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Abstract

This paper investigates Church-Rosser related properties of nonlinear term rewriting systems (TRS).
I'irst, the paper investigates the relation between Church-Rosser related properties and nonoverlapp-
ing conditions. The hierarchy of nonoverlapping conditions corresponds to those that of unifications.
 w-nonoverlapping is proposed in connection with unification with infinite terms. In contrast, the hier-
archy of Church-Rosser related properties is based on uniqueness of computational results in various
levels. Uniquely converging, which is an intermediate property between conventional Church-Rosser
and uniquely normalizing, is proposed under the denotational semantical observation on infinite com-
putations. The main result is, an w-nonoverlapping TRS is uniquely converging.

Second, the sufficient conditions for Church-Rosser property of terminating TRSs are discussed. The
main result is, a weakly normalizing (i.e.any term has a reduction path which reaches to a normal form)
and w-nonoverlapping TRS is Church-Rosser.

Third, the conversion technique from a possibly nonterminating and uniquely converging TRS to
a Church-Rosser TRS is discussed by examples. The conversion technique is based on the infinite
reduction detection and the conventional completion method.

Finally, these results are compared with related works.
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1 Introduction

A Term Rewriting System (TRS), intuitively which is a
set of directed equations (reduction rules), have been ap-
plied as a model for representing computational processes
of equational logic and algebraic specification. The impor-
tant properties of a TRS are termination related proper-
ties, and Church-Rosser (CR) related properties. Termi-
nation related properties guarantees that computations
are always terminates under all/some strategies (which
On the
other hand, CR related properties guarantees that com-

are said to be strongly / weakly normalizing).

putational results are always unique (in various levels).

The well-known result for Church-Rosser property is
that a nonoverlapping and left linear TRS is Church-
Rosser [9), where nonoverlapping means that reductions
do not interfere with each other except their variable bind-
ing environments, and left linear means each left-hand-
sides of reduction rules have no repeated variables.

However, once linearity removed, CR 1is lost as well as
uniquely normalizing (UN). This phenomena is due to
following two reasons:

- Some redexes (reducible expressions) may overlap
modulo reductions (though all left-hand-sides of rules
are nonoverlapping). (The case of example 1)

- Some redex may not be recovered once its subterms at
nonlinear variable occurrences are critically reduced.

(The case of example 2)

Example 1 (Toyama)
d(z,z) — 0
Ry % < d(z, f(z)) - 1
2 S 1)
Example2 (Klop)
dz,z) — 0
R E L f(@) - de, f(2)
1 o )

In this paper, Church-Rosser related properties of a
nonlinear TRS is investigated. First, the paper shows
that an w-nonoverlapping term rewriting systems (TRS)
is uniquely converging (UC). w-nonoverlapping is differ-
ent from a usual nonoverlapping condition at that uni-
fication with infinite terms is applied instead of usual
unification with occur-check. This little stronger restric-
tion excludes the case of example 1. On the other hand,
uniquely converging (UC) is little weaker than CR such
that it does not care on irregularly diverging reduction-
1 Spg, d(1,1) Sg, d(O0,f(0)) —r, - ),

but guarantees the uniqueness of results on converging

paths (eg.

RS

reduction-paths under denotational semantical observa-
tions (eg. 1 g, d(1,1) —g, 0). This result directly
implies that a weakly normalizing (i.e.any term has a
reduction path which reaches to a normal form) and w-
nonoverlapping TRS is CR.

Second, the conversion technique from a UC (possi-
bly nonterminating) TRS to a CR TRS is discussed by
examples. The conversion technique is based on the infi-
nite reduction detection and the conventional completion
method.

Finally, these results are compared with related works
found in literatures [4, 12, 11, 17].

2 Reduction systems

2.1  Abstract reduction systems

A reduction system is a structure R = (A, —) consisting of
an object set A and any binary relation — on A (i.e. =C
A x A), called a reduction relation. A reduction (starting
with z0) in R is a finite or an infinite sequence 2o — z1 —

z3 — - --. The transitive closure of — is noted as .

An equational system associated to a reduction system
R = (A,—) is a structure E = (A, =p) (or simply E =
(A, =)) consisting of A and the symmetric binary relation
—g (or simply «) which is defined to be = «g y =
(zx =y V y — z). An equality =g (or simply =) in
E is the transitive reflexive closure of the binary relation
—p Asequence T = Tg ¢ Ty ¢ Ty & 0 > Ty = YIS
said to be an (equational) proof of z = y, and is noted
as P(z = y) = (2o, T1,%2," -, Tn). When apparent from
context, we simply denote a proof as P.

