Y7 b v = THEH#R 305
(1989. 9. 8)

Computation Path Analysis with Path Valid Condition

Generalized Approach for Strictness Analysis on Non-flat Domains

FEREA RSt & 35 0 BHE AR IS ARAT

759 b ALY EORXRNY T b AN O —HRAL

Satoshi ONO, Mizuhito OGAWA and Yukio TSURUOKA
NTT Software Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan

ono%sonami-2.ntt.jp@relay.cs.net

ANEE G L /NI He SR EB R AT HE
NTTY 7 F v = 7 HFFEFT
BORC AR ok L TP i AR T 3-9-11

ono@sonami-2.ntt.jp

Atstract A new global dataflow analysis for applicative languages named Computation Path
Analysis (CPA) with path valid conditions is proposed. The CPA detects all possible demand
propagation patterns from a result to parameters, and has superiority to strictness analysis in
detecting divergence/redundancy of functions, and in optimizing demand propagation.

In the proposed analysis, path valid conditions are associated to each path so that the condi-
tion when a path is selected can be clarified. A simple framework for detecting and propagating
path valid conditions is shown. It infers properties for paths only by fixpoint computation.

As for the application of path valid conditions, this paper also proposes the method named
conditional path absorption, that enhances the analytical power of the CPA on non-flat domains.

HHEL ABTE., ERESEORSIERNE LT, BRANRGE2EHEERRIT 2 RE T3, &
BRI, BEGERC SO TATIIE N33 BRRET IR MY 2 P2 2R 2 —RIEL b 0T, B
BADFRY F23BMcBREEINE -V EIRTFAETZILOTH S, ZOBHR, BBROTTEHCR
Bt o, EXBHENBOBEEL L OWBICHENT, AMY 2 F 2R LB 2E> TV %0
ErEMRE L, THRIHEERICOVWT, Z0EBSERINZEBCILMTBHRESh TV 3 REFOZ L
THB, AETR, FIEEEORHAH B L. BRAVEEORE S LCBBMCEZ MR 21T Hik
kN3, i, BRENRECE ISR IERELME T 2 R4 S EBBIELREL., ZOFEKKC
Lh YISy b BAAVICHY 3HERERTOBB e ELcE 22 L 2R T,



1 Introduction

In order to implement lazy functional programming lan-
guages efficiently, Strictness Analysis has been developed.
A function f(z1,...,z,) is said to be strict in parameter z;,
if its result is undefined whenever z; is undefined. Strict-
ness analysis detects strict parameters of recursive func-
tions. The actual parameter for a strict formal parameter
can be passed on in call-by-value instead of in call-by-name.
Optimization based on the analysis is more effective, when
parallel evaluation is considered 48],

There exist two methods for formalizing strictness analy-
sis: abstract interpretation, and program transformation.
The abstract interpretation is based on the continuous
mapping from the original domain to the finite domain.
The abstract functions are induced from this abstraction
2. In contrast, in the program transformation approach,
functions on the original domain are directly mapped tc
the functions on algebra, e.g. Boole lattice (6.5 Intu-
itively speaking, parameters evaluated in a computation
path are joined by U operation, and the strict parame-
ters are computed as the intersection (N) of the sets over
all possible computation paths. For extending strictness
analysis to higher-order functions, the program transfor-
mation approach is more attractive since the function com-
puting strictness information can be transformed by usual
fold/unfold and simplification mechanisms.

Independent of strictness analyses, part of authors have
proposed an analysis named Computation Path Analy-
sis (CPA) for obtaining information required for control-
ling partial computationm. It has been clarified that the
CPA can be formalized by the program transformation
approach[g]. The algebra used, however, is not Boole lattice
but a weaker algebra that has no absorption laws, namely,
rules such as zU(zNy) =z and zN(zUy) = =. The
advantages of adopting the weaker algebra are summarized

as followsl? :

- Property of completely-undefined functions can be in-
duced correctly. This feature is useful for a lan-
guage that accepts user annotation on computation
strategy (i.e. strict-cons), since misplacement of this
kind of annotation will generally make some functions
completely-undefined (infinite loop).

