- Basic Functions of

Y7 bUx THEBR 27-3
Tms5 I ERE O 19—3

(1988 12 9)

a Parallel Coordinated Problem Solving System: Harmonia
(T RIS MRS o 2 7 & Harmonia DEEAKEEE .

Rikio Onai
BAHERER

NTT Soffware Laboratories
NTT v 7 v = TH3EET

3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan

H5%
[N
b, =

U B AELISE DR S h 2 HFIHARMBERIR Y A7 AHarmonia® & A, 45
EHEE, BIOA YV MER T O Y S L Y g, ERHS DB OV TR
NODBWRERIYVF AT YL LAEBTAO I VER STV A,

Abstract
A parallel coordinated computing system Harmonia is composed of loosely-coupled com-
puters which solve problems coherently and harmoniously in parallel. This paper de-
scribes the basic functions of Harmonia. It permits various parallel coordinated problem
solving techniques using communication functions which can be used independently of
hardware configuration, dynamic object-oriented programing functions for knowledge
modification, and clock synchronizing function. The experimental hardware of Harmo-
nia consists of six Al work-station ELISs connected by Ethernet and basic functions of
Harmonia are implemented using the multiple-paradigm language, TAO. ’

1 Introduction

The importance of Distributed Artificial Intelligence (DAI)
increases as computers become more powerful, smaller and
cheaper, network development broadens and expert systems
grow. DAI consists of distributed, coordinated Als and is
related to a wide range of computer science research areas,
such as distributed processing, parallel processing and AL

Future Al systems must possess and maintain remarkably
complex and vast knowledge to be ‘intelligent’. This will
be possible if Als are distributed and operated in parallel.
There are also Al problems with characteristics which is
natural spatial or functional distribution.

Parallel coordinated problem-solving [Filman 84] is part
of DAI Functional division of a problem into subproblems
with comparatively large granularity is characteristic of par-
allel coordinated problem-solving. There have already been
several research efforts on parallel coordinated problem-
solving; for example, Contract Net [Smith 85], Scientific
Community Metaphor [Kornfeld 81], and Hearsay-II [Er-
man 80].

Our definition of parallel coordinated problem-solving is
that agents in a distributed system, which consists of many
loosely-coupled computers, coordinate one another to solve

problems coherently.

‘Loosely-coupled’ means that agents spend most of their
time computing rather than communicating. Both control
and data are distributed.

‘Coordination’ is different from ‘cooperation’. ‘Cooper-
ation’ occurs when agents with identical or nonconflicting
goals help one another to solve problems. On the other
hand, ’coordination’ occurs when conflicting agents com-
promise with one another to solve problems. In other words,
‘coordination’ = ‘cooperation’ + ‘compromise’.

‘Coherent problem-solving’ means that all the agents fi-
nally reach the goal, but some of the time, some agents may
move in the opposite direction to the goal.

Our aim in developing Harmonia is to establish the
fundamental technology for parallel coordinated problem-
solving. This paper describes the basic functions of Har-
monia, especially the communication functions which can
be used independently of the hardware configuration, dy-
namic object-oriented programing functions for knowledge
modification, and the synchronizing function of real clocks.
The experimental hardware of Harmonia consists of six
AT work-station ELISs [Watanabe 87]connected by Ether-
net. Harmonit’s basic functions are implemented using the
multiple-paradigm language, TAO [Takeuchi 86].

2 Organization of Harmonia

This section outlines the organization of the parallel coor-
dinated problem solving system Harmonia.

Harmonia is composed of loosely-coupled computers
which contain Intelligent Agents (IAs). An IA is an active
entity which can communicate with other IAs to solve prob-
lems coherently and harmoniously in parallel. Harmonia’s
experimental hardware consists of six ELISs connected by
Ethernet (Fig. 1).

Ethernet
Ethernet

J
{ Switch

[ELIS | ELiS || ELIS || ELIS || ELIS | ELIS |

Fig.1 Harmonia experimental hardware

Harmonia is based on the dynamic manager-solver hier-
archy model, and permits communication not only between
managers and solvers, but also between solvers. ”Dynamic”
means that an JA can change from manager to solver and

" vice versa. Figure 2 shows one possible relation among a
number of IAs at one particular time. Thinking of the user
at a terminal as a manager and the log-in process initiated
by the user as a solver, the user can interactively input
various messages from an ELIS terminal.

solver

Fig.2 Dynamic manager-solver hierarchy model

3 Basic Functions

This section describes the basic functions of Harmonia:
communication, dynamic object-oriented programming and
clock synchronization. .

3.1 Communication function

This subsection describes inter-JA communication func-
tion in Harmonia. The communication is realized as a
higher level of TCP (Transmission Control Protocol) [Post

81]. Since TCP is a reliably delivered, full-duplex, stream-
oriented protocol that uses an adaptive retransmission al-
gorithm and forms the foundation on which most of the
higher-level protocols depend, it is chosen as the starting
point of the Harmonia communication protocol. Harmonia
provides two levels of communication using TCP and the
communicatio; is also used to operate the dynamic object,
described in 3.2, and to synchronize clocks, described in
3.3.

3.1.1 A first step toward virtual communication

The future target is virtual communication among dis-
tributed IAs. First, instead of the IA name and the ELIS
name in which it exists, the IA name only is required in the
communication. A correspondence between an IA name
and a physical ELIS name is given on metalevel and stored
in the communication server (Comser in Fig. 3).

Syntax :

(start-cps

(<IA-name> <initial-function> <initial-args>

[<physical-ELIS-name>] [<ezported-files>])

{(<IA-name> <initial-function> <initial-args>

[<physical-ELIS-name>) [<exported-files>])})

The syntax in this paper is as follows:
< and > denotes that the enclosed construct is a
metasymbol.

[and] denotes that the enclosed construct is optional.
{ and } implies that the enclosed construct occurs

zero or more times.

When <physical-ELIS-name> is omitted, the IA <IA-
name> is executed on the same ELIS as that on which this
metalevel function start-cps is executed.

When <physical-ELIS-name> is given, the IA <IA-
name> is exported to the <physical-ELIS-name> and
<initial-function> is applied to <initial-args> in the en-
vironment of ELIS <physical-ELIS-name> .

When files < ezported-files> are given, they are exported
to <physical-ELIS-name>. Correspondences between IAs
and ELISs are stored in the communication servers of both
import-ELIS and export-ELIS.

3.1.2 Two communication levels (Fig. 3)
Harmonia provides two communication levels. One is
for ordinary communication using mailboxes. The other
is for emergency communication using inter-IA interrupt.
Various kinds of communication functions are possible using
a combination of the two communication levels [Onai 86].
There are two cases of inter-IA communication: within
an ELIS, and between ELISs. The communication server
(Comser-A, Comser-B) is responsible for correspondence
between an IA (IA1, TA2, IA3, IA4) and an ELIS (ELIS-
A, ELIS-B). The server uses an inter-ELIS communication
mechanism which is realized as a higher level of TCP.

— 20—

(1) Ordinary Communication

Syntax of ordinary communication:
(send-message <IAs> <message>)
(receive-message)

Each IA has its own general mailbox (G-mailbox in Fig.
3). The function receive-message takes a message from the
mailbox and then returns it. When (send-message <IAs>
<message>) is executed, <[As> and <message> are first
sent to the communication server.

