VT oo 7 HEBER
9.

(19809

ML o571 & LT? internal ccc

YeiEET

FORRZFEERIERRIER
FRERSCRR AL 7-3-1.

ot

FurIvy/EEMLAKXY EAT 4 X2 FEHLTWSEEL LTEoBBHEXERIhTE
Twnd, ABTE ML #KY A7 4 XLOMCHBMAEEEREIHL. ccc L REZBFEERF-Tw
B ERFT. 2. ML@IEHEY LT 4 X4 L typed A-calculus & oFfEIICIET 20 TH 5,
2D ®»ic internal ccc WAL, *OERN A HHE TR T. internal ccc nEBiIC X 3EBE &
25, Th. WD typed A-calculus & cce & ICHDOIEHRILT 5 @ L EROHEH, ML & in-
ternal ccc ik, HOHIEDH 3 T & AT 5,

An ML-theory is an INTERNAL CCC.

Sato Hiroyuki

Department of Information Science,
University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113.

Abstract

Today, the programming language ML increases its significance in computer science, as a lan-
guage implementing polymorphism. In this article, we show that ML is a “simple” polymorphism
and is closely related to the theory of cartesian closed category(ccc) which is familiar to every
computer scientist. Internal ccc thory is defined. Its basic properties are proved. Its equational
presentation is given. We show that an ML-theory and an internal ccc theory are translated to
each other by C and £. Using these translations, they are proved to represent the same concept.

In other words, an ML-theory is a predicative polymorphism over a cartesian closed categorical
structure.

(1)

31 —

20)

8

1 Introduction

The programming language ML [15] is one of the most successful system implementing polymorphism. Although, there are
a number of other stronger polymorphic systems than ML such as Girard’s F[5], or equivalently Reynold’s system [12]. and
Coquand’s theory of constructions [2], their implementations are, if exist, less popular than ML. Therefore, in computer
science, it is as important to study properties specific to ML, as to study general properties of polymorphism.

Today, in computer science, the categorical approach is increasing both in popularity and significance. We are here
interested in approaches in theoretical computer science. Theoretically, the categorical approach has a number of results in
the polymorphism. One approach is to develop category theory using polymorphsim. For example, Coquand suggested in (3]
the possibility to interpret category theory polymorphically. (Herealter, we call it “Coquand’s approach.”) Another approach
is to interpret polymorphism in categoryical terms. Seely gives in [14], a model of F as PL-category which utilize the indexed
category theory. Ehrhard gives the categorical semantics of the Coquand’s construction in [4]. He developos it using the
theory of fibration. However, these approaches are too general to serve as a model of ML. They have no counterpart to the
simpleness mentioned in [3].

In this article, we distinguish ML-style-polymorphism from F. We consider, as its model, the internal cartesian closed
category theory. Internal products, internal exponentials, internal terminal are defined. The equational presentation of the
internal ccc theory is also given. Equational presentation is important in the sense that if we can give it, the system can be
handled algebraically. This presentation indicates that the internal ccc theory is essentially the internalization of the usual
(external) ccc theory. From an internal ccc, we construct an ML-theory via the translation £. Conversely, from an ML-
theory, we construct an internal ccc using the translation C. The construction of these transltations are proved to imply that
ML is, in its essense, the language expressing the ccc theory — internally. In particular, The translation £ is the precision
of the Coquand’s approach. It is natural to conclude that ML is the polymorphism enough to develop the ccc theory. The

translations reveal this point in a simple and natural way. In fact, ML is a predicative subsystem of F. The popularity of
ML owes partially to this simpleness.

2 ML-style-polymorphism

We consider, in this article, the polymorphic system which is the basis of the type system of ML. It is a subsystem of F[5]
and presented as:

definition 2.1 An ML-theory consists of the following data.

TYPES:

. A set of primitive types is given.

. () is a type.

A denumerable set of type variables is given.

. If A and B are types, then A x B is a type.

G W N e

. If A and B are types, then A — B is a type.

