V7MY 7EBEE 31 - 2
(1989 9. 20)

TRS 2 v "4 7% D bniEmEsEfb T o) XA
Fast Knuth-Bendix Completion with a

Term Rewriting System Compiler

ALZEA
Yoshihito TOYAMA
NTT ZEREUFEET
NTT Basic Research Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan

HoZEL

HEERA VAT L a v A 7 3FE R BNE T 0 7 T A CERT LTI H 7 v ay
OEEFETRAAEL 35, APECREFEHRL O X7 4« 2 v -4 5 %FH L % Knuth-Bendix
LT AT Y X LDEGFEIETFHEC O W THET 2. B2 v MY v IFErHvs ciick
D, HEZMIX VAT L« A VX7) 2K DHERBISERET A=) X4 & il 3 & ERE
X 10 5Ll EiEdic &2 % ¢ & %Y.

Abstract

A term rewriting system compiler can greatly improve the execution speed of reductions
by transforming rewriting rules into target code. In this report, we present a new applica-
tion of the term rewriting system compiler: the Knuth-Bendix completion algorithm. The
compiling technique proposed in this algorithm, is dynamic in the sense that rewriting rules
are repeatedly compiled in the completion process. The execution time of the completion
with dynamic compiling is ten or more times as fast as that obtained with a traditional term

rewriting system interpreter.

1. Introduction

A term rewriting system compiler translates rewriting rules into target code in
another language such as LISP [5,11], PASCAL [2], C [10], or an assembly language
[4]. The execution time of compiled code is usually hundreds or thousands of times
as fast as that of the corresponding term rewriting system interpreter.

In this report, we propose a new application of a term rewriting system com-
piler: the Knuth-Bendix completion algorithm [7]. The Knuth-Bendix completion
algorithm is well known as a useful technique to solve the word problem of an
equational theory [3,7]. However, as far as the author knows, the Knuth-Bendix
algorithm has up to now only been executed with a term rewriting system inter-
preter. The reason why it has never been executed with a term rewriting system

compiler is as follows:

(1) In the completion process, rewriting rules are repeatedly modified; hence,
they must be recompiled each time. This dynamic compiling is difficult for
most term rewriting system compilers which cannot produce compiled code

quickly.

(2) Most term rewriting system compilers have been developed for functional
programming languages or algebraic specifications of which rules are re-
stricted by some properties, such as left-linearity, non-ambiguity (i.e. the
non-overlapping property), and strong sequentiality (2,4,8,10]. On the other

hand, the completion process must treat any rules without such restrictions.

Recently, Tomura [11] and Kaplan [5] proposed independently an interesting
term rewriting system compiler based on some tricky use of LISP features which
translates rewriting rules into LISP functions; for example, the term rewriting

system

minus(z,0) >z
Rpinus minus(s(z), s(y)) > minus(z,y)

minus(z,z) >0

is translated into the LISP function minus as follows:

(defun minus (X Y)
(cond [(eq Y 0) X]
[(and (eq (car X) ’s) (eq (car Y) ’s)) (minus (cdr X) (cdr Y))]
[(equal X Y) 0]
[t (list 'minus X Y)])).

Their compiler has advantages for the Knuth-Bendix completion algorithm;
it produces compiled code quickly and accepts a wide class of rewriting rules.
Furthermore, since the completion process treats only terminating rules, we may
use the innermost reduction strategy for computing normal forms which simplifies
the compiler for our application. Thus, we can easily apply this compiler to the
completion algorithm. Several benchmarks show that the execution time of the
completion with dynamic compiling is ten or more times as fast as that obtained

with a term rewriting system interpreter.

2. Benchmarks for TRS Compiler

The purpose of this benchmarks is to compare the performance of a traditional
TRS (Term Rewriting System) interpreter and that of the TRS compiler pro-
posed by Kaplan before using them in the Knuth-Bendix completion algorithm.
Both systems compute normal forms in the same way, i.e. by the left-innermost
reduction strategy [6,8].

The original TRS compiler proposed by Tomura [11] and Kaplan [5] translates
rewriting rules into compiled code through two phases; in the first phase, the TRS
compiler generates a LISP function f for each function symbol f, and in the second
phase, this function fis compiled into native machine code by a LISP compiler.
However, the execution time of the second phase is usually too long for repeated
compiling in the Knuth-Bendix completion process. Thus, our TRS compiler does
not have the second phase; the LISP function f generated by the first phase is
directly computed by a LISP interpreter.