There are two cases:

D The receiving IA exists in the same ELIS as the send-
ing IA.
The communication server determines the receiver’s
general mailbox and executes the TAO function (send-
mail <G-boz> <message>). In this function, <G-boz>
is a general mailbox.

@ The receiving IA exists in a different ELIS.

The communication server determines the ELIS of the
receiving TA. It then sends the appropriate ELIS a
packet consisting of the name of the receiving IA, and
the message. The communication server in the receiv-
ing ELIS determines the general mailbox of the receiv-
ing IA and executes the TAO function (send-mail <G-
boz> <message>).

(2) Emergency Communication

In emergency communication the receiving IA is inter-
rupted and the message is delivered (Interrupt in Fig. 3).
This is achieved using the TAO functions process-interrupt
and throw.

Syntax: (send-e-message <IA> <message>)

<Message> with <IA> is sent to the general mailbox of
the communication server, which takes emergehcy messages
from. the mailbox before ordinary messages. The same two
cases exist here as in ordinary communication. There is a
catch tag in the car part of the message. The communi-
cation server then interrupts the receiving IA and delivers
the message. When the interrupt succeeds, the sending 1A
receives t (true). When the interrupt fails, the sending IA
receives nil. Hence, the emergency communication is syn-
chronized.

Ethernet

ELIS-A l ELIS-B 1

I

I | I
l G-mailbox ” G-mailbox 1 ! G-mailbox] G\mailbox
T > m > Y S

Fig.3 Inter-TA communication in Harmonia

3.2 Dynamic Object-Oriented Program-
ming Function

We have selected object-oriented description because of its
modularity, hierarchy, easy development of large and com-
plex programs, and maturing concept.

In a parallel coordinated problem-solving system [Fil-
mann 84], a manager gives solvers knowledge which either
the solvers require or the manager thinks they need. If the
knowledge is perfect or does not require future modifica-
tion, problems never occur. However, it is quite natural for
knowledge to change and it is impossible for perfect knowl-
edge to be given in the beginning. Therefore, dynamic mod-
ification function is requisite in the system.

However, the objects proposed i most object-oriented
languages are not dynamic except CLOS [Bobrow 87-
1][Bobrow 87-2] and new Flavors [Symbolics 86]. For ex-
ample, when a class is redefined and new instance variables
are added to it, all existing instances refer to the old class
definition. Instances must be reconstructed to make them
refer to the new class definition. Therefore, conventional
objects are not suitable for knowledge representation in the
system. Objects which can be modified dynan\n’cally, ie.
dynamic objects, are required. Dynamic objects allow
users, manager processes, and solver processes to dynami-
cally modify objects as knowledge. When part of classes,
methods, and instances are modified, related classes, meth-
ods, and instances are redefined or modified automatically.

This subsection describes functions for the dynamic
object-oriented programming using the dynamic object and
shows that the dynamic object-oriented programming is
more natural and more efficient than the ordinary object-
oriented programming from the standpoint of knowledge
modification [Onai 88-2].

3.2.1 Object-Oriented Programming in TAO

The dynamic object is implemented using TAO and our
improvement on it, hereafter called improved TAO. This
3.2.1 outlines TAQ’s object-oriented features.

TAO is a Lisp dialect with object-oriented programming
and logic programming features implemented on ELIS.
It incorporates features of Prolog, Smalltalk [Goldberg
83], and Flavors [Weinreb 83]. TAO is designed as an
interpreter-centered programming language in order to sup-
port a fully interactive environment with comfortable speed.
Indeed, the speed of the interpreter is becoming compara-
ble to compilers of other commercial Lisp systems. TAO
emulates Common Lisp in the Common Lisp mode. ELIS
is equipped with 64K, 64-bit WCS. Almost all parts of
the TAO language kernel are microcoded. ELIS can be
equipped with maximum 128Mbytes main mernory.

The TAO object-oriented programming paradigm is sim-
ilar to ZetalLisp’s Flavors. However, unlike Flavors, TAO
has the syntactical flavor of Smalltalk-like message passing
and treats all primitive data types as objects.

l value of property class bol of
symbol Symbol O
| “mestage | 0 class vector § class name
methody | selectorg class 12 (vector size)
method; | selector; syrmbol b 1 sion-number
. .
. . n methods (used for logic programming) symbol-back-pointer «——7
. .
super-symbol. t (used for logic programming)
method,; | selector, ; lass.variable-vect property-list ———f——==~-
defelass-skeleton malk keleton list of instance
r———* (not used) instance-variable-hash variables
super synibol a information at the time
[—essage class-vars 2p of defclass
methody selectorg valueg var-namey
. .
. . 1super-symbol . . .
. . methods : : p class variables
method;.; selector).y
value, var-nameg;

Fig.4 Class vector and related tables in TAO

Next a class vector (Fig.4) is explained on various defini-
tions of object-oriented functions.

(1) Class Definition .
Syntax:

(defclass <class> <class-variable-list> <instance-variable-
list> <superclass-list> {<options>})

defclass creates a vector called a class vector (Fig.4) and
stores it in the property list of the symbol <class>, whose
indicator is ¢lass. When subclasses are defined, they are
stored in the property list of the symbol <class>, whose
indicator is component-of-what. <Superclass-list> specifies
a set of superclasses. TAO supports multiple inheritance.

A class inherits all the instance variables and all the
methods of all its superclasses. That is, inherited instance
variables and methods are registered to the class. By con-
trast, it does not inherit any class variables. However, the
superclasses’ class variables can be accessed from this class’s
methods through the class inheritance network.

<Options> may specify the default creation of some
kinds of methods. For example,

(:method-combination (combination-typel
...) (combination-type2
which declares

selectoril selectori2
selector2l selector22 ...) ...)
the way the methods are combined.

When a class is defined by defclass, only the slots for class
version number, symbol backpointer, defclass skeleton, and
class variables is filled. 12 in a class vector, 2n in a symbol
message vector, 2p in a class variable vector, and 21 in a
super symbol message vector are the corresponding vector
sizes.

Other slots are filled just when they are needed for the
first time. This is because each defmethod after class def-
inition changes the class structure, and some superclasses
may not yet be defined when the class is defined. The class
vector has property-lists and pointers to the lists are stored
in the property-list slot (Fig.4).

(2) Instance Definition

Syntax:

(make-instance <class> {<instance-variable> <initial-
value>})

make-instance returns a user-defined object, hereafter called
"udo”, of a class <class>. A udo is a vector (Fig. 5).

The make-instance-skeleton slot are filled and an instance
variable hash table is built just when the first instance of the
class is to be created. The symbol message vector is created
just when one of the symbol messages is to be sent to an
instance of the class for the first time. When a superclass is
redefined, the corresponding subclass information slots for
such as symbol message vector and make-instance skeleton
are cleared. This lets the subclasses follow the change when
needed. Every time a message is sent to an instance, the
existence of the message vector is checked. However, this
does not bring overhead into the actual microcode.

back pointer to class 2N (vector size)
value 1 instance-variable 1
value 2 instance-variable 2
. L] .
value N | instance-variable N

Fig.5 User-defined object (udo)

—929—

TAO has no notion of metaclass. Classes need not be
objects since the Lisp world itself is a metaconcept over the
object-oriented world.