We use a lower case greek letter (a, 3,) for a type variable. We assume that type variables of each type are linearly ordered.
A problem arises: in the construction (4) and (5), we must fix the order type variables appearing in the constructed type.
However, we do not discuss this problem in detail and simple say that it is (can be, indeed) appropriately taken.

TERMS:
We use the notation term : type to denote both the fact that the term term has type type and the term itself which has type
type. Moreover, A[a] denotes that the type A may contain a type variable a. A[B/a] denotes the type A with the type B
substituted for every occurrence of its type variable a

1. % ().

2. To each type is assigned a denumerable set of variables.

. Ifa:A and b: B, then (a,b): Ax B.

. Ift: A x B, then proj(,"Bt:A and proj,A'Bt:B.

. I 5: B under the assumption z: A, then Az: A.b: A — B without the assumption z: A.

If f: A— B and a: A, then apply"a(f,a): B.

. If t: A[a] and a does not appear in the types of free variables of t, then given a type B, t{B/a}: A[B/a].
AXIOMS:

1. t = x where 1: ().

2. proj:‘e(a: Ab:B)=a
projiP(a: A,b: B) = b

3. t=(projiPt, projFe).

4. apply®P(Az.a,b) = a[b/z).

5. Az.(apply*B(a,z)) =a

= O s W

(2)

6. i{A/(X} = t(A/a)

In the above axioms, Y 4/a) denotes the term t , in which the type A is substituted for every occurrence of the type
variable a. For example, (projg'aa.)(,,,a) is the term proj:’su(,q/a).

The axiom 6 is essential in polymorphism. If we do not require it, the type system will be called rather overloading than
polymorphism.

The type system presented above is a variant of explicitly-typed ML, or Core-XML of {7]. In [7], the Core-XML is proved
to be equivalent to Core-ML, or implicitly-typed ML which is a usual definition of the language ML.

Our system is defined so that it can be clear that ML is a subsystem of F of Girard.

proposition 2.2 The system ML presented above is a subsystem of F.
Proof o
ML is embedded in F as ML in the following way.
1. Types of ML are also those of ML.

2. Terms of ML are clearly those of ML. As for {-}, a term a{B/a} in ML is translated into ML as (Aa.a){B}.
This translation clearly gives the embedding of ML into F. i
Lastly, we define an inconsistent ML theory.

definition 2.3 An ML theory is inconsistent if it has a closed term L: o.

3 Internal ccc theory

Preliminaries

To express the internal category theory, we use a variant of notations of [8]. In the subsequent sections, we fix an arbitrary
category £ closed under finite limits,

notation 3.1 We use the notations 7% (j = 0,1) and (f, g)5,q to denote the morphisms Po, P and T respectively in tle
diagram below.

Other notation: if the diagram is explicitly labelled D, we sometimes write #&, =2, {f, 9)p to denote the above morphisms.
The same notations apply to equalizer diagrams.
We sometimes omit suffixes if they are clear from context.

definition 3.2 An internal category C = (Co, Ci) in a category £ consists of:
1. a pair of objects Co (the object of objects) and Cy (the object of morphisms).
2. distinguished morphisms Cldl"»Co, C —cfiCo, Co——Cj, and Cz——'—»Cl, where C; satisfies
Cr—T0C,
7|'1| PB ldom

G cod Co (C2)

3. dom -1 = cod -1 = 1idc,,
dom - @ =dom - 7o,
cod - ¢ = cod - my,
o(id x 0)02 = 0(0 X id)c,,
o(id x 1) = wg’,
o(e x id) = 7,2

remark 3.3 The arrow ¢ corresponds to the identity morphism and ‘e’ to the composition of morphisms in the internal
category.