. In addition to strict parameters, relevant parameters
(parameters that may be evaluated) can be computed
simultaneously. This feature is useful when a language
has partial computation feature, that is, giving only
a subset of parameters, and specializing the program.
In general, specialized program has redundant parame-
ters, related computation for which should be removed

at compile time.

- Strictness analysis makes data-driven computation of
parameters possible when the result is demanded. In
addition, the CPA makes data-driven computation
possible when a parameter is demanded. It is because
a demand can be regarded as a selection signal of a
subset of possible paths. Thus, it provides more op-
portunity for demand propagation Optimization[s].

In spite of these advantages, the analytical power of the
CPA becomes quite inadequate when the domain is ex-
tended to non-flat (a domain with partially-defined data
structures). In fact, the CPA cannot detect important in-
formation such as head strictness' and tail strictness? [11]
even for simple functions. To give an example, consider
a function length(z) which computes a length of a list z.
This function is apparently tail-strict. When z happens to
be nil, the result of length(z) in Head Normal Form (HNF)?
can be obtained by only evaluating z in HNF.

The CPA on non-flat domains computes all possible least
demand propagation patters from a result to each parame-
ter. Therefore, results of the CPA contain a statement that
can be interpreted as “there exists a path where the result
of length(z) in HINF can be obtained by evaluating z to
HNF.” This statement is inconvenient from optimization
viewpoint, since when the result of length(x) is demanded,
z will be evaluated only in HNF prior to the function ap-
plication, although @ can be safely evaluated into Spine
Form®.

In this paper, we propose a new enrichment for the CPA
named path valid condition, and also proposes its appli-
cation named conditional path absorption, that enhances
analytical power of the CPA over non-flat domains.

These proposals are based on the following observations:

- At the computation on the original domain, only one
computation path is selected. Thus, for each path on
the abstract domain, some predicates should exist that
specify on what conditions each path is selected. We
call them path valid conditions.

- Some of the path valid conditions can be derived from
program texts. For example, consider the conditional
function if(z,y,2). Either the then part or the else

part is selected according to z. If a demand is propa-

gated to y, then x should be non-nzl. Similarly, when

a demand is propagated to z, then z should be nil.

1A function f(z) is said to be head strict if = =
(z; T2 ... Tk-1 w Zrsi ..) then f(z) = f(z') where 2’ =
(21 T2 ... Tg—1 - w), where w stands for an undefined value.

2A function f(z) is said to be tail strict if £ = (z1 z2 ... % . w)
then f(z) =w.

3An expression e is said to be in Head Normal Form if there exist
no top-level redexes in e. For more precise definition, please refer [10],

4A list e is said to be in Spine Form if e does not have an undefined

tail after finite number of elements.



Thus, the path valid condition for z can be derived for
cach path of i f(z,y, z).

- It is sometimes possible that demand propagation pat-
terns for parameters in a path can be unified to another
path’s patterns by taking the path valid conditions for
them into account. For example, suppose there ex-
ist two paths stating that “z can be safely evaluated
into HNF” and “x can be safely evaluated into Spine
Form.” Suppose also the path valid condition for the
former be “z is nil.” Then, the former path can be
unified into the latter, since evaluating nil until Spine
Form is equivalent to evaluating it until HNF. We name
this unification the conditional path absorption, since
a path on the abstract domain is absorbed into another
path under the control of path valid conditions.?

We will first describe the similarity and difference be-
tween CPA and strictness analysis on flat domains. Next,
the extension method of CPA on non-flat domains are ex-
plained. Then, a simple framework for detecting and propa-
gating path valid conditions is shown that infers properties
only by fixpoint computation. Finally, as the application
of path valid conditions, the analytical power of the CPA
with conditional path absorption is discussed.

2 CPA on flat domains

In the following, the CPA is defined using the program
transformation approach. Thus, the analysis is defined by
specifying mapping of functions and the axioms of the al-
gebra by which transformed programs are substituted and
simplified. Let D be a functional that transforms a function
on the original domain to a function of the CPA.

