practice. As a result, it sufficed

~6~

for transportation to rewrite the interface parts between

cUtiLisp and the operating system.

6. Performance

Timings were measured for a typical benchmark test
tarai-5 on several machines. The definition of tarai is as

follows:

(defun tarai (x y z)
(cond ((> x y) (tarai (tarai (1- x) y z)
(tarai (1- y) z x)
(tarai (1- z) x y)))
C'2)))

' Table 6-1 denotes the number of function calls in
tarai-5 for each function. Table 6-2 shows results of ex-
ecution. The execution performance of cUtiLisp is toler-
able in comparison with other lisp systems designed for
personal computers considering that cUtiLisp emulates

the UtiLisp system for 32-bit machines.

Table 6-1 Number of Calls

in Tarai-5
function] times
tarai [343073
cond |343073
> [343073
1- 257304

Table 6-2 Timings of Tarai-5

(times are all in_second)
Machine CPU/Clock | tarai-5 oS
EPSON PC-286 | - v30/10 240 MS-DOS
Fujitsu FM-R70| i80386/16 70 XENIX
NECPC-9801VX{ i80286/10 153 MS-DOS
IBM 5550 i8086/8 349 MS-DOS




7. Results and Further Improvement

By rewriting the LAP expander and the simple hand
optimization, it was easy to implement a subset of Uti-
Lisp, cUtiLisp, for the i8086 series. Currently, the fol-

lowing points are considered for improvement:

o Achieving high portability
 Gaining execution performance

« Upgrading cUtiLisp to a full set version of UtiLisp.

To achieve high portability, two changes are pos-
sible. First comes the change of the lambda binding
mechanism. The current cUtiLisp system represents a
bound symbol by setting the highest bit of symbol seg-
ment according to the manner of UtiLisp32. If a new
segment is introduced for bound symbol segment, there
is no need for symbol segment to be less than 0x4000
in unsigned comparison. As for stack segment, a stack
frame is never confused with a bound symbol. There-

fore, the previous two restrictions becomes only one:

o The stack segment is less than 0xC000 in unsigned

comparison.

This restriction is necessary because a stack frame would
be confused with a fixnum without it. Second comes
the change of fixnum representation by introducing a
new segment for fixnum for type checking. This change
makes the above constraint unnecessary. In this case,
however, a fixnum becomes a signed 14-bit integer. So
bignum object must be introduced for compensation.
To gain performa.nce, since one of the pseudo regis-
ters is used much more frequently than others, it is able
to assign a two 16-bit actual registers for the pseudo
one. This will reduce the times of memory accesses.
And thorough code optimization will result in a better

performance.

Roughly, cUtiLisp lacks the following features:

o Object types for bignun_l and flonum
. Compiler
e Attention handler

e Linkage ability for external programs.

Since cUtiLisp is in evolutionary cycles, it is post-
poned to implement the latter three features. The first
one has a large relation with the portability and its im-

plementation is also prolonged for the time being.

Acknowledgement

I wish to thank Professor Eiiti Wada and Associate
Professor Masato Takeichi for giving me a chance to
transport cUtiLisp to FM-R70. And I also wish to
thank Research Assistant Yutaka Tomioka and Mr. Aki-

toshi Fujiwara for their insightful comments on an earlier

draft of this paper.



References

[1] Chikayama, Takashi: “Implementation of the UtiLisp
System,” Trans. IPS Japan, IPS Japan, Vol. 24, No. 5,
pp- 599-604, 1983 (In Japanese).

[2] Chikayama, Takashi: UtiLisp Manual, Technical Re-
ports METR 81-6, Department of Mathematical Engi-
neering and Information Physics, Faculty of Engineer-

ing, Univ. of Tokyo, Sept. 1981.

[3] Kaneko, Keiichi and Kei Yuasa: “A New Implemen-
tation Technique for the UtiLisp System,” Preprints of
WGSYM Meeting, IPS Japan, Vol. 41, Jun. 1987.

[4] Morris, F. Lockwood: “A Time- and Space- Effi-
cient Garbage Compaction Algorithm,” CACM, Vol. 21,
No. 8, pp. 662-665, Aug. 1978.

[5] Terada, Minoru and Eiiti Wada: “Transportation of
Object Files between the Systems with Common CPU,”
Preprints of WGSW Meeting, IPS Japan,Vol. 87, No. 11,
pp. 89-95, Feb. 1987 (In Japanese).

[6] Yuasa, Kei and Keiichi Kaneko: “Transportation of
UtiLisp to Macintosh, the Days of Hardship,” Proceed-
ings of the 27th Programming Symposium, IPS Japan,

- pp. 131-141, Jan. 1986 (In Japanese).

[7] Wada, FEiiti and Yutaka Tomioka: “Transportation of
UtiLisp to 68000,” Preprints of WGSYM Meeting, IPS

Japan, Oct. 1984 (In Japanese).