(3)

Internal product

definition 3. 4 An internal category C = (Co,qe_)_ is 7axd to have the internal product if there exist the internal product
operator Co—vco and the pairing operator AC) Cy which satisfy:

1. AC is the equalizer of the diagram below.

d .
Acri—ff——“*%co

(Ea)

Ack= e, Adcod-?rn~e,cod~1r,~gbg

dom - wox Idom (G -))l PB A
Oz G

co ° (Da)

3. The following diagram commutes, where s = (o(mo - 7o, 71}, (71 - ™o, m1)).

AC: X g 3 AC
(=) x id\ |<<—,-»
Ca ¥ C,

definition 3.5 (projection) Consider a morphism F: DomF — G with codomain C3.' Let the morphism T = (F,¢- A
F)ps:DomF — AC; be defined as in the diagram below.
Don

t-A-F
C‘ ~zeaC
We define Projr: DomF — Cy as r;-e-T(j =0,1).
The arrows P'rojf correspond to the j-th projection in the sense of the following example (5 = 0,1).

example 3.6 Let £ = Set. Consider a small category C with finite products. We define its internalization I(C) =
(I(C)o, I(C)1) as follows:

I(C)o = the set of objects of C
I(C)

the set of morphisms of C

The morphisms dom, cod, + and e are defined in the usual sense. Its internal product operator is a,b a x b, with pairing
operator f,g— (f,g). Proj; isidentical to the function a,b — 1(" ® (y=0,1).

More precisely, to two objects a and b in C, there correspond morphisms a, b1 — I{C)o. Consider a morpllism

l(‘1 b)I(C)g. Pro_hga b). 1 — J(C); corresponds to the first projection 7o: axb — e in C. In the same manner, Pr01(° B, 1 —
I(C)1 corresponds to the second projection my:a x b — b.

lemma 3.7 For every F: DomF — CZ and G: DomG — DomPF,
Projf"% = Projf -G (=10,1).

Proof :

(ProjE G, ProjF S)g, = {(F-G,v-A-F-G)p, = (F,v-A-F)p, -G. The last morphism is by definition (Proj{, Projf)g, -G
Therefore, Projf'G = Projf -G (7=0,1). 8

We show some properties of Proj’s.

proposition 3.8 For every F with C? its codomain, {(—,—)) - (Proj¢, Projf} = - F. (This equality is the internal
representation of the external equality (rq, 7y) = id.)

Proof
Immediate from 3.5. §

proposition 3.9 For every F with C3 its codomain,

It

dom - Projf A-F (1)
cod - Proj}F = ;- F (2)

for y=0,1.

(4)

Proof
We may prove only the case F = idcg.

The proof of (1):

A = dom-t-A
~{{—=,—N{Projo, Pros)
-mo - e (Projo, Proj)

i
Ly
3

Il
.
)
3
3

= dom - Projo = dom - Proj,
(2) is trivial from the definition of Proj. 8

proposition 3.10 For every F with C? its codomain,

(= =N (o(Proj§ x id),e(Projf xid)) = mx{ed
o(Proj’f x{—=,=N) = =;- x{\'wd

for 7 =0,1. In the external sense, these equalities correspond to the following ones:

(mo-h,my- k) = bk
7+ (ho, ha) h; (j=0,1)

for relevant h,ho and h;.

Proof
We prove the case F = izlcg. As for the first one,

{= =N (Projoeid, Projieid) = e-({(—, =) xid)-({(Projo, Proj:) x id)

= o (exid)=x)e

As for the second equation, consider the following commutative diagram:
A N
Cr—C2¢ A m CZ
(= =N-e- KXI JA ﬁoj PB |id
o

PB
Cr—a—C AC C3
co ,where A is defined as the pullback of: {cod - 7o - e,cod - m; -€)’0
In the above diagram, T = (8(Projo % {{(—,—))),#(Proji x {{(~,—))) - 71 because

€= =N - (o(Projo x (=, =N), o(Projy x {— =)} - m = (=, ~)

and,

(cod - wo - e,cod - my - e){o(Projo x {{(—,—))),¢(Proji x {{(~, =)} m (cod - Projo - mo, cod - Projy - mo)

= (To * W, Wy - ﬂ'o) = 7o

On the other hand, {cod - mo - €,cod - w1 - €) - 71 = 7o by the very definition. Therefore T' = =y, hence m; = (#(Projo x
{=.=N) e(Pros1 x ((—,—))) - m. This implies that ¢(Projo x {{—, =) =, - m; for j =0,1.