[Function mapping for the CPA]

a-pl) Strict functions

D(’\(‘zlvwxn)' fstrict($1>"’xn))
= M@1,yTn). Ty * . Ty,
a-p2) Conditional functions
D(X(z,y,z).if ¢ then y else z)
= Mz,y,2).c%y + T*z
a-p3) Serial-or with 3 args.
DMz, y, 2). sor3(z,y,2))
= Me,y,2).c + c*xy + a*xy*z
a-p4) Completely-undefined function
D(A(@1,.,20). omega(Ty,.,2n)) = A@1,0,25). 0
a-p5) Constant function
D(Mx1,0Tn). constn(zy,,@n)) = A(T1,0s&n). 1’

a-t1) Function composition

5Obviously, absorption laws of Boole lattice can be named as un-
conditional path absorption.

D(Mz1,0zn). fler(@1,0Z0) - - €m{T1,0,Tn)))
= D(AMy1,¥m)- f(y1,-Ym))
D(AM21,0sT0)- €1(2150,T0)) - - -
D(M21,1Zn). €m(T1,Tn))
a-t2) Distributivity of A over *
AM@1,sTn). (€Xpy * ... % exp,,)
= M@1y0sTn)- €XPy * ook A(Z1 000y Th). €XPyy
a-t3) Distributivity of A over +
Mz1s2)- (expy + ... + exp)
= M@1,sZn)-€xpy + .o+ A1 ,0T0)- €XPyy

[Simplification rules for CPA]

a-sl) zrr =21 zta=z

a-s2) TEYy=y*zT z+y=y+z
as3) (zxy)xz=z*x(y*z) (c+y)tz=x+(y+2)
a-s4) zx(y+z)=z+y + %z

a-s5) 0'+xz=0 0V+z==z

a-s6) U'sxz=xzx

where rules a-sl) - a-s6) above correspond to idempotent
law, commutative law, associative law, distributive law,
zero element law and unit element law, respectively.

Using above rules iteratively, the result of the CPA is
computed. For example, suppose

f(x,y,z)=if x>1 then x-1 else z+2.

Then, D(Mz,y,2).£(x,y,2)) is computed as follows:

D(f(x,y,2))
= D(if x>1 then x-y else z+2)
= {a*b—l—a*c
where a= D(x>1); b= D(x-y); ¢ = D(z+2) }
= {a+btaxc
where a=z%1; b=xzx*y; c=2z%1}

= {axb+ax*c
z*(:c*y) + Txz

where a=u1; b=gxx*y; c=2z}

I

= T*Yy + T*2

where all the surrounding A-abstractions are discarded for
simplicity.

Mapping for recursive functions can be computed using
Kleene's ascending chain. The initial approximation for

each function is 0’. For example, suppose

fact(n) = if n<2 then 1 else n*fact(n-1).

Then,
fact';(n) = 0 (if 1 =0)
fact'y(n) = (nx1)x1' + nx fact_,(n*1)

n + nx* fact’_;(n) (if £ > 0)



where fact’;(n) (i =1,...) stands for the i-th approxima-
tion to the D(A(n).fact(n)). Then,

facty(n) = 0
facti(n) = n+nx0 =n
fact’y(n) = n4+n*n =n (converged)

Thus, D(A(n).fact(n)) becomes A(n).n.

The strictness analysis of Hudak and Young[5] can be
induced by introducing the absorption law for + and by
changing abstraction for the completely-undefined function

as follows:

[The Strictness Analysis of Hudak and Young
(difference from the CPA)]

(Remove all axioms concerning 0')

a-pd’) Completely-undefined function
D(A(1,.,Tn). omega(T1,,25))
= M&1ysTn) Ty * o0 * Ty
a-s7’) Absorption law for +

Txy +y =y '+ =1

The change of the mapping for omega is required for
keeping the safeness of the analysis. Thus, this analysis can-
not distinguish completely-undefined functions from strict

functions. For example, suppose

diverge(x,y)=if x>y then diverge(x-1,y)
else diverge(x,y-1)} .

Then, D(\(z,y).diverge(x,y)) becomes A z,y).0" by
the CPA whereas becomes A(z,y). *xy by the strictness

analysis.

3 CPA on the non-flat list domain

3.1 Domain abstraction

On non-flat domains, strictness informations are repre-
sented by a demand propagation mode from a result to
each parameter. For example, suppose a non-flat list do-
main with cons, car and cdr be abstracted as Fig.1. This
simple abstraction named Agpjpe_2 has 7 elements {0,...,6},
and it detects evaluation process to spine direction, as well
as HNF evaluation of the first two elements of a list.