If an element z appears in a proof P(z = y) (i.e. z = a;
for some i in Pz = y) = (z = 20, 21,T2, "+ Zn = ¥)), We
will use the notation z € P(z = y). A proof P'(z' = y')
is said to be a sub proof of P(z = y) iff ’,y' € P(z = y)
and P'(z' = y') is contained in P(z = y), and is noted as

P CP.

A step of a proof Pz = y) is denoted as #P. (ie.
#P=nfor Pz =9y)= (z = 20,21,%2, ", Tn = ¥)-)

Definition A set of normal forms NF(R) of R is
defined as
NF(R)YE (z € A|-~Tyst z -y}

Definition R = (A, —) is said to be weakly normal-
izing (WN), iff Ve € A Jy € NF(R) st. z 5 y. R
is said to be strongly normalizing (SN) iff Vzo — z; —
— z; — -+ Ins.t. z, € NF(R).

Ty — -



Definition [9) R = (A4,~) is said to be Church-
Rosser (CR) iff Vo,y € Ast. 2 =y =z | y (ie
3z € Ast. 5 zand y = z). Ris said to be confluent
iff Vo,y,z € Ast. (z 2y Az D2) = ylez

Note that CR and confluence are equivalent.

Definition. R = (A,—) is said to be uniquely nor-
malizing with respect to equality (UN) iff Vz,y € NF(R)
st.z=py=z=y. (x =yiff z and y are syntactically
same.) R = (A, —) is said to be uniquely normalizing with
respect to reduction (UNT) iff Vz € A Vy,z € NF(R) s.t.
:C-'»y/\z—'»z=>y5z.

Note that CR = UN == UN™. The converses
hold when R is WN.

2.2 Term rewriting systems

Term rewriting systems are reduction systems which has
a term set T(F, V) as an object set A. A termn set T(F, V)
is a set of terms where F' is a set of function symbols and
V' is a set of variable symbols. 0-ary function symbols
are also called constants. T(F,V) may be abbreviated as
simply T'. The substitution 6 is a map from V to T'(F, V)
such that 6 is an identity map except on a finite number
of variables. The syntactical equivalence between terms
M and N is denoted as M = N.

The context C is a term in T(F U {0},V) where
O is a special constant named a hole. The notation
C[MNy,- -+, N,]is a syntax convention for the result of plac-
ing Ny,---, N, in the holes of C[,---,] from left to right.
Then, N is said to be a subterm of M iff M = C[N] for
some context C having a precisely one hole. The con-
text which has a precisely one hole is noted as C[]. The
context Cl,---,] is said to be trivial iff C = 0.

Definition A finite set R = {(a:, )} of ordered
pairs of two terms is said to be a Term Rewriting System
(TRS) iff each «; is not a variable and all variables in
B; appeéar in «;. (Further, we assume each «;’s have no
common variable names.) A reduction is defined on a
term M as M — N iff there exists a context C[ ] and a
substitution 6 s.t. M = C[0(a;)] and N = C[0(5)]. A
subterm M’

a reducible expression).

(o;) in M is said to be a redex (short for

Definition

a; — f; is said to be overlapping iff there exists a con-

A pair of reduction rules o; — f; and

text C[ ], a nonvariable term M, and substitutions 6,6’
st. o = C[M] and (M) = ¢(a;) (i.e. M and a; are
unifiable).

€3]

A TRS R is said to be nonoverlapping iff no pair of
two rules in R are overlapping except trivial cases (i.e.
i=j AC[]=0D).

Definition
left linear iff any variable in «; appears precisely once in
a;. A TRS R is said to be left linear iff all reduction rules
in R are left linear. A TRS R is said to be nonlinear ift
R is not left linear.

A reduction rule o; — (; is said to be

Remark A left linear nonoverlapping TRS is known
to be confluent (9].

2.3 Infinite trees

For discussion on convergence, a set of infinite trees
T°(F U {Ll},X) in which a special constant L means
undefined is introduced.

Definition Ordering T on T*°(FU{1l}, X) is defined
to be
TCT' <= T isobtained from T" by replacing

subtrees of TV with L .
for VI', T € T=(F U {1}, X).
Let U C T°(F U {1}, X). A pair of trees T3, T2(€ U)
are said to be cooperative in U iff there exists T € U s.t.
T;,T, © T. A pair of trees Ty, To(€ U) are said to be

individual in U iff T} and T, are not cooperative in U.