Exponentiation
In the same way as product, exponentiation can be defined as:

definition 3.11 The internal category C = (Co, C}) is said to ha\te_ljhe internal exponential if there exist internal exponen-
tiation operator C2—=+Co together with the currying operator *C; —= C; which satisfy:

1. xC is the pullback of the diagram below.
*Cr—C2

| ps]r

CrgomCo

(E.)
2 E E
cOol=2 X *Cl(ﬂ'l'ﬂ',\. cod - m") c?
SN T
Co C o
cod (D.)

3. The following diagram commutes, where t = (A - domm;, 7o o {(—, =)} - (m1 @ Projo, Proji)).

*C4 x-G,—+——~C|
()] [
C, ¥ C1

definition 3.12 (Eval) Consider a morphism F: DomF — C2. We define Eval” as
(F, = ~F)D,.

DomE.
"'T?:‘ . E;F
. *C 3
v F I PB l:'
Cr—ggCo

lemma 3.13 Eval"¢ = Eval” - G
for every F: DomF — C? and G: DomG — DomF.

Proof
In the same manner as 3.7. 1

proposition 3.14 The following diagrams commute.

0
m E]cod
DomIEJ’-"-L}-:CH 7£‘E'—*Cn
dom
A (=,70) F 0
Proof

We have only to prove the case F' = id. As for the upper triangle, cod - 7 - EvalF is trivially equal to m; from 3.11(2).
As for the lower one, we first show o - Eval = (=, 7).

xy-mo- Fval = =
7o %o Eval = dom-(—)"- Eval
= dom .t =>
= =
Therefor, 7o - Eval = (=, %0). Then from dom - r{"dc’"' =A- rg'd""", we obtain dom - 7y - Eval = A-mo - Eval = A- (=, m0).

In the same manner as products, we obtain the following propositions.
proposition 3.15 For every F whose codomain is C3,
(_)- . ﬁ‘(dom T, T - F. ‘"_o:«ff,ccni)v ,rlE. . EUaIP‘”", «__' _»(’(“l; Proj(():»F»wo,no-Fwo)), Proj‘(:»F.no,no.ero)))
= a7 Fd DomF x' C, — C.
DomF x' Cr——DomF
1 PB jﬁ -F
Gz~ Co

where DomF x' C; denotes the pullback of the above diagram.
This equality represents the following (external) equality.

(Eval-{(=) 7o, m))" = (=)
proposition 3.16 For every F whose codomain is CZ,
o(xF . Bval™" (=, ~){8{m, Proj{eodmmomady projleodmmomoly (rBe (_ye)) = xBeisCy — Oy

Externally, this corresponds to the equality:
Eval - ((h)" - mo, m1) = h.

(6)

Terminal

deﬁmhon 3.17 The internal category C = (Cy, C)) is said to have the internal terminal operator 1——~C’o and the !-operator
Co-Lcy if they satisfy the following conditions:

1..

Co 1

Co—-t—hcl
>\ J(lom Tl PB ll
Co Cy W’Co

2. t-dom = e(t- dom,1id).

proposition 3.18

dom -t = id
1-f = cod-t
o(t-dom,id) = t.-dom

Proof

Trivial from the definition. &
proposition 3.19 For every f such that cod- f=dom-f=1-!, f=1t-1.1 In particular, -1 =12¢-1.

Proof
Since cod - f = 1 ! f factors through 1 of the second diagram of 3.17-1. Let f =1-h. h=dom -} -h = dom - f=1-
Therefore f =1-1-

Internal ccc

definition 3.20 An internal category C is called an internal ccc if it has the internal terminal, the internal product and the
internal exponential.