By using the following rules, the factorial function fact(n) = n! is computed

by both systems. Here, natural numbers n are represented in the usual way:

0,(0), s(s(0)),- - -.

I
w
I

plus(z,0)p> z

plus(z, 5()) b s(plus(z, 1))
times(z,0) > 0

times(z, s(y)) v plus(times(z,y), z)
fact(0) > s(0)

fact(s(z)) b times(s(z), fact(z))

Rfact

The benchmarks have been made on a TOSHIBA J-3100GT (IBM PC com-
patible laptop computer with CPU 80286 (8 Mhz)). Both the TRS interpreter
and the TRS compiler are written in MuLISP-87. The TRS interpreter is com-
piled by MuLISP-87 compiler. As stated above, the functions generated by the
TRS compiler are not compiled by LISP compiler; they are directly evaluated by
MuLISP-87 interpreter. The results are shown in the following table:

n=0 | n=1|n=2 | n=3 | n=4 | n=5H n=6 | n=7
Tt (sec.) | 0.16 | 0.55 | 1.20 | 3.24 | 19.67 | 340.30 | oo o0
Tc (sec.) | 0.00 | 0.00 | 0.01 | 0.02 | 0.07 |0.22 1.10 | 7.30
T1/Tc — — 120 | 162 | 281 1546.82 | oo [%s)

Here, T; and T¢ show the execution time by the interpreter and by the compiled
code respectively. oo in Ty shows that the computation is impossible because of

memory overflow.

3. Fast Knuth-Bendix Completion

3.1. Completion with Dynamic Compiling

A complete (i.e., confluent and terminating) term rewriting system R which pro-
duces the same equality as the one generated by an equational theory E is very
important to solve the word problem of E [3,7]. Knuth and Bendix [7] proposed
a famous procedure to find a complete term rewriting system R from a given an
equational theory E. According to Dershowitz [1] and Klop [6], a simple version

of this procedure is given as follows:

l
SN
I

Knuth-Bendix completion algorithm

The procedure has as input a finite set R of rules, a finite set E of equations, and a
program to compute a well-founded monotonic ordering > on terms. The critical

pairs (P, Q) are presented in E as equations P = Q.

Repeat while E is not empty. If E is empty, we have successful termination.

(1) Remove an equation M = N (or N = M) from E such that M > N. If such

an equation does not exist, terminate with failure.
(2) Move each rule from R to E whose left-hand side contains an instance of M.
(3) Extend E with all critical pairs in R caused by the rule M > N.
(4) Add M > N to R.
(5) Use R to normalize the right-hand sides of rules in R.

(6) Use I to normalize both sides of equations in E. Remove each equation that

becomes an identical equation.

The Knuth-Bendix completion algorithm spends the greater part of the exe-
cution time on (i) computing normal forms and (ii) generating critical pairs. In
particular, the completion procedure with a TRS interpreter spends most time
on normalizing. Hence, the execution time of the completion can be extremely
improved by replacing the TRS interpreter with the TRS compiler described in
Section 2. The procedure with the TRS compiler is given as follows:

I
o
I

Knuth-Bendix completion algorithm with TRS compiler

Repeat while FE is not empty. If F is empty, we have successful termination.

(1) Remove an equation M = N (or N = M) from E such that M > N. If such
an eqqation does not exist, terminate with failure.

(2) Move each rule from R to E whose left-hand side contains an instance of M.

(3) Extend E with all critical pairs in R caused by the rule M > N.

(4) Add M > N to R.

(5) Compile R into compiled code C.

(6) Use C to normalize the right-hand sides of rules in R.

(7) Use C to normalize both sides of equations in E. Remove each equation that

becomes an identical equation.

In the above algorithm, normal forms are computed with compiled code C in
(6), (7). (On the other hand, a traditional algorithm computes normal forms with
rewriting rules R in interpreter mode. See (5), (6) in the previous algorithm.)
Thus, rewriting rules R are repeatedly compiled into compiled code C at (5) while

the iteration continues. We call this dynamic compiling.

Remark. Purdom and Brown [9] also proposed a dynamic updating technique
for the Knuth-Bendix completion algorithm different from our dynamic compiling.
They showed that by repeatedly updating their pattern representation, the number
of matching routine called in the completion process can be reduced into about

1/5.