(3) Method Definition

Syntax:
(defmethod (<class> [<type>] <selector>) <args>
<method-body>)

(undefmethod (<class> <selector>) <args>
<method-body>)
defmethod lets users add new methods incrementally.
When a new method is defined using defmethod, this
method is registered temporarily in the class vector def-
class skeleton and the symbol message vector is cleared.

Symbol message vectors and super symbol message vectors-

in subclasses are also cleared. At the next message passing
to an instance in the class, superclasses are traversed, and
the symbol message vector is created. The option <type>
is used for the method combination, similar to Flavors.
When undefmethod deletes a method, the method is
deleted from the class vector defclass skeleton and the sym-
bol message vector is cleared. Symbol message vectors and
super symbol message vectors in subclasses are also cleared.
TAO function (super ' <superclass>.<selector>
{<args>}) can be used in <method-body>. When a method
call whose selector is <selector> is first executed, super-
classes are traversed, and the method is added to a super
symbol message vector. Using super in <method-body>, a
particular superclass’s method can be accessed directly.

3.2.2 Operaion of Dynamic Objects

This 3.2.2 describes the operations which are used for
dynamic modification of object in Harmonia. These op-
erations are written in <message> part of the two levels
inter-IA communications as described in 3.1. We have im-
proved the structure of TAO’s class vector to support the
dynamic objects. A dynamic object is implemented in the
improved TAO.

(1) Dynamic Class Creation and Modification

Syntax: (d-defclass <class> <c-vars> <i-vars> <supers>
{<options>}))

D- represents ”dynamic”; < class >, a class name; < ¢-
vars >, class variables; < i-vars >, instance variables; and
< supers >, superclasses.

First d-defclass creates a class vector and the related ta-
bles. When d-defclass is applied to the <class> next, dy-
namic modification happens. Dynamic class modification
affects the class itself, its instances, its subclasses, and the
subclasses’ instances. The class itself and its subclasses are
modified just when d-defclass is executed. Subclasses are
gotten from the property list of the class.

However, an instance is modified on demand, that is, just
when the first message after d-defclass execution is passed to

the instance. Both a class and an instance have a version
number (zero origin) for on-demand modification. Class
version number is stored in the class vector (Fig. 4). In-
stance version number is stored in the property list of the
instance name.

Instance names of a class and the corresponding udos
are stored in the property list of the class vector under
the indicator :i-list. It is an association list, the key is the
instance name, and the datum is a udo corresponding to the
instance name. A udo in the a-list is regarded as a pointer
from a class to its instance. An instance is usually modified
on demand. However, if ELIS is idling, instances can be
modified by the pointer.

If the instance version number is different from the class
version number when an instance receives a message, the
class and its superclasses are traversed, methods or instance
variables or both are gathered, a new udo frame is created,
and the instance version number is set at the class version
number. A udo in the property list under the indicator :i-list
is updated. Of course, the old udo is handled by garbage-
collection. When the instance variable name in the old udo
is the same as that in the new defclass skeleton, we must
choose a value to put in the new udo. A value in the old udo
is called the old value; a value in the new defclass skeleton
is called the new value. When a variable is undefined, it
has the value (called the undefined value) which the TAO
function undef returns. Then Harmonia’s selection rules are
as follows:

(D When an instance variable in a new defclass skeleton
has the property :set-all, a new value is chosen and the
property is removed.

@ An instance variable in a new defclass skeleton has the
property :set-if-undef. When the old value is.the un-
defined value, a new value is chosen. When the old
value is defined, the old value is chosen. The property
:set-if-undef is removed. '

@ When the old value is different from the initial value
in the old class vector’s property list, i.e. when the
value of the instance variable is changed during prob-
lem solving, the old value is selected.

@ When the old value is the same as the initial value
in the old class vector’s property list, a new value is
selected.

When a user wants to choose a new value in a different
way, he may specify a value in an instance by d-instance,
which is described later. In modification, only the modified
argument is specified. The other argument is nil. When
a manager wants to add, delete, or change more than two
items, d-defclass can be used.

There are several kinds of syntax to modify one item as
follows.

¢ Class Variable Modification

Syntax: (d-class-var <class> <modified-c-vars>
{<modified-c-vars>})

Since class variables are not inherited in TAO, related
slots in the class vector are modified and the class version
number is augmented by 1 just when this message is re-
ceived.

There are four kinds of <modified-c-vars> syntax.

@ (:delete <c-var>) < C-var> is deleted. <C-var> in a
class variable vector table is replaced by a sign for empty.
@ (<c-var> <wval>) = <C-var> and its value <val> are
added. The dynamic object mechanism puts <c-var> into
a defclass skeleton (Fig. 4), creates a new class variable
vector table which is two vector sizes larger than the old
one, copies values & names of old variables, and puts <c-
var> and <wval> into the new vector table. If there are
empty slots in the old vector, <c-var> is put into the slot

and <wal> is put into the next slot.
@ <c-var> < C-var> and the undefined value are
added. :
@ (:set <c-var> <val>) The old value of <c-var > is re-
placed by the new value <val>.

¢ Instance Variable Modification
Syntax: (d-instance-var <class> <modified-i-vars>
{<modified-i-vars>})
The dynamic object mechanism modifies first the class
vector as follows.

* Increases the class version number by one

* Clears the instance variable hash table and the make-
instance skeleton’

The same common processing as that for the class vector
is done for subclasses recursively. Subclasses are stored in
the property list of the symbol <class>, whose indicator is
component-of-what.

There are five kinds of <modified-i-vars> syntax.

@ (<i-var> <wal>) <Ivar> and its value <wval> are

added. .

The dynamic object mechanism puts <i-var> into the
defclass skeleton and <i-var> & <wval> into the property
list of the existing class vector. At the next message passing
to an instance in the class, the dynamic object mechanism
traverses superclasses, creates a new udo frame (Fig. 5)
for the instance. If old udo size is enough for new instance
variables, the old udo frame is used again. The instance
variables’ values are written into slots in the udo using the
selection rules.

@ (:delete <i-var>) " <I-war> is deleted.

<I-var> is removed from the defclass skeleton. If <i-
var> has initial value, it is also removed from the property
list, whose indicator is :init-plist. At the next message pass-
ing to an instance, <i-var> name in the udo is removed.

@ (:set-all <i-var> <wval>) The old value of <i-var> is
replaced by < val >.

<I-var> & <wal> are put into the property list, whose
indicator is :init-plist. The property :set-all is put into <i-
var>. At the next message passing to an instance, <val>
is written into the corresponding value vector slot in a udo.
The property :set-all is removed from <i-var>.
@ (:set-if-undef <i-var> <wval>) If the old value of <i-
var> is the undefined value, <val> is set.
<I-var> & <wal> are put into the property list, whose
indicator is :init-plist. The property :set-if-undef is put into
<i-var>. At the next message passing to an instance, if the
value of <i-var> is the undefined value, <val> is written
into the corresponding value vector slot in the udo. The
property :set-if-undef is removed from <i-var>.
B <i-var> <I-var> and the undefined value are added.