We show some typical examples of internal ccc’s.

example 3.21 In Set,

1. Let C be a small ccc. Then its internalization I(C) is an internal ccc. Its internal product operator, pairing operator is
given in the example 3.6. Its exponential operator is a, b — a® with currying opcrator the function f v f*. Its terminal
operator is () — 1. This internalization accounts for the name, “internal ccc.”

2. 1=(1,1) is also an internal ccc In 1, terminal, products and exponentials are degenerated ones: 1 — 1.
3. Let © be the set of propositions constructed by

(a) atomic formulas including T and

(b) A and D as logical connectives and

(c) their related axioms

We assume that two propositions are identical if they are equivalent.
Let €2, be the equalizer of the following diagram:

o -——92#:9

2 = (2,) is an internal ccc. Its internal product operator is A together with the internal exponential operator D
and the terminal operator T. Other operators are trivially defined.

4. Let % be Q added with 1, the absurdity as an atomic formula. Q¥ = (927, QF) is the heyting algebra on 27 in
which Qff defines its order relation.

Cases (3) and (4) are important. In topos theory or PL-category [14], they are used as the representing object: the property
that €2 has the internal ccc structure is intensively used to classify the structure of the category in question. Furthermore, £,
can be viewed as defining a partial order on 2, such that €2 is a A-semi-lattice. Moreover, in case (4), Q¥ defines a heyting
algebra.

definition 3.22 In the internal category C, a morphism tn: C§ — Ci is called an internal operator of arity n (r =0, 1,2, -).
Furthermore, if dom - t, = 11, it is also called an internal element of type cod - t,.

example 3.23 1. eval: C} — C; is an internal operator of arity 2.

2. For A: Co(‘d 'd)Co, Pro]J Co — C; is an internal operator of arity 1.

€7)

3. In the notation of 3.6, P'rojj(a'b):l — (' is also an internal operator of arity 0.

4. The term ()" - ({1-!,id), Proj§1‘!'id)) is an internal element of type = -(1-1,id).
Proof
We can easily show that every component of the diagram below commutes.

2 - BN ,J“
[]

Il Lny O ?/(1 dom

Cal{1- LAY Progi Tt) A=)t

C[I,g = (1-LA

In general, this construction corresponds to “naming” in the (external)ccc theory. Through this naming, every operator
is translated to an element. (for example, see [9]).
definition 3.24 (naming) We call the morphism
[=1=(=)"-{(1-},dom), e(id, Prajl(l‘!’dom))): Cy — *C; — C; the naming operator.

For a morphism Dome»Ch we denote the composition [=] - f by [f]. As in the (external) ccc-theory, the internal
composition of internal operators can be represented in terms of internal elements.

proposition 3.25 Given operators Ca‘—l»Cl and C§-—+C) such that cod - a = dom - f, [f] is an internal element which
satisfies:

o{ny"" - Eval, {~,~){(&([f]. 1 - dom - a},)} = o(f, a).

Proof.

By routine calculations, dom - [~] = 1 -!. Therefore, dom - [f] = 1!, an internal element. The equality can be proved
by easy calculations. ¥

theorem 3.26 (equational presentation of internal ccc) Equalities 3.7, 3.8, 3.9, 3.10, 3.13, 3.15, 3.16, 3.18 give the
equational presentation of the internal ccc.

Precisely, given the following data:

v, dom, cod, o, A, {(~, =), =, (-)", 1,1

and if for each morphism F whose codomain is C3, there are given Proj{, Projf, eval?,
and equalities listed as above, we have an internal ccc structure.