T=(FU{Ll},X) is an algebraic cpo under the ordering
C [15]. The followings are familiar tree-related notations.

Definition

N in a term M is defined inductively as

An occurrence occur(M, N) of a subterm

€ it N=M
occur(M,N) ¥ iu  if u = occur{N;, N) and
M:f(le“'lNﬂ)

The subterm N of M at occurrence u is denoted as
M/u. (That is, u = occur(M,N).) Node(M) is a set
of all occurrences in M (including a root occurrence ). -
Node*(M) is a set of all non-variable occurrences in M
(i.e. {u € Node(M) | M/u is not a variable}).

Definition

which is the replacement T'/u with T’ where u is an occur-

A replacement is noted as T{u « T']

rence u in T. A substitution is noted as T, 1 def Tlu «
T'| Vu € occur(T,z)] for a variable z.

Definition
asu=v <> Just.v=u-w Ifu=<v A uzvthen

The order on occurrences u,v is defined

it is noted as u < v. The occurrences u,v is said to be



disjoint and noted u|v iff w 2 v and v A u. Let U be any
set of occurrences. A set of minimum occurrences in U is

noted as Min(U) % {u € U | v £ u for Vv € U}.

3 Uniquely converging property of
nonlinear TRSs
3.1  Hierarchy of Church-Rosser related prop-

erties

Church-Rosser related properties guarantee the unique-
ness of results of reduction-based computations in various
levels. Intuitively speaking, Church-Rosser guarantees the
uniqueness for any reduction-paths. Uniquely converging
guarantees for (finitely/infinitely) converging paths but
doesn’t care on diverging paths. Uniquely normalizing
guarantees only for finitely converging paths (i.e. termi-
nating paths). Each properties can be systematized by
corresponding preorders on terms. For the purpose of in-
vestigation on correspondences, the retractions wg, wh :
To(FU{L},X) — T(FU{L}, X
embedding wp, wh: T(F,X) — TV

) (which is also an
{L}, X)) are

introduced.

Definition
defined inductively as

- If T € Redg, then T € Candp.

- I T, T" € Candg, then T{u « 1"] € Candp, for any

occurrence u in 1.

a set of candidates of redexes Candy, is

where Redp is a set of all redezes of R.

Let Candp be a closure of Candr under Scott topology
[3] on the algebraic cpo (T°(F U {1},X),E). Then, a
set of occurrences of C(mrl‘n \vhich appears in a term M
is noted as Candoccr(M) {u € Node(M) | M/u €

Candg}.

Definition  The retractions wp,wp : T°°(F U {L
1, X) — T(F U {L}, X) are defined to be

“wp(M) & M[w—L | Vu € Min(Candoccr(M)) ]
, def M (M € NF(R))
A { L (Mg NF(R)

Note that the retraction wg, wy are continuous [15].
Using these retractions, hierarchical preorders are defined

on terms T(F, X).

Definition For Vz,y € T(F, X),
def -
xlecrny = Ty
def
cCucy £ wa(r) Ewr(y)
tCuny =  wp(r) Cwirl(y)

(diverged)

(diverged) {

:
converged :
converged

(NF: normal form)

Figure 1: Relation among CR-related properties.

Remark z2zCcry = zCycy = zLlunvvy

Definition A TRS R is said to be UC iff Vy,z [y =
2zl = Ja(xr=y=12) A (yCucx) A (2Euc z)).

A TRS Rissaid to be UCT iff Vz,y, 2
2)] = Jul(z S u) A (yCucu) A (2Cuc vl

(z3yA@S

The hierarchy among CR-related properties is clarified
Their def-
initions based on definedness preorderings are shown in
table.1.

The converses generally do not hold (see figure 1), al-

as those that among preorders on T'(F, X).

though when R is WNN all these properties are equiva-
lent. Examples are also shown in figure 2 (in which a dot
- means a term and an arrow — means a reduction). Note
that UC™ is irrelevant to UC [16].

3.2 Hierarchy of nonoverlapping conditions

Let us first recall the definition of the overlapping condi-
tion.

Definition (again) A pair of reduction rules a; — f;
and a; — f; is said to be overlapping iff there exists a
context C[], a nonvariable term M, and substitutions ¢, 8’
st. o = C[M] and §(M) = 0'(a;) (i.e. M and q; are
unifiable).