This abstraction is induced from the abstraction
Aspjne~oo shown in Fig.2(a). Aspine—oo preserves only top-
level list structures, and ignores all sub-structures under
them. The abstraction Agpine-n (n=1,...) can be induced
from Agpine—co DY regarding lists of length more than n as
infinite lists. Thus, Agpine—m can be induced from Agpine_n
when m < n. These relationships are shown in Fig.2 (b)

and (c) using Aspine~3 and Aspine-1-

-
\
(T T’.m/) (@w---)
AN
T (cocoéo))
V4
T
1 1
]

Figure 1: Agpine_2 Structure

T = Head Normal Form

w = Delayed Form
(0w .0) T (T"w)
(=3 (=1 (=2)
(0.0) (T'T.w)
(=1 (=4)

(a) Demand Propagation (b) Demand Propagation
for cdr for cons

Figure 3: Examples of Demand Propagation on Agpine-2

3.2 Demand propagation on abstract do-

mains

The demand propagation mode is described based on this
abstraction. For example, as shown in Fig.3 (a), if the cdr
of the result is demanded in 1 form, the parameter should
be evaluated at least in 3 form. For functions having more
than one parameter, propagation mode is checked for each
parameter, as in Fig.3 (b).

There exists a problem when finite lists and infinite lists
are abstracted to the same element, since the properties of
finite lists and infinite lists are different.

We will reach finite lists with any length by consing an
element to nil iteratively, but will never reach infinite lists
by such operations. Reversely, for any finite list, we will
reach nil by getting cdr of it iteratively. For infinite list,
however, we will never reach nil by such operations.

For modeling above-mentioned properties of infinite lists
in finite (abstract) domains, there exist two models, warp-
down model and warp-up model. In the warp-down model
(Fig.4(a)), cdr of an infinite list becomes finite list in the
abstract domain, whereas consing an element to a finite list
becomes always finite list. To the contrary, in the warp-up

model (Fig.4(b)), cdr of an infinite list remains an infinite

— 44 —



TTTT)
/

/':
TTTTd @eew-)

N

TTT.w) (0 0w w.w)
T T.0)
/ O\ =
(T".w) (0 w.w)

N/
T
l
®

(a) Aspine~°0

TTT.0)

(b) Aspine».?

(0 0 w.0)

(¢) Aspine-1

Figure 2: Successive Abstraction on Abstract Domains

(TrT--) (TT--9
/8 /S
(TT.o (@o::) (TT.0) (@o;:)
1/ NS/ VAN /5)

(0 w.0) (0 ©.0)

(") cdr
2 ( j3
\ T’/ cons
D
@®
0
(b) Warp-up Model

(.0)
N /D

(a) Warp-down Model

' 1
“o
Figure 4:

Ascending/Descending Transitions around

Limit-point of Agpipe_2

list, and consing an element to some finite list results in an

infinite list.

The CPA analyzes functions from result to arguments
(backward analysis). Therefore, propagation from the re-
sult to the second parameter of cons, works as the cdr func-
tion, and propagation from the result to the parameter of
cdr works as the cons function. Thus, the propagation pat-
terns are summarized in Fig.5, where Agpipe o is used as
the abstraction.

In the warp-down model (Fig.5(a)), cdr of an infinite list
(demand pattern 5) becomes the longest finite list in the
abstract domain (demand pattern 3). Therefore, the de-
mand pattern 5 to the result of cons will be propagated to
the second parameter as the demand pattern 3. Similarly,
the demand pattern 3 to the result of cdr will be propa-
gated to the parameter of it as the demand pattern 3, since

(A} (0 w.w) (0 0.00)

(=0) (=3) (=3)
(ww--+) (0 w.w)
(=5) (=3)

[A) (ww---) (ww--)

(==5) (=5)
(Ww---) (0 w.w)
(=5) (=3)

(b) warp-up model

Figure 5: Transition between a Finite List and a Infinite
List

consing an element to a finite list becomes always a finite
list.