Proof

This theorem is the translation of the equational presentation of (external) ccc to that of the internal ccc. The proof is
completely analogous to that of the case of external ccc. (see, for example, [9]) §

Using the equational presentation of internal ccc, we can translate theorems on external ccc into those on internal ccc.
Among them, we present here the functional completeness of internal ccc.

definition 3.27 Let X be given in the diagram below. Given an internal ccc C = (Co, C1), its polynomial C[X] on a variable

X is the internal ccc which is freely generated from C and X.
Co

1 / }lom
Co—%ecy
el
i
Co
Given a morphism F: DomF — Co, a variable XF of type F is defined as X - F. a variable of type id is simply written
as X.
The following theorem is the straightforward translation of the corresponding theorem on the external ccc.

. . xF
proposition 3.28 (functional completeness of internal ccc) Given an n-ary operator Cé'v—l-—-‘)Cl of C[X](n=0,1,---),

there is a unique operator Cg'—’—.c, of C such that o[XF] = o(f, XT . dom - f).
notation 3.29 By (XF).¢[XF], we denote the operator f in the above proposition.

example 3.30 (x).X = since X = o(¢, X).
(XA).X4 = A

The following definition is also the translation of the corresponding definition on the external ccc.

(8)

definition 3.31 An internal ccc C = (Co, C)) is degenerated if there exists an operator Co——C, such that
o(i,1) = 1. Note that this equality implies that j is an internal element of type id.

Externally, this means that every a1 has its inverse, that is, that every object is isomorphic to 1.

For example, 1 = (1,1) is degenerated.

Suppose that an (external) ccc C has the initial object 0. It is well known that it is degenerated when there exists a
morphism 1 — 0. The similar situation also appears in the relation between an inconsistent ML-theory and a degenerated
internal ccc.

4 Relation between internal ccc and ML

In this section, we investigate the relation between internal ccc and ML.

theorem 4.1 From an internal ccc € = (Co, C1), We can construct an ML-theory £(C).
construction

Types of £(C) are morphisms C§ — Co{n = 0,1,2,---) with
1. Primitive types of £L(C) are those morphisms 1 — Co (n = 0,1,2,--).
2. The j-th projection Cglco (0 < j < n) is translated to the j-th variable.

3. As for type constructors,
 is interpreted as CZ2—2-Cy,
— is interpreted as C2-=.(,,
and () is interpreted as 1—C.

Terms of £(C) are internal elements of the polynomial C[X] with X a variable. In particular,
1. Primitive terms are those morphisms 1 — Cj.
2. A variable is X: Cy — C;.
3 +is 1-mCo—tacy = 1.

(=g,
. Given types A, B:C§ — Co and an internal element ¢ of type A x B = A - (A, B), prajf'Bc is interpreted as

o(Pruj§A’B>,c) for j=0,1.

6. Given an internal element C’Z)‘b(x—A-]C], AX: A. B[X*]is interpreted as [(X*).5[X4]].

7. Given types A, B:C§ — Co and internal elements f with type = (A, B) and a with type A, appIyA'B(f,n.) is
interpreted as o{rF* . Eyall{4B) (=, =N {f a)).

8. Given a type T:Cg — Cp and an internal element CQLC,, if & denotes the j-th type variable, f{T/a} is f- T,

where T satisfies that x; - T'=T and 7y - T = m;s for j’ # j. *

4. Given two internal elements a,b of arity n, {a,b) is Cé‘(a—'i)ACH
5

The type of a given term f: Cg — C is defined as cod - f.

This construction is completely the internal version of the translation from ccc to the typed A-calculus. Therefore, the
above construction clearly satisfies the axioms of ML except AXIOM 6 of the definition 2.1. Explicitly, AXIOM 1 is the
immediate result of 3.24, AXIOM 2 and 3 are also the immediate results of 3.13. AXIOM 4 and 5 can be proved with routine
calculations using 3.15, 3.16 and 3.28.

AXIOM 6 is easily proved by the induction on the construction of terms using 3.7 and 3.13.

definition 4.2 Given an ML-theory L, its associated internal category C(L) in Set is given as:

C(L)o = the set of types which do not depend on type variables.