Further, such a pair ¢; and e; is said to be an overlapp-

ing pair.

In this definition, usual unification with occur-check is
applied. Thus, the modifications on unifications will cause
Actually, detailed

observations show that unifications have following three

variations on overlapping conditions.



Table 1: Re-definitions of CR-related properties from semantical observations.

-

Cer Cuc Couwn

with-respect-to-equality
Vy,z [y = 2]

< ie.
( je.

with-respect-to-reduction
Yo,y (xS y) A (2 2)]
3z S w) A (y,2 C )

classes. They are,

- Unification without occur check.
- Unification with occur check.
- Unification with infinite terms (called infinite unifi-

cation ).

Unification without occur check does not care on name
conflicts. Thus, even for finite terms, this is not correct for
nonlinear terms. Tor instance, f(z,2) and f(g(y),(y))
are unified as {z = ¢(y), © = h(y)}. In other words,

consistency of binding environments is not preserved.

In contrast, unification with occur check treats name
conflicts as unification failed. This is correct on finite
terms, but not correct on infinite terms. For instance,
unification between f(z,z) and f(y, g(y)) is failed, though

it can be unified to the infinite term

Talglg(---0)9(glg(-- )

The unification with infinite terms [13, 14} is between
above two unifications. The difference is that expres-
sions defining a binding environment can refer the en-
vironment itself recursively (eg. {z = g(z)}), but pro-
hibits name conflicts on function symbols (eg. {z =

o)z = h(x))).

and g(f(h(u),v), u,u) are unified to a looped infinite term

gU LS ) h(f =) FRUE ), B+ )))
(ie. z =u= f(y,y), y =v = h(z)).

Thus, {or instance, g(z, f(y, h(2)), )

Corresponding to these unifications, variations of over-
lapping conditions are similarly defined to the original def-
inition. That is, a pair of reduction rules is said to be
w-overlapping (resp. strongly overlapping) iff unification
with infinite terms (resp. unification without occur-check)
is applied instead of a usual unification with occur-check
in the definition of overlapping.

Same as the definition of nonoverlapping, a TRS R

is said to be w-nonoverlapping (resp. strongly nonover-

€53

Jz[(e=y=2) A (y,2Cz)

)

),

CR = UC =— UN

i3 4

= UC™ = UN~

confluent

lapping) iff no pair of two rules in R are w-overlapping
(resp. strongly nonoverlapping) except trivial cases (i.e.
i=j3 A C[]=0).

Remark If two terms are unifiable under unifica-
tion with occur-check, unifiable under unification with in-
finite terms. If two terms are unifiable under unifica-
tion with infinite terms, unifiable under unification with-
out occur-check. Thus, sirongly nonoverlapping implies
w-nonoverlapping, and w-nonoverlapping implies nonover-

lapping.

Between nonoverlapping and w-nonoverlapping, there
exists a semantical nonoverlapping condition, called [-
nonoverlapping. Intuitively speaking, a TRS R is said
to be E-nonoverlapping iff R is nonoverlapping modulo
In other words, E-
nonoverlapping property is the overlapping condition un-
der E-unification. The similar but slightly different defi-

nition of E-nonoverlapping is found in [10]. The difference

an associated equational logic E.

is that F-nonoverlapping here does not permit a reduction
at the root between an overlapping pair 8(M) and ¢'(«;),
whereas E-nonoverlapping [10] allows it.

Notation Let P(M = N) be a proof of M = N.
The boundary 9P is defined to be

Min ({

Further, we say a proof P is u-preserving iff any occur-

A reduction at an occurrence u
appears in P

rence v appears in P satisfies u < v or ujv (i.e. Yv € 9P
s.t. u < vV ulv). We also note MiN iff there exists a
u-preserving proof P of M = N. An occurrence u is said
to be invariant iff Aluz_(N.

Definition Let R bea TRS. A pair of reduction rules
o; — fBi and o — f; is said to be E-overlapping iff

there exist a context C[ ], a nonvariable term M, and



nonoverlapping fix,x) —0
fix,gx) —1
E- 2 — g(2)
@ { fix,x) —0 }
fix,gx) —1
Strongly-
f(x, %) -0
flg(x), h(x)) —1
2 — g(2)
3 — h(3)

d(x,x)—0
{f(X) —d(x, f(x))}
1 — f(1)

Figure 2: Relation among nonoverlapping properties.
substitutions 0,0" s.t. a; = C[M] and 0(M)=0'(a;).