In the warp-up model (Fig.5(b)), cdr of an infinite list
remains an infinite list. Thus, the demand pattern 5 to the
result of cons will be propagated to the second parameter
as the demand pattern 5. Similarly, the demand pattern 3
to the result of cdr will be propagated to the parameter of
it as the demand pattern 5.

The warp-down model is a safe approximation of the ac-
tual demand propagation, that is, the analyzed demand
propagation pattern does not induce unnecessary computa-

tion. The warp-up model, however, does not always give



Table 1: Demand Propagation for primitives

(Abstract domain is Aspine-2)

symbol | Demand for Result Example
formods | 0 1 23456 P

rev-0 0000O0CGO0O delay

rev-1 0111111 atom, null, x of ifix,y,2)
rev-2 0222222 car (or, head)

rcdr 0335555 cdr (or, tail)

:cons 1 0010101 x of cons(x, y)

:cons 2 0001256 y of cons(x, y)

:ident 012345¢6 identity, y and z of iflx,y,2)
rev-3 0333333

rev-4 0444444

cev-5 0555555 spine evaluation

:ev-6 0666666 head and tail strict function

safe results, since this model possibly generates demands
for evaluating infinite lists, where only evaluating finite el-
ements is safe. For example, consider the function cddr(x)
= cdr(cdr(x)).
model on the abstraction Agpipe_2, the demand pattern 1

When it is analyzed with the warp-up

to the result of cddr will be propagated to the parameter
as the pattern 5. This result is not safe since the top-level
structure after the third element need not be evaluated.

The warp-up model becomes a safe approximation when
the abstract domain is sufficiently rich so that the irregu-
lar behaviors of the demand propagations caused by non-
recursive part of programs can be handled by the finite
elements of the abstract domains. In other words, complex
finite structures that will be mapped to the abstract ele-
ment where infinite structures are mapped, will be created
only in corporation of the recursive part of the programs.
Thus, the limit point of the finite structures becomes an
infinite structure.

Table 1 shows the demand propagation modes for primi-
tives. with the warp-up model on the abstraction Agpine_2-
For example, y of cons(z,y) has a demand propagation
mode functions named :cons2 that maps the demand
0,1,2,3,4,5 and 6 to 0,0,0,1,2,5 and 6 respectively.

3.3 Extending the CPA over non-flat list
domain

Using these mode functions, the CPA over the non-flat list

domain is formalized as follows:

[Function abstractions and axioms for the CPA on the non-
flat list domain]
b-pl) Strict functions

D(A(z1,-,Tn)- fstrict(-rlv"ﬂxn))
ev-6

= A(21,020)- T} ev-6

*...*.’l?n

b-p2) Conditional functions

D(Mz,y,z).if z then y else z)
= Mz, 2). pev-l y:ident + ziev-ly ,iident
b-p3) Serial-or with 3 args.
DAz, 2)- s0r-3(z,1,2))
— )‘(m’%z).x:ident + pevly y:ident
+zievly y:ev—l 4 zident
b-p4) Completely-undefined function
D(/\(111~-7xn)~omega($17~~7zn)) = )‘(zlv“vzn)'ol
b-p5) Constant function
D(M(Z1,05T0). CONSEN(T1porsTn)) = AMT1505T0) 1
b-p6) cons function
D{(A(z,y). cons(x,y))

= AMa y)'mzconsl *y:conSQ
b-p7) car function
D(Mx). car(z)) = A=) 2"

b-p8) cdr function

D(Maz).cdr(z)) = Az).a ¥
b-p9) null function

D(A(z). null(z)) = A(z).2"¢¥!

b-t1) Function composition (inverse direction)
( pmode-x ) mode-y _ ,mode-x o mode-y

b-t2) Distributivity of A over *
Ma1,e0Zn)- (€Xpy * ... % €Xp,)
= A(@1y00sTn)- €XPy * o % A(@1,0,T0) . €XPpy
b-t3) Distributivity of A over +
A&y yesn)- (€xpy + ... + exp,,)
= M@1ynsZn). €Xpy + - - -+ A(&15T0)- €XPpy
b-t4) Distributivity of modes over
(wﬁnode-l - T{lnodeAn) mode-y

= ( Z{node-l ) mode-y 4 ( mnmode-n ) mode-y

b-t5) Distributivity of modes over +
(I{node-l 4o+ 1mode-n) mode-y
( zllnode—l )mode-y o+ Ianode-n ) mode-y

In the extended CPA, each variable is associated with the
mode such as z°¢¥"1. The mode specifiers such as :ev-1 are
a function defined in Table 1 that map a demand pattern
of the result to a demand pattern of the parameter. The
term z'¢V"1 means that when the demand pattern for the
result is n, then the demand pattern for the parameter z is
rev-1(n).