» Super Class Modification
Syntax:(d-hierarchy <class> <modified-super>
{<modified-super>})
The dynamic object mechanism first modifies the class
vector as follows just when d-hierarchy is called:

* Increase the class version number by one

* Clears the symbol message vector, the super symbol
message vector, the instance variable hash table, and
the make-instance skeleton.

Class vectors of subclasses are recursively modified in the
same way.
There are three kinds of <modified-super> syntax.

@ (:delete <super>) the class <super> is no longer a
super class.

<super> is removed from the defclass skeleton. At the
next message passing to an instance in the class, instance
variables inherited from the deleted superclass are removed
from the new udo of the instance.

@ <super>
class.
<super> is added to the defclass skeleton. At the next
message passing to an instance in the class, a new udo frame
is created. Values of instance variables are determined using
the selection rules.
@ (:change <old-super> <new-super>)

Class <old-super> is replaced by class <new-super>.
That is, class <old-super> is deleted and class <new-
super> is added. <old-super> is removed from the defclass
skeleton and <new-super> is added. At the next message
passing to an instance in the class, a new udo is made using

the class <super> is added as a new super

the selection rules.

e Option Modification
Syntax: (d-option <class> <modified-option>
{<modified-option>})
There are two kinds of <modified-option> syntax.

@ (:delete <option>) <Option> is deleted.

@ <option> New <option> is added.
The specified option and related information are stored
or deleted in a class vector. Related tables and vectors are
updated.

(2) Instance Creation

Syntax:(d-make-instance <class> <instance> {<option>})

This function creates a dynamic instance which belongs
to the class <class> and returns a udo.

The difference .in syntax between d-make-instance and
make-instance of TAO is the argument <instance>.

The only processing differences are the storing of the
paired <instance> and the udo in the property list of the
class vector under the indicator :i-list; and the setting of the
instance version number at zero. When a manager IA sends
knowledge of his instance object to a solver, since the man-
ager does not know the udo in the solver, the instance name
is passed instead of the udo itself. This is the reason that an
instance name <instance> exists in d-make-instance syntax
and the <instance> exists in the element corresponding to
an indicator :i-list in the class vector property list.

(3) Instance Modification
There are two kinds of syntax.

oSyntax:
var>))

This is used to modify a value of an instance variable.
There are two kinds of <modified-i-var> syntax.

@ (:set <i-var> <wval>) < Val> is stored as the new
value of an <i-var>.

@ (:set-if-undef <i-var> <val>) When the value of an
<i-var> is the undefined value, < wal > is stored as the
value of <i-var>.

(d-instance <class> <instance> <modified-i-

e Syntax: (d-instance (:change <old-class> <new-class>)
<instance> [<ezp>])

This is used to change a class of an instance dynamically.
<Old class> of the instance is changed to <new-class>.
<FEzp> is the expression specifying the relation between
the variables in an old class and a new class. The values
of the new variables are computed using <ezp>. Since in
a parallel coordinated problem solving system we want to
suppress network traffic, i.e. reduce the number of mes-
sage passing as much as possible, d-instance can contain an
expression which specifies the relation among the variables.

If <exp> of a dynamic class change is used often, the
<ezp> is sent as a message with the syntax:

(d-class-relation <old-class> <new-class> <exp>)

d-class-relation is called by d-instance. When <old-class>
and <new-class> have the same variable names, the <old-
class> name is attached to an <old-class> Variablé. d-
class-relation corresponds to CLOS’s generic function class-

changed [Bobrow 87-1]. Flavors [Weinreb 83][Symbolics 86]

has no function corresponding to change-class and class-
changed in CLOS or to :change of d-instance and d-class-
relation in Harmonia. d-class-relation is explained using ex-
amples in 3.2.3.

(4) Method Creation and Modification

Since method definition is dynamic in TAO, method cre-
ation and modification is the same as those of TAO.

(5) Method Call

Dynamic and ordinary objects have a common method call
syntax. It is used, when a user does not know whether or
not an instance is a dynamic object.

Syntax: (m-call <instance> <selector> {<args>})

3.2.3 Dynamic Object-Oriented Programming

Knowledge can be represented using the object-oriented
'ooncept. For example, Minsky’s frame, which is a famous
representation of knowledge, can be implemented in the
object-oriented programming paradigm. A frame is a class
or an instance. An AKO link is a relation between a class
and a superclass. An Is-A is a relation between a class and
an instance. Slots are class variables, instance variables,

~ and superclasses. Procedures and slot operations are meth-

ods. :
Knowledge represented by classes, instances, and meth-
ods has a long life and must be maintained. That is, knowl-
edge is continually modified over a long time. For example,
once the class human-being is created, it may not be deleted
from the knowledge base. It is modified, e.g. instance vari-
ables are added, if necessary. As the knowledge base ex-
pands, there come thousands of instances or more which be-
long to the class human-being. Without dynamic objects,
it may become impossible to modify class human-being and
instances.

We call programming using dynamic objects dynamic
object-oriented programmihg. It is more natural and
efficient than the ordinary object-oriented programming for
knowledge modification, as the following examples show.
Programs, described below, are run for measurement on
ELIS in Harmonia’s experimental system.

(1) Gradually Increasing Instance Variables

Let us consider a simple example of gradually increasing
knowledge involving a manager and a solver.

First, the manager gives the solver the knowledge that
wedge has a triangular prism shape and that wedge wedge88
exists.

Second, the manager gives the solver the knowledge that
wedge has color and wedge88 is red.

Finally, the manager gives the solver the knowledge that
wedge has the material attribute and wedge88 is made of
wood.

To describe this gradually increasing knowledge with
object-oriented programming, there are three programming
styles, described below.

(D Redefining Class & Instance

(defclass wedge () ((shape ’triangular-prism))
0))
(!wedge88 (make-instance ’wedge))
(defclass wedge () ((shape ’triangular-prism)
color) ())
(!vedge88 (make-instance ’wedge color ’red))
(defclass wedge () ((shape ’triangular-prism)
color material) ())
(!wedge88 (make-instance ’wedge color ’red
material ’wood))
(!<assignee> <new-value>) is almost equivalent to
(setq <assignee> <mew-value>) in TAQ. This program-
ming style involves editing & loading and is tedious.

@ Differential Programming

This is both an important concept and a useful technique
in object-oriented programming.

(defclass wedge () ((shape ’triangular-prism))
9))

(!wedge88 (make-instance ’wedge))

(defclass colored-wedge () (color) (wedge))

(!wedge88 (make-instance ’colored-wedge color
‘red))

(defclass material-wedge () (material)
(colored-wedge))

(!wedge88 (make-instance ’material-wedge color
‘red material ’wood))

Class colored-wedge becomes the superclass of class
material-wedge, because knowledge of color comes before
knowledge of material. If knowledge of material had come
before knowledge of color, class material-wedge might
have become the. superclass of class colored-wedge. The
relation of superclass and class is unnatural and not essen-
tial in this case. Accidental knowledge change happens in
the real world. Small classes are created successively and
superclass traversing is required frequently.

Therefore, differential programming is not necessarily
suitable for knowledge modification.