A TRS R is said to be E-nonoverlapping iff no pair of
two rules in R are E-overlapping except trivial cases (i.e.

i1=j7 A C[]=0).

Theorem 1 {16]

nonoverlapping.

An w-nonoverlapping TRS R is E-

Figure 2 summarizes the hierarchy of nonoverlapping
properties. Note that if R is left linear, all these nonover-
lapping properties are equivalent although converses do
not hold in general.

The next theoremn characterizes E-nonoveralpping
TRSs.

Theorem 2 [16]
and UC™.

An E-nonoverlapping TRS R 1s UC

4 Seeking for Church-Rosser property

In this section, the possibility and the basic ideas of com-
pletion methods for possibly nonterminating and non-
linear term rewriting systems are discussed by examples.

Basically, the completion algorithm is formalized within
a framework of a proof theory. We first quote the nota-
tions and the formalizations from (2].

Let R be a strongly normalizing TRS, and & be a re-
duction ordering'. Since completion procedures distin-
guish equational rules and reduction rules, we employ a
pair (I, R) as its objects, where E is a set of equational

rules (represented as ¢ «g y or ¢ = y) and R is a set of

IA reduction ordering is a well-founded ordering which satisfies
M b N <= C[0(M)] b C[0(N)] for Veontext C[], Vsubstitution ¢

C1 Orienting an equation.

(Eu{s=t},R)

(B,RU{s—z}) s bt

Adding an equational consequence.

E,R
(Eu{s=t},R)

fse—pu—opt

Ccs Simplifying an equation.
(BEU{s=t},1?)
(EG{u=i).R)

ifs—gu

&1

Deleting a trivial equation.

(Bu{s=s},R
(&,R)

Figure 3: Inference rules of BC

reduction rules (represented as ¢ —g y). Then, the basic
completion BC consists of the inference rules in figure 3.

The basic completion algorithm is the (possibly infinite)
sequence of deductions under a fair strategy® (Eo, Ro) Fac
(E1, R1) Foe (B2, R2) Fase -+ starting from (Eo, Ro)
(ER, ¢) where Ep is an associated equational theory to a
TRS R (For detail, refer [2]).

Beyond the limitation of SN, one possible direction is to
treat infinite computations as call-by-need manner. Such
a method would be realized by following steps.

o First, detect infinite reduction paths of R, and set
new function symbols as the virtual limits of infinite

reductions.

o Second, convert R to a pair of a strongly normalizing
TRS R’ and an equational theory E’ which specifies
the virtual limits of infinite computations. And then,
apply the conventional completion algorithm starting

from (E', R').

For instance, Klop’s example R is first detected infinite
computations 1 — f(1) — f(f(1)) — --- and f(x) —
d(z, f(z)) — d(z, f(z)) — ---. First, set @ and B(x)
as the virtual result values, which satisfy the equations
a = f(a) and B(z) = d(z,B(z)), respectively. Then, I,
is converted to a strongly normalizing TRS R} (see, figure
4).

Then, the completion algorithm induces a SN and CR
TRS RY (see figure 5).
wr(a) = wr(B(z)) =4, this conversion keeps wr(M) un-
changed for VM € T(F, X).

Further, by extending wp as

2Intuitively speaking, a strategy is said to be fair iff any equa-
tions in Ei’s and any critical pairs in R;’s will be certainly reduced
by an inference rule of BC.



R, B
d(z,z) — 0 d(z,z) — 0
fle) = de, f(z)) ¢ = { fx) = B)
o) 1 -oa

Figure 4: Conversion from R, to R}

B(0) - 0, «a — 0
Ry =4 d(z,8(z)) — Blz), d(z,8) — 0
f(z) - fz), 1 - 0

Figure 5: The result of completion of R}

However, there are problematic cases such as R3 and
Ry (see, figure 6).

For Rs, the completion algorithm successes, but pro-
duces too powerful reduction system Rj. That is, Rj,
which is SN and CR, reduces 1 to 0 whereas R; does
not. This is caused from the fact that h(a) can not be
distinguished from A(h(a)) as an infinite term, where
is the virtual limit s.t. a = f(f(f(--+)) = h(h(R(--))).

Thus, the completion algorithm treats Rz same as Rj.