Note that as show in the rule b-t1), the composition of

modes are inverse direction, namely, ( gmode-x y mode-y g

not gmode-y o mode-x {4 pmode-x o mode-y Tt is because

the CPAis a backward analysis.

— 46—



4 Path Valid Condition and Con-
ditional Path Absorption

In general, the assertion for path valid conditions are gen-
erated in different functions. Thus, informations detected
should be propagated interfunctionally. For this purpose,
two properties are introduced: value property and func-
tion property. The value property is a predicate on the
original domain data, such as “z is nil” and “cdr of z is
ntl.”  Function property transforms value properties bi-
directionally, namely from parameter to result and vice
versa. Table 2 (a) and (b) show the rules for the transforma-
tion. For example, :get-cdr function property transforms
:cdr-is-nil value property to :is-nil for forward direc-

The
property :omega stands for unsatisfiability of path valid

tion, and to :cddr-is-nil for backward direction.

conditions, that is, the path is a dead path. Such a path is

removed from answers.

When two or more value properties exist for same vari-
able on a path, possible conflicts among them are resolved
by confliction resolution rules, as shown in Table 2 (c). In
addition, function properties are composed as usual way.
Table 2 (d) shows the example of function property com-
position rules. For example, composition of :make-cons-1
and :get-cdr results in :no-ref, that means the car part

of a cons is discarded when cdr is taken.

In order to keep properties finite and make the analy-
sis terminating, these inferences rules should be bounded.
For example, the composition of :get-cdr and :get-cdr
may results in the property not :get-cddr but :void, that

means “nothing can be inferred.”

Fig. 6 (a) shows the results of length(z) when analyzed
by the CPA with path valid condition. The result clarifies
that there are three computation paths for length(z), cach
evaluates z in 1, 3 and 5, respectively. The processes how
path valid conditions are induced are shown in Fig.6 (b)
and (c), each corresponding to ((z :is-nil :ev-1)) and

({x :cdr-is-nil :ev-3)).

The greatest demand mode common to all paths in the
above example is :ev-1. When the conditional path ab-
sorption is done using path valid conditions, the result be-
comes ((x:ev~5)) that means length(z) is tail strict in .
Note that, in general, the conditional path absorption is
performed, not only at the time final results are obtained,
but continuously while analysis. It is because there may ex-
ist transient properties that are discarded by the limitation
of bounded inference rules.

Table 2: Inference Rules for value/function Properties

(a) Inference Rules for pgp,)(From Parameter to Result)

Pv

pr sis-nil | :is-non-nil | :cdr-is-nil
:get-cdr :omega - :is-nil
:make-cons-1 - :is-non-nil | :is-non-nil
‘make-cons-2 | :cdr-is-nil | :is-non-nil | :cddr-is-nil

(b) Inference Rules for pf'l(pv) (From Result to Parameter)

oF Py sis-nil | :is-non-nil | :edr-is-nil
:get-cdr :edr-is-nil | :is-non-nil | :cddr-is-nil
:make-cons-1 :omega - -
‘make-cons-2 :omega - -

(c) Conlfliction Resolution Rules for Pv

Pyl Pv2| isnil |:s-non-nil | :cdr-is-nil
:is-nil :is-nil :omega :omega
:is-non-nil ‘omega | :is-non-nil | :cdr-is-nil
sedr-is-nil :omega :cdr-is-nil | :edr-is-nil

(d)Inference Rules for Pf°Pg

pr Pg | :get-car ‘get-cdr | :make-cons-1 | :make-cons-2
:get-car :get-caar | :get-cadr :ident ‘no-ref
:get-cdr :get-cdar | :get-cddr :no-ref :ident
‘make-cons-1 | :car-is-eq - - -
:make-cons-2 - :edr-is-eq - -




length(x) =if null(x) then 0 else 1+ length (cdr(x))