@ Dynamic object-oriented programming

(d-defclass wedge () ((shape
’triangular-prism)) ())

(!wedge88 (d-make-instance ’wedge ’wedge88))

(d-instance-var wedge color)

(d-instance wedge wedge88 (:set color ’red))

(d-instance-var wedge material)

(d-instance wedge wedge88 (:set material
’wood))

Only one class wedge is created-and-modified. Class hi-
erarchy is not created. We feel that the dynamic object-
oriented programming, hereafter the dynamic o-o program-
ming, is natural and suitable for knowledge modification.

When d-instance-var is executed, the dynamic object
mechanism puts instance variables into the defclass skele-
ton and the instance variable& value (in this case, the value
is undefined.) into the property list of the existing class
vector. At the next message passing (d-instance) to the
instance wedge88 in the class, the dynamic object mecha-
nism traverses superclasses and creates a new udo for the
instance.

Of course, a manager can give a solver the knowledge
that wedge has shape, color and material at the outset.
However, the real world always changes and knowledge of
it also changes. Therefore, it is impossible to give all indis-
pensable knovx‘zledge at the outset. Thus the dynamic o-o
programming is natural and useful.

Let us compare the three programs in terms qf cpu time
and memory use. Table 1 compares the measurement re-
sults. CPU time is 14 ms, the number of used cells is 296,
and the number of used vectors is 104 in the case of re-
definition. The number of used vectors is the sum of used

vectors’ sizes.

time | cell |vector
Redefinition 1 1 1
Differential programming | 1 0.97 1
Dynamic object-oriented 0.81 | 0.72 _ 0.86

Tablel Ratio of CPU time and
memory consumption

In redefinition and differential programming, three
classes are created. Two of the classes created by differen-
tial programming are smaller than those created by redef-
inition. Thus differential programming requires fewer cells
than redefinition. Since differential programming requires
superclass traversing, cpu time is nearly the same.

The dynamic o-o programming creates the same three
udos of wedge88 as do the other two types of programming.
However, since only one class is created and modified, the
required memory and cpu time are less than for the other
two types of programming.

The above example involves only one instance wedge88.
Suppose there are already one, ten, a hundred, or a thou-
sand instances under the class wedge. Each instance has an
instance variable shape. Let us measure the cpu time and
memory needed to add two instance variables, color & ma-
terial to wedge, and to set color red and material wood in
one of the instances. Color and material of other instances
are not yet set. Methods are used to set values of instance
variables.

The dynamic 0-0 programming is:

(d-instance-var wedge color)

(defmethod (wedge set-color) (x) (!color x))

(m-call wedge88 set-color ’red)

(d-instance-var wedge material)

(defmethod (wedge set-material) (x)
('material x))
(m-call wedge88 set-material ’wood)

On the other hand, defclass and make-instance for all
instances are re-executed in the redefinition programming.

Figure 6 compares the cpu time and required mem-
ory of the dynamic 0-o programming with redefinition
([<receiver> <message> <args>] which is microcoded
message passing in TAO is used instead of m-call in the
redefinition programming.). In the dynamic o-o program-
ming, instances are modified on demand. The udo of only
one instance is newly created in this example. By con-
trast, udos of all instances are newly created in redefinition.
Therefore, as instances increase, the required memory ratio
becomes smaller. That is, the more instances, the better
the dynamic o-o programming is. The measurement results
of differential programming are similar to redefinition.

0.1 —cpu time
- cell use
0.05] e---+ vector use

1I 1|0 160 1600 instances/a class

Fig.6 Ratio of CPU time and memory

consumption of dynamic 0-0 programming
vs. redefinition programming at increasing
instances in a class

The above examples involves only one class. Suppose
there are 63 classes whose structure is a binary tree (Fig.
7) and there are already one, five, ten, or fifty instances
in each class which has an instance variable shape. Let us
measure the cpu time and memory needed to add two in-
stance variables, color & material, to the root class wedgel,
and to set color red and material wood in one of the in-
stances in the leaf class wedge63. Color and material of
other instances are not yet set.

instances

Fig.7 Binary tree structure of classes

Figure 8 compares the cpu time and required memory
of the dynamic o-o programming with redefinition. In the
dynamic o-o programming, the udo of only one instance is
newly created, and class vectors are modified, not newly
created at superclass traversing. By contrast, udos of all
instances and all class vectors are newly created in redefi-
nition. Therefore, as instances increase, the required vector
and cell ratios become smaller. The more instances in the
class hierarchy, the better the dynamic o-o0 programming is.

The above example first involves an instance variable
shape in an instance. The more instance variables and class
variables, the better the dynamic o-o programming is.

ratio
0.1 A
0.05 1
0.01 +
0.005 A .
— cpu time
~-- cell use
«-~-+ vector use
0.001

151050

Fig.8 Ratio of CPU time and memory
consumption of dynamic o0-o programming
vs. redefinition programming at increasing
instances in binary tree structured classes

instances/a class

(2) Dynamic Class Change

As knowledge continually changes, an instance may
change its class. Therefore, a coordinated problem solv-
ing system rmust represent and support such dynamic class
change.

For example, a class hierarchy is shown in Fig. 9. Mr. A
is first a part-timer, but is hired as a regular engineer after
several months. There are usually some relations between
instance and class variables of an old class and those of a
new class. d-instance and d-class-relation, described in 3.2.2,
are used for such dynamic class change.

enior-engineer>(engineer

7
’
/

Fig.9 Dynamic class change and
dynamic superclass change

The dynamic o-o programming is:
(d-defclass employee () ((weekly-holiday 2))
(0)]
(d-defclass engineer ()
(salary (privilege 0)) (employee))
(d-defclass senior-engineer ()
(salary (privilege 1)) (employee))
;This class is used in (3) of 3.2.3.
(d-defclass part-timer ()
(average-of-monthly-working-time
pay-by-the-hour (privilege 0)) (employee))
(!Mr.A (d-make-instance, ’part-timer ’Mr.A
privilege 1 pay-by-the-hour 25))
(d-class-relation part-timer engineer
(!salary (* pay-by-the-hour (max 150
average-of-monthly-working-time))))
(d-instance (:change part-timer engineer)
’Mr.A)

Harmonia takes 6 ms, 78 cells, and 33 vector sizes to
execute (d-instance (:change part-timer engineer)
'Mr.A).

Mr.A’s privilege is 1 and it is different from the initial
privilege value 0 in class part-timer. Therefore, selection
rule @, described in 8.2.2, becomes valid and the privilege
is set at 1 in the new udo.

Dynamic class change function is useful in parallel coor-
dinated problem solving. It is difficult, although not im-
possible, for redefinition to represent it.

(3) Dynamic Superclass Change

When knowledge goes into details in problem solving, a
new class may be inserted into the existing class hierarchy.
At this time, related classes must change their superclasses.

For example, suppose the class mammal is a superclass
of class dog and Tinker is an instance of a dog (Fig. 10).
When the new class carnivore is inserted, class dog must
replace superclass mammal for new superclass carnivore.