3.2. Benchmarks for Completion with TRS Compiler

We compare the execution time of the Knuth-Bendix completion with dynamic

compiling, with that of a traditional completion. The examples for the benchmarks

I
o
Il

are given in the appendix.

The benchmarks have been made under the same

conditions described in Section 2. Both the completion algorithms are written in
MuLISP-87 and compiled by MuLISP-87 compiler. The results are shown in the

following table:

group | group’ | group” | l-r-s c-group | rev
Ty (sec.) | 107.73 | 130.19 | 1440.30 | 222.40 | 5.27 10.50
Tc (sec.) | 10.11 |12.14 |[60.26 | 15.32 | 1.43 2.41
T1/Tc 10.66 | 10.72 | 23.90 14.52 | 3.69 4.36
N 16 18 40 16 3 7

Here, T and T¢ show the execution time by the completion algorithm with an

interpreter and with dynamic compiling, respectively. N shows the number of

the compiling times in the completion process. The benchmarks show that the

execution time of the completion with dynamic compiling is ten or more times as

fast as that with a traditional term rewriting system interpreter.

Acknowledgment

The author is grateful to Jan Willem Klop, Pierre Lescanne, and Stéphane Kaplan

for helpful suggestions.

References

(1] N. Dershowitz, Computing with rewriting systems, Information and Control

65 (1985) 122-157.

[2] A. Geser, H. Hussmann, and A. Miick, A compiler for a class of conditional

term rewriting systems, Lecture Notes in Comput. Sci. $08 (Springer-Verlag,
1988) 84-90.

(3] G. Huet and D.C. Oppen, Equations and rewrite rules:

a survey, in:

R.V. Book, ed., Formal languages: perspectives and open problems, (Aca-

demic Press, 1980) 349-405.

(4]

(5]

(6]

(7]

(8]

K. Inoue, H. Seki, K. Taniguch, and T. Kasami, Compiling and optimizing
methods for the functional language ASL/F, Science of Computer Program-
ming 7-8 (1986) 297-312.

S. Kaplan, A compiler for conditional term rewriting systems, Lecture Notes
in Comput. Sci. 256 (Springer-Verlag, 1987) 25-41.

J. W. Klop, Term rewriting systems: a tutorial, EATCS Bulletin 82 (1987)
143-182.

D.E. Knuth and P.G. Bendix, Simple word problems in universal algebras, in:

J. Leech, ed., Computational problems in abstract algebra (Pergamon Press,
1970) 263-297.

M. J. O’Donnell, Equational logic as a programming language, (The MIT
Press, 1985).

P. W. Purdom and C. A. Brown, Fast many-to-one matching algorithms,
Lecture Notes in Comput. Sci. 202 (Springer-Verlag, 1985) 407-416.

M. Sakai, T. Sakabe, and Y. Inagaki, Direct implementation system of alge-
braic specifications of abstract data types, Computer Software 4-4 (Iwanami,
1987) 16-27, in Japanese.

S. Tomura and K. Futatsugi, Transformation system from term rewriting
systems into LISP programs, IEICE (the Institute of Electronics, Informa-
tion and Communication Engineers) technical report $586-11 (1986) 15-20,

i Japanese.

Appendix

We

present the equational theories E [3,7] used in the benchmarks of Section 3.2.

Groups (group). Eg.oup defines group theory by:

lxz ==z
Epow { I(x)ra =1
(zry)*xz=z*(y*2)

Groups’(group’). Eg,ouy defines group theory by a right identity and a right

inverse:

zxl==zx
Egroup zxI(z)=1
(z*xy)*xz=z*(y*2z)

Groups” (group”). Eg, o+ defines group theory by Taussky’s presentation:

1x1=1
zxl(z)=1

Egroupr (zry)xz=ax*(y*2)
f(laxay) =T
flzxy,z,y) = g(z *y,y)

(I,r)-Systems (I-r-s). E;_,_, defines (1,r)-system by:

lxz ==z
El—r—-s .’L‘*I(.’IZ)=1
(z*y)*z==zc*(y*2z)

Central Groupoids (c-group). E._,, 0., defines central groupoids theory by:

Eegrow { (zry)*(yx2)=y

Reverse (rev). E,., defines the reverse of a list:

append(nil,y) =y
append(cons(z,y), z) = cons(z, append(y, z))
Ereo { reverse(nil) = nil

reverse(cons(z,y)) = append(reverse(y), cons(z,nil))

reverse(reverse(z)) =z

Il
©
I