((x :is-nil :ev-1))
{ ((x : cdr-is-nil :ev-3)) }
((x :non-nil :ev-5))

(a) result of the analysis

:is-zero

(b) Path corresponding to
(x :is-nil :ev-1)

:cdr-is-nil

14 :l’e_n—é,;t‘@

T

:is-nil )

-

(c) Path corresponding to
(x :cdr-is-nil : ev-3)

Figure 6: Example of the CPA with Path Valid Condition

5 Evaluation of the Analyzer

We have built a table-driven CPA analyzer that accepts ta-
bles specifying abstract domains, modes for primitives and
value/function properties.

Following tables have been built almost manually, and

fed to the analyzer.

Abstract domain : Aspine-2

Modes for primitives : (See Table 1)
Value properties :

{ :is-nil, :cdr-is-nil, :is-non-nil }
Function properties :

{ :get-cdr, :make-cons-1, :make-cons-2 }

These parameters are selected so that at least simple tail-
strictness can be detected. For the test of the analyzer,
following functions are used:

Results are summarized in Table 3. For functions over flat
domains, function divergence, redundant parameters and
path selection dependency on if are detected correctly. For
functions over non-flat domains, almost all tail-strictness
are detected. One exception is a tail-strictness of y in
append(z,y). The analyzer’s result of append(z,y) can be
interpreted as follows:

- If the result is demanded in 5 , then z can be safely

evaluated to Spine Form.

- If the result is demanded in 5 and y is demanded in

HNF, then y can be safely evaluated to Spine Form.

- There may exist a path where the result can be com-
puted without y.

The last statement is reasonable, since when z is an infi-
nite list, y will be never demanded. In this case, however,
the result becomes always undefined, and therefore, y can
be safely evaluated anyway. Current inference system of
the analyzer does not have such reasoning, and thus cannot
detect tail-strictness of y in append(z,y).

For head-strictness, detection is completely failed. It is
because the abstract domain Agpjpe_2 is not sophisticated
enough to detect head-strictness. By making more sophis-
ticated abstract domains, it will be easy to detect head-
Head-
strictness without tail-strictness is difficult only by domain

strictness when accompanied with tail-strictness.

sophistication. We might require other reasoning mecha-

nisms.

6 Relation to Other Work

Our approach associates each path the predicate when the
path is selected. Information about the satisfiability can be
computed not only at compile time, but at runtime. In this
case, the demand propagation patterns can be computed
at runtime, by checking the property of already evaluated
values,

As long as static strictness detection power is concerned,
our approach is behind advancing work of [11] and [1]. How-
ever, in our approach, corporation of abovementioned static

and dynamic information is possible. In addition, our ap-

— 48 —



diverge(x,y) = if x>y then diverge(x-1,y) else diverge(x,y-1)

easy(x,y) = if x=0 then 0 else easy(x-1,easy(y,x))

sync_add(p.x,y)= (if p then x else y) + (if null(p) then x else y)

length(x) = if null(x) then 0 else 1+length(cdr(x))

append(x,y) = if null(x) then y else cons(car(x),append(cdr(x),y))

reverse(x) = if null(x) then nil else append(reverse(cdr(x)),cons(car(x),nil))
len_of_appended_list(x) = length(append(x,y))

len_of_rev_rev(x) = length(reverse(reverse(x)))

sum_of _list(x) = if null(x) then 0 else car(x)+sum_of_list(cdr(x))

sum_of_appended_list(x) = length(append(x,y))

sum_of_rev_rev(x) = sum_of_list(reverse(reverse(x)))

Figure 7: Definitions of tested functions

Table 3: Analytical Power of the non-flat CPA with Conditional Path Absorption
(Abstract domain is Aspine-2)

(a) functions over flat domains

function features to be detected result
diverge(x, y) completely undefined detected
easy(x, y) y is redundant detected
sync-add(p, x, y) strict detected