ITnstance Tinker J

Fig. 10 Dynamic superclass change

This can be done by either redefinition or the dynamic
0-0 programming:

@ Redefinition
(defclass mammal () ((respiration ’lungs)) (0)]
(defmethod (mammal respiration?) ()
respiration)
(defclass dog () ((leg 4)) (mammal))
(defmethod (dog get-leg) () leg)

(!Tinker (make-instance ’dog))

(defclass carnivore () ((food ’meat))
(mammal))

(defmethod (carnivore food?) () food)

(defclass dog () ((leg 4)) (carnivore))

(defmethod (dog get-leg) () leg)

(!Tinker (make-instance ’dog))

When [Tinker food?]
meat.

is executed, returned value is

@ The dynamic o-o programming

(d-defclass mammal () ((respiration ’lungs))
(0))

(defmethod (mammal respiration?) ()
respiration)

(d-defclass dog () ((leg 4)) (mammal))

(defmethod (dog get-leg) () leg)

(!Tinker (d-make-instance ’dog ’Tinker))

(d-defclass carnivore () ((food ’meat))
(mamnal))

(defmethod (carnivore food?) () food)

(d-hierarchy dog (:change mammal carnivore))

When (m-call Tinker food?) is executed, returned

value is also meat.

The redefinition programming requires the class dog re-
definition, the class dog’ s method redefinition, and remake-
instance for an instance Tinker in the class dog for the su-
perclass change. By contrast, the dynamic o-o program—

ming requires only d-hierarchy.

time céll vector

Redefinition
(no [Tinker food?]) 1 1 1

namic object-oriented
{no (m- callJkaer food?)) 0.4 0.4 0.2

Redefinition 1 1 1
Dynamic object-oriented | 0.98 | 0.94 | 0.95

Table2 Dynamic superclass change

The two types of programming are compared in terms of
cpu time and memory use in Table 2. The upper half mea-
surement in Table 2 does not contain [Tinker food?] or
(m-call Tinker food?). Since the dynamic o-o program-
ming creates new udos on demand, the udo of Tinker is
still old. In redefinition, a new udo is created by (!Tinker
(make-instance ’dog)) and class dog and its methods are
redefined too. Thus the dynamic o-o programming requires
less memory than does redefinition. Superclasses are not
yet traversed in either programming case.

Since the lower half measurement in Table 2 contains
[Tinker food?] or (m-call Tinker food?), the message
is passed to the instance Tinker and a new udo is created
too in dynamic o-o programming. Cpu time and memory
use for check on dynamic modification in dynamic o-o pro-
gramming should be compared with those for redefinition of

class and its methods in the redefinition programming. The
cpu time and memory use of the dynamic o-o pfogramming
is similar to redefinition in the most disadvantageous case
(there is only one instance Tinker in the class dog). In the
dynamic superclass change, the more instances, the better
the dynamic o-o programming is.

Tinker has four legs. This is the same as the initial leg
value of the class dog in the above example. Suppose Tinker
lost one leg in an accident and dynamic superclass change
from mammal to carnivore occurs for dog. In this case, the
old value of leg is different from the initial leg value 4 in the
old class vector of dog. Therefore, selection rule @becomes
valid and leg is set at 3 in the new udo. By contrast, in
redefinition, a user must remember that Tinker has lost a
leg in an accident and remake a new instance as follows:
(!Tinker (make-instance ’dog leg 3))

Suppose there is an instance Mr.B in class
senior-engineer made as follows:
(!Mr.B (d-make-instance ’senior-engineer ’Mr.B))

and new class administrator is introduced into the class
hierarchy (Fig. 9). And suppose the value of weekly-holiday
in administrator is 1. i

The dynamic o-o programming for the dynamic super-
class change is only:

(d-defclass administrator ()

((weekly-holiday 1)) (employee))

(d-hierarchy senior-engineer

(:change employee administrator))

In this case, weekly-holiday’s old value of Mr.B is the
same as the initial weekly-holiday’s value 2 of old superclass
employee. Therefore, selection rule @ becomes valid and
the weekly-holiday is set to 1. When a user wants to choose
a new value in a different way, he may specify a value in an
instance by d-instance.

It takes 0.3 ms, 5 cells, and 0 vectors to execute
(d-hierarchy senior-engineer (:change
employee administrator)). The comparison with redefi-
nition in terms of cpu time and memory use shows that the
tendency is the same as the example of mammal, carnivore,
and dog shown in Fig. 10.

3.3 Function of Synchronizing Clocks

In parallel coordinated problem solving using distributed
computers, computer clocks are used to compare the time
when messages are sent, when events occur, and how long
knowledge is held. For these reason, differences in computer
clocks need to be minimized.

This subsection proposes a general method for synchro-
nizing real clocks (also referred to as ‘clocks’) of distributed
computers. It proves that this method finishes within a fi-
nite time and suppresses clock differences ‘to network delay
times and also describes experiments in synchronizing real

clocks of ELIS AI workstations in Harmonia [Onai 88-1].

3.3.1 Synchronizing clocks of two computers

Two computers, M and N, are connected by a network.
The times of M and N are represented by Tm. and Ty~
respectively (Fig. 11).

. TMI“
i
—at,
N i
Tyo
Fig.11 Space-time diagram of

two computers M and N

This method consists of several procedures (refer to Fig.
11).

Procedures for M
Proc-M1

M records Ty; and sends a message to N. Aty is the time
between the recording of Ty and the message’s output
from M.
Proc-M2

M records Ty when a message with the timestamp Ty
is returned from N. Aty is network delay time and Atg is
the time between the reception of a message from N and
the recording of Ty, .
Proc-M3

M compares Ty, Ty, and Ty and sends a command,
which depends on the result, to N.
3.1 When Ty < Ty < Tue, M sends an end command to
N.
3.2 When Ty; € Ty, M sends N a command to set N’s
clock(Tn) ahead by Tmi — Tna + At,. At is the minimum
unit of time that a computer clock can be set back or ahead.
3.3 When Ty, < Tni, M sends N a command to set N’s
clock(Ty) b@ﬁ(by Ty — Tz + Atg.
Proc-M4

When 3.1 is met in Proe-M3, all M’s procedures are
completed. Otherwise, Proc-M1 begins again.

Procedures for N
Proc-N1

When N receives a message from M, N returns a message
that includes Tny to M. Aty is the network delay time of
a message sent from M to N. At; is the time between the
reception of a message and the recording of Tyj. Aty is
the time between the recording of Tn; and the sending of
a message that includes Tny.
Proc-N2

N receives a command from M and accordingly sets its
clock (Ty) ahead or back. At is the time required to
adjust the clock.

Proc-N3
When the command is not an end command, Proc-N1
begins again.

When |Twm ~ Tno| < A, the time difference between M
and N is less than A.

Fig. 11 shows that At, = Aty + Aty + Ats,
Aty = Aty + At + Atg, and At = At, + Aty .

3.3.2 Assumptions
There are four assumptions.,
Assumptionl '
Time ticks are quantumized and represented as t4. Since

time ticks of computer clocks are quantumized by clock fre-
quency, this assumption is reasonable.

Assumption2

tq X n (n is a positive integer) passes in M and N at the
same time. When A7 is the time needed for synchronizing
clocks, is the variation from the correct time rate, and
At, is the minimum unit of time the computer clock can
be set back or ahead. If k X AT <« At,, this assumption is
reasonable. & is less than 1078 in typical crystal-controlled
clocks.

Assumption3
Aty 2> Atg and Aty > At

Assumptiond
Atq € Atg and Aty < At

Aty is the time required to set the clock ahead or back.