For Ry, the completion algorithm successes, and keeps
2y unchanged. However, R; is equivalent to SKI-
combinator with §-reduction (when f is interpreted
as apply). Thus, R4 is nonterminating and non-CR.
For instance, set C' = f(f(M, M), f(S5,6)) for M =
FUCS, S (S, D), F(f(S, 1), 1). Then, Yr - f(F,Yr)
where Y = f(f(M,M),F) deduces f(f(M,M),C) =
¢, f(C,e), f(C,f(C,€)), - (For detail, see {3] pp.399-
403). The difficulty in Ry4 is the automatic detection of an
infinite reduction as Yy = f(F,Yr) = f(F, f(F,YF)) >

The completion method is attractive, but further re-

searches are required.

d(z,z) — 0
Ry f(=) - h(h(z))

h(z) - d(z, f(z))

1 - (1)

FF(f(S,2)9),2) = f(f(z52), fly,2))
g, ) JUE2).y) -z

f(],{l:) —

f(f(5,z),2) - €

Figure 6: The problematic cases, R3, R4

€73

5 Comparison with related works

(1) Corollary 1: An w-nonoverlapping TRS R is UC
and UC™.

In corollary 1, the assumption w-nonoverlapping is weaker
than strongly nonoverlapping, and the result UC and
UC™ is stronger than UN. Thus, corollary 1 is simple
but more powerful than the following classical theorem by
Chew [4].

Theorem (Chew)

conditions are met :

A TRS R is UN if the following

- It is strongly nonoverlapping.
- R is compatible.

Corollary 2: If an w-nonoverlapping TRS R is
WN, R is CR.

(2)

Corollary 2 makes contrast with another classical result
by Knuth [12].

Theorem (Knuth)
SN, R is CR.

If a nonoverlapping TRS R is

(8) Membership conditional TRS

The other approach to CR-related properties of a non-
linear TRS is found in [17]. In it, a nonoverlapping and
nonlinear TRS is guaranteed to be CR by restricting its
reductions in call-by-value manner when critical. The

main theorem is,

Theorem (Toyama) If a membership conditional
TRS R is nonoverlapping and restricted-nonlinear, R is

CR.

A membership conditional TRS R is said to be
restricted-nonlinear iff any nonlinear rule a; — f§; € R
reduces 8(c;) to 8(F;) only when a substitution 6 satisfies
6(z) € NF(R) for all nonlinear variables « in «;.

The example R (see figure 7), which is a variation of ex- -
ample 1, is shown to be CR from the theorem (Toyama).
In this case, the critical redex d(2,2) simply diverges
due to call-by-value manner, as d(2,2) — d(2, f(2)) —

d(f(2), f(2)) — -+, etc.
d(z, z) - 0 only if z € NF(Rs)
Ry ¥ {d(z, fx)) = 1 onlyifz € NF(Rs)
2 - f(2)

Figure 7: A restricted-nonlinear version of example 1



Combinator and A-calculus with 6-reduction

(4)

SK I-combinator with é-reduction (eg. Szz — ¢, see [3]
pp-396-403) CLygs is converted to an equivalent TRS with
a function apply as in the previous example Ry. Ry is w-
nonoverlapping, thus UC, and further UN (but, generally
not CR). This easily implies the consistency of CLgs (i.e.
T #us F where T = K, F = KI), because K,KI €
NF(CLgs) and I{ # KI induces K #,5 KI from the
UN property.

In contrast, the situation around M-calulus with §é-
reduction Ags (or Ag,s) has subtle problems on applying
similar discussions. That is, reductions in A-calculus Ag
(resp.  Ag,) corresponds with those that in combinator
logic CLg (resp. CLg,) via A-abstraction (see [8] pp.25).
However, this correspondence is not isomorphic (see [8]
pp-29 remark 2.25 for Ag, and [6] pp.221 for Ag,).

for instance, M =5 N == Az.M =5 Az.N in Ag cal-
culus, but M =, N #= Iz.M =, A*z.N in combina-
tor logic C'Ls under the A-abstraction A*. Consider M =
Szyz and N = zz(zy). Clearly M =, N, but A" 2. M =
S(SS(Ky))(Iz) and A" z.N = S(SI(IK2))() (yz)) shows
that \* 2.M #, A" «.N.

Thus, the consistency of A-calculus with é-reduction is
not induced from general discussions of the UN property
of TRSs, but requires individual investigations. These

works are briefly summarizes in [11].
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