(b) functions over non-flat domains

function features to be detected result
length(x) tail strict detected
append(x, y) tail strict in x when demanded in 5 | detected

tail strict in y when demanded in 5 | detected when y is required

reverse(x) tail strict in x when demanded in 5 | detected
rev-of-rev(x) tail strict in x when demanded in 5 | detected
len-of-appended-list(x, y) tail strict in x and y detected for x
len-of-rev-rev(x) tail strict detected
sum-of-list(x) head /tail strict tail-strictness is detected
sum-of-appended-lisi(x, y) | head/tail strict in x and y tail-strictness in x is detected
sum-of-rev-rev(x) head / tail strict tail-strictness is detected

__49,_



proach will provide programmers more information such
as divergence, redundancy and possible demand generation
pattern after all strict parameters are evaluated and passed
on to the function body.

Our work is also closely related to Generalized Partial
Computation (GPC)Bl. The GPC also keeps track of the
predicate when some path is selected. Our approach confine
property inference system rather simple, so that the termi-
nation can be ensured, and the property can be computed
not by general unification, but simple fixpoint computation.

7 Conclusion

A new global dataflow analysis named Computation Path
Analysis (CPA) with path valid conditions have been pro-
posed. The CPA detects all possible demand propagation
patterns from a result to parameters, and has superiority
compared with strictness analysis in detecting divergence,
redundancy of functions, and in optimizing demand propa-
gation.

In the proposed analysis, path valid conditions are asso-
ciated to each path so that the condition when a path is
selected can be clarified. A simple framework for detecting
and propagating path valid conditions is shown that infers
properties only by fixpoint computation. As the applica-
tion of path valid conditions, we have also proposed the
method named conditional path absorption, that enhances
the analytical power of the CPA on non-flat domains.

Acknowledgements. The authors would like to
thank Dr. Katsuji Tsukamoto, Director of NTT Software
Research Laboratories, for his guidance and encourage-
ment. They also wishes to thank Mr. Masaru Takesue and
Dr. Naohisa Takahashi for their useful discussions and help-

ful comments.

References

(1] Burn,G.L., “Evaluation transformers - A model for
the parallel evaluation of functional languages,” Func-
tional Programming Languages and Computer Ar-
chitecture, LNCS 274, Springer-Verlag, pp.446-470
(1987)

[2] Clack,C. and Peyton Jones,S.L., “Strictness analy-

sis — a practical approach,” Functional Programming

Languages and Computer Architecture, LNCS 201,
Springer- Verlag, pp.35-49 (1985)

Futamura,Y., “Program evaluation and generalized

=

partial computation,” International Conference on

[4

[5

[6

10

[11

|

Fifth Generation Computer Systems 1988, ICOT,
pp-685-692 (1988)

Hankin,C.L., Burn,G.L., and Peyton Jones,S.L., “A
safe approach to parallel combinator reduction,” Eu-
ropean Symposium on Programming, LNCS 213,
Springer-Verlag, pp.99-110 (1986)

Hudak,P. and Young,R., “Higher-order strictness anal-
ysis in untyped lambda calculus,” 13th ACM POPL,
pp.97-109 (1986)

Maurer,D., “Strictness Computation Using Special A-
expressions,” Workshop on Programs as Data Objects,

LNCS 217, Springer-Verlag, pp.136-155 (1985)

Ono,S., Takahashi,N. and Amamiya,M., “Non-strict
partial computation with a dataflow machine,” 6th
RIMS Symposium on mathematical methods in soft-
ware science and engineering, TR.547, RIMS Kyoto
Univ.,pp.196-229 (1984)

Ono,S., Takahashi,N. and Amamiya,M., “Optimized
demand-driven evaluation of functional programs on a

dataflow machine,” IEEE ICPP‘86, pp.421-428 (1986)

Ono,S., “Computation path analysis : Towards an
autonomous global dataflow analysis” The Second
France-Japan Artificial Intelligence and Computer Sci-

ence Symposium, Sophia, France (1987)

Peyton Jones,S.L., “The implementation of functional
programming languages,” Prentice-Hall (1987}

Wadler,P., and Hughes,R.J.M., “Projections for strict-
ness analysis,” Functional Programiming Languages
and Computer Architecture, LNCS 274, Springer-
Verlag, pp.385-407 (1987)