Assumptioﬁ.‘& and assumption4 depend on the net-
work and computers used.

3.3.3 Proof: The time difference between two com-
puters is suppressed less than At — At,

If Tm1 < Tni < Tmz is reached using this method, the
following paragraph proves that |Ty — Tn| < At — At,.

When Tn is behind, we
Twm — Tno = At — At

Assume that Tno < Ty — At + At,. (1)

Since Tno + Ata = Tni, Tno = Ti — At,. (2)

SinceTa; < Ty < Tme, 0 < Tnp — T < At (3)

From (1) and (2), Tyt — Tmr < Aty — At + At

Because of At — At, = Aty, > Ats, Ty — Twmi <0.
However, this contradicts {3).

Therefore Tm; — Tno < At — At.

When Ty is ahead, Tyg — Tyz < At — At can be proved
similarly.

assume that

Therefore, if Tyy < Ty < Twmg is reached using this
method, [Ty — Tn| < At — At (Q.E.D.).

3.3.4 Proof: Method convergence

Prove that Ty converges between Ty and
Tarz (Tan < Tra < Twma) by the repetition of procedures.

When Ty is behind, namely Tni < Twmi, T is set ahead
by Tamr — T + At ;

In the following proof, the time of the next cycle is rep-
resented with a prime symbol ’. (ex. Tjy)

ATy is the time between the beginnings of two consecu-
tive procedures.

Ty — Tmr = ATwm.

__Since Tho — Trvo = ATy + Tas — Tt + Aty — Atm,
Tir — Tho = Ta — Atg + At — Tnvo = Aty — Aty 4 Aty

Therefore T + At — Ty, = Aty — Aty + Aty
(because Ty + At], =Ty,)

Therefore Ty — Thy = At — At, + Aty — Aty (4)

Since Aty > Aty and the time tick is quatumized from
the assumption, At, =n’ X tq (1’ is a positive integer).

Therefore, finite repetition of the procedure cycle makes

At! > At,, namely Tj; > Tip-

On the other hand, Ty, — Ty = Ty + At — Ty

(because Tiy, — Ty = At')

= At, — Atg + Aty -+ At — At! (because of (4))

= Aty — At + Aty + At

(from the assumption, At, > At,)

>0

Therefore finite repetition of the procedure cycle can
make Ty < Ty < Ty,

When Ty is ahead, it can be similarly proved
that finite repetition of the procedure cycle can make
T < Ty < The

Therefore, whether Ty is ahead or behind, finite repe-
tition of the procedure cycle can make Ty < Th; < Tipe

(Q.E.D.).

3.3.5 Experiments on Harmonia

Experiments were conducted using this method to set
ELIS clocks in Harmonia. Messages used in the method
were sent and received using TCP.

First, let us describe the experiments of synchronizing
the clocks of two ELISs.

When the switch in Fig. 1 is turned off, Harmonia is iso-
lated from other computers. Therefore, when procedures
are executed in this condition, only packets for synchroniz-
ing clocks on Ethernet in Harmonia are transferred.

Ad is the initial time difference between the two ELISs
clocks. When Ad is positive, an ELIS clock, on which the N
procedures were executed, is ahead. When Ad is negative,
the clock is behind. Before the procedure begins, Ad is set
by sending messages between the two ELISs. The slight
error in Ad did not affect the experiments. At is 20 ms in
Harmonta. '

Tables 3 and 4 show experiment results when the switch
in Fig. 1is off. The synchronization method is repeated
one-hundred times for each Ad.

According to Tables 3 and 4, the average, max., min., and
standard deviation of the number of clock adjustments, and
the average, max., min., and standard deviation of At are
independent of Ad.

Number of Clock Adjustments
ol Standard

(sec) |Average|. Max | Min Deviation
+100 1.33 3 1 0.53
+10 1.36 3 1 0.59
+2 1.38 4 1 0.64
-2 1.22 3 1 0.50
—-10 1.26 3 1 0.54
—-100 1.25 3 1 0.50

Table 3 Initial time difference (Ad) and number
of clock adjustments (switch off)

Ad At (ms)

1 . Standard
(sec) Average | Max | Min Deviation
+100 1774 240 | 160 16.2
+10 176.8 220 160 16.4
+2 176.8 220 160 15.9
—~2 176.6 | 220 | 160 174
—-10 179.6 260 | 160 20.0
—-100 177.6 240 160 16.3

Table4 Initial time difference (Ad) and At
(switch off)

Since the time needed for synchronizing clocks (A7) is (
cycle-time of the procedures x repetition number) and the
tables show that the average At is 180 ms and the average
repetition number is 2.3, the average A7 is 400 ms. Since
400 ms (A7) x 1078 « 20 ms (Ats), assumption2 is true.

As a result of message packet analysis using a network
protocol analyzer, At, > 20 ms and Aty, > 20 ms. Therefore
assumption3 (At, > Aty and Aty > Aty) is fulfilled.

Since in Harmonia, At is 20 ms, tq is 180 ns, and Aty is
less than 100 ps, assumption4 (At, > Aty and tq < At
) is fulfilled.

This experiment shows that this method can reduce the
average of time difference (At — At,) of two ELISs clocks
in Harmonta to about 160 ms.

When the switch turns on, At, and Aty, which comprise
At in the synchronizing clocks, depend on network traffic.
Experiment results in the normal time zone (Ad = +2,
100 times of synchronization) show that clock adjustments
have an average of 1.36, a max. of 3, a min. of 1, and
a standard deviation of 0.56. In addition, At (ms) has an
average of 193, a max. of 260, amin. of 160, and a standard
deviation of 17.5.

With the switch on, At is a little larger than when the
switch is off. The less network traffic, the smaller At.

When there are n computers, M and N; (1 <i<n-—1),
the time difference of clocks between N; and N;j
(i#],1<i,j<n-1), that is |Tn; — Tn|, is suppressed
less than At; + At; — 2At, using our method. (At; is At
in the case of M and Nj.)

Next we described the synchronizing clock experiment re-
sults for six ELISs in Harmonia. One ELIS was a computer
M, and each of the other five ELIS was a computer N. In
addition, Ad = +2, the clocks were synchronized 100 times,
and the switch was turned off. As expected from the exper-
iment results with two ELISs, the average time difference
between N; and N (i #j,1 <1i,j < 5) was ab out 320 ms.

Next this method is compared with Lamport’s method
[Lamport 78]. Using Lamport’s method,

e~ dx (267 +€).

(€ is the time difference between two clocks, d is 1 for
Ethernet, % is the variation from the correct time rate, 7 is
the time between the sending of synchronizing clock mes-
sages, and ¢ is the unpredictable message delay.)

Since there is the unpredictable value ¢ in ¢, Lamport’s
method can not guarantee that the time difference of two
clocks is less than a value to be detected. On the other
hand, our method can guarantee that the time difference of
two clocks is less than At - At,.

When this method is executed every T seconds, the
maximum time difference between the two clocks is
At — Aty +2k7. Since & is less than 10~° for typical
crystal-controlled clocks, when 7 is 20000 sec and At — At
is 160 ms, the time difference between the two clocks is a
maxmum of 200 ms.