C(L)1 = {(X: A,5[X]): B)] A and B do not depend on type variables. }

dom is the function (X: A, ¥[X]: B) ~ A, together with cod the function (X: A, b[X]: B) ++ B, ¢ the function A — (X: 4, X: A)
etc.

proposition 4.3 C(L) is an internal ccc in Set.
Proof

Immediate I
The following proposition is an immediate consequence of the definitions of C and L.

1The problem of the linearlization of type variables arises here. We do not discuss its details.

(9)

proposition 4.4 Assume that an ML-theory L satisfies that any primitive term does not depend on type variables. In this
case, £(C(L)) has the one-to-one correspondence to L.

The above results imply that the universe of types that an ML-theory handles is the cartesian closure of primtive types
under — and x. In this sense, an ML-theory can be said predicative.

remark 4.5 Note that the assumption in 4.4 is not essential at least when we work in Set. Given a constant term pa which
depends on a type variable a, there is a corresponding function p:C(L)o — C(L)1 such that (A) = (x,p{A/e}).

The following corollary is an immediate result from the construction of C and L.
corollary 4.6 ML is conservative over typed A-calculus.

The stronger form is shown in [1]. Our € and L give a natural proof to the corollary.
We clarify the relation between degenerated internal ccc and inconsistent ML in the following proposition.

proposition 4.7 If an internal ccc C is degenerated, then £{C) is inconsistent.

Proof

The term j has certainly type id. This means L:a if L is interpreted as i. ¥

We are mainly concerned with consistent ML theory. Also in the coherent semantics of F [6], the type Aa.a is interpreted
as 0. This corresponds to our usual manner that we deal with only non-degenerated ccc’s.

Acknoledgements.
Tle author is grateful to Prof. Yoneda Nobuo for his helpful comments and encouragement.

References
{1] V. Breazu-Tannen, A. Meyer: Polymorphism IS Conservative over Simple Types, Proc. 2nd Ann. Symp. on Logic in
Computer Science, 1987,pp. 7-17.
[2] Th. Coquand, G. Huet: The Calculus of Constructions, Information and Constrol, vol. 76, 1988 pp. 95-120.
[3] Th. Coquand: An Analysis of Girard’s Paradox, Proc. Ist Ann. Symp. on Logic in Computer Science, 1986.

[4] Th. Ehrhard: A Categorical Semantics of Constructions, Proc. 8rd Ann. Symp. on Logic in Computer Science, 1988, pp.
264-273.

[5] J. Y. Girard: Une extension de Vinterprétation de Godel & I'analyse et son application a 'elimination des coupures dans
Panalyse et la théorie des types, Proc. 2nd Scandinavian Logic Symposium, eds. J.E. Fenstatd, North-Holland, 1971, pp.
63-92.

(6] J. Y. Girard: The system F of variable types, fifteen years later, Theoretical Computer Science, vol. 45, no. 2, 1986, pp.
159-192.

{7] 1.C. Mitchell, R. Harper: The essence of ML, Proc. of 15th POPL, 1988, pp. 28-46

8] P.T. Johnstone: Topos Theory, Academic Press, 1977.

9] J. Lambek and P. Scott: Introduction to Higher Order Categorical Logic, Cambridge University Press, 1986.
[10] S. MacLane: Categories for Working Mathematician, Springer-Verlag, 1971.

(11] D. MacQueen, G. Plotkin, R. Sethi: An ideal model of recursive polymorphis types, Information and Control, vol 71,
1986, pp. 95-130.

[12] J. C. Reynolds: Toward a Thoery of Type Structure, Proc. Colloque sur la Programmation (LNCS 19), 1974, pp. 408-425.
[13] R. Seely: Locally Cartesian Closed Categories and Type Theory, Math. Proc. Camb. Phil. Soc, vol. 95, 1984.

[14] R. Seely: Categorical Semantis for Higher Order Polymorphic Lambda Calculus, J. Symbolic Logic, vol. 52, no. 4, 1987,
pp. 969-988.

[15] Standard ML Reference Manual(PRELIMINARY),AT&T, 1988.

(10)