4 Conclusions

Our aim in developing Harmonia is to establish the fun-
damental technology for parallel coordinated problem solv-
ing. This paper described the basic functions of Harmonia,
in particular communication, dynamic object-oriented pro-
graming for knowledge modification, and real clock syn-
chronization. This computing system comsists of six Al
work-station ELISs connected by Ethernet. It’s basic func-
tions are implemented using the multiple-paradigm lan-
guage, TAO.

Various kinds of communication were made possible by
combining in Harmonia the two levels of communication
functions: ordinary communication using mailboxes and
emergency communication using inter-IA interrupt.

The target was virtual communication among distributed
TAs. First, instead of the IA name and the ELIS name in
which it exists, the JA name only was required in the two
communication levels. A correspondence between an IA
name and a physical ELIS name was given on metalevel
and stored in the communication server.

Since the manager’s and solvers’ knowledge continually
changes in a parallel coordinated computing system, when

knowledge is represented using objects, the objects must be
modified dynamically. This paper introduced the dynamic
object-oriented programming function using such modifi-
able objects, i.e. dynamic objects, into Harmonia. The
function was implemented in the improved TAO. This im-
provement took into account the coexistence of dynamic
objects and ordinary TAO objects, and the preservation of
the TAO functions.

Harmonia provides various kinds of functions such as d-
defclass, d-make-instance, m-call, d-class-var, d-instance-var,
d-hierarchy, d-option, d-class-rejation, and d-instance to op-
erate the dynamic objects. Classes are modified just when
these functions are executed. By contrast, instances are
modified on demand.

Some knowledge modification programs are run on ELIS
in Harmonia. The measurements show that cpu time and
memory use in the dynamic object-oriented programming
are less than that in the ordinary object-oriented program-
ming, e.g. redefinition and differential programming. The
more classes, instances and variables are, the less cpu time
and memory use are. Even as the program becomes more
complex, this tendency does not change.

Thus, it is concluded that the dynamic objects are requi-
site and the dynamic object-oriented programming is more
natural and more efficient than the ordinary object-oriented
programming from the standpoint of knowledge modifica-
tion. The dynamic objects are also useful for interactive
program development. Since human beings are excellent
managers in problem solving, they can use dynamic objects
comfortably at Harmonia terminals.

This paper also proposed a general method for synchro-
nizing clocks of distributed computers. It proved that this
method finishes within a finite time and suppresses clock
differences to network delay times. It also described exper-
iments on ELIS Al workstations in Harmonia, which has a
clock-synchronizing function.

Using this method, the average time difference of two
ELIS clocks in Harmonia can be reduced to about 320 ms,
and the average clock time difference between an ELIS on
which M procedures are executed and that on which N pro-
cedures are executed can be reduced to about 160 ms.

When this method is executed every 7 seconds, the
maximum time difference between the two clocks is
At — Ats +2k7. - Since & is less than 1078 for typical
crystal-controlled clocks, when 7 is 20000 sec and At — At
is 160 ms, the time difference between the two clocks is
a maximum of 200 ms. Therefore in coordinated problem
solving using Harmonia, when the time difference between
event occurrences is more than the maximum time differ-
ence of clocks At — At + 2x7, the earlier event can be de-
termined.

This method can only be applied when
Aty > Atg, Aty > Atg, and Aty < At,.

Therefore, the specifications of the computers and net-
works determines the viability of this method, and if vi-
able, the time difference of the clocks (At — Ats) can be

estimated.

Finally the basic functions described in this paper can
be used effectively and pleasantly in parallel coordinated
problem solving using Harmonia.

Acknowledgment

Discussions with and comments by Ikuo Takeuchi,
Nobuyasu Ohsato, Ken-ichiro Murakami, Yoshiji Amagai,
Ken-ichi Yamazaki, Yukio Tsuruoka (NTT Software Labs.),
Yoji Kogure (Toho System, Inc.), and Yasushi Hibino (NTT
Humen Interface Labs.) were of great benefit.

References

[Bobrow 87-1] Bobrow, D.G., DeMichiel, L.G., Gabriel,
R.P., Keene, S., Kiczales, G., and Moon, D.A.: "Common
Lisp Object System Specification”, Draft X3 Document 87-
002, 1987.

[Bobrow 87-2] Bobrow, D.G. and Kiczales, G.: ”Common
(I]:é%p %léj;:ct System Specification”, Draft X3 Document 87-

[Goldberg 83] Goldberg, A. and Robson, D.: ”Smalltalk-
80: The Language and Its Implementation”, Reading, Mas-
sachusetts, Addison-Wesley, 1983.

[Erman 80] Erman, L.D., Hayes-Roth, F., Lesser, V.R., and
Reddy, D.R. : ”The Hearsay-II Speech-Understanding Sys-
tem: Integrating Knowledge to Resolve Uncertainty”, Com-
put. Surv., vol.12, No.2, p.213-253, 1980. Computing”,
MacGraw-Hill, Inc., 1984.

[Filman 84] Filman, R.E. and Friedman, D.P.: ”Coordi-
nated Computing”, MacGraw-Hill, Inc., 1984.

[Kornfeld 81] Kornfeld, W.A., and Hewitt, C.E. : ”"The
Scientific Community Metaphor”, IEEE Trans. Syst. Man
Cybern., vol.SMC-11, No.1, p.24-33, 1981.

[Lamport 78] Lamport, L. : ”Time, Clocks, and the Or-
dering of Events in a Distributed System”, CACM, vol.21,
No.7, p558-565, 1978.

[Smith 85] Smith, R.G., and Davis, R. : ”Distributed Prob-
lem Solving: The Contract Net Approach”, Proc. 2nd Natl.
Co';lf.l 9(38%na.dian Soc. Comput. Stud. Intell, Toronto, p278-
287, .

[Symbolics 86] ”Symbolics Common Lisp : Language Con-
cepts”, Symbolics, Inc. ,1986.

[Onai 86] On‘ai, R. and Takeuchi,l.: ”Parallel, Problem
Solving Programming in TAO” (in Japanese), {8%8# ,
COMP86-58, 1986.

[Onai 88-1] Onai, R.: ”Synchronizing Clocks of Distributed
Computers” (in Japanese), {§%## , CPSY88-52, 1988.

[Onai 88-2] Onai, R. and Tsuruoka, Y.: ”Proposal and
Evaluation of Dynamic Object-Oriented Programming” (in
Japanese), 8% (D), vol.J71-D, No.12, 1988.

[Post 81] Postel, J.: ”Transmission Control Protocol”,
DARPA Internet Program Protocol Specification, Septem-
ber 1981.

[Takeuchi 86] Takeuchi, I., Okuno, H. and Ohsato, N.:
”A List Processing Language TAO with Multiple Program-
ming Paradigms”, New Generation Computing Vol‘4,%\10.4,
pp-401-444, 1986.

[Watanabe 87] Watanabe, K., Ishikawa, A., Yamada, Y.
and Hibino, Y.: ” A 32b List Processor”, IEEE International
Solid-State Circuits Conference, pp.200-201, 1987.

[Weinreb 83] Weinreb, D., Moon, D. and Stallman, R.:
”Lisp Machine Manual”, Fifth Edition, System Version 92,
LML, 1983.

