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A note on solvability of Boolean equations

{6 Sakai and Yosuke Sato

ICOT Research Center
1-4-28 Mita, Minato-ku, Tokyo 108, JAPAN

Abstract This note gives a necessary and sufficient condition for a set of Boolean equations to have
solutions. This condition is an important guide to consider implementation of a constraint logic

programming language with Boolean constraints.



1. Introduction

In constraint logic programming (sce [Sakai 89], exam-
ple) there are applications. in which we often want to
write constraints about membership and inclusion of
sets such as ¢ € X and X C Y. These constraints can
be written in the form of Boolean equations. such as
{a}AX = {a} and YAY = X, on a Booleau algebra of
sets. Therefore, if we have a general method to handle
Boolean equations, it can be used as a constraint solver
in the constrain logic progranumning system where con-

straints like the above are freely written.

The most primitive feature required of such a method
is decision of solvability of a given set of equations. To
address the decision problem, this note gives a neces-
sary and sufficient condition for a set of Boolean equa-

tions to have solutions.

2. Boolean ring

We assunie that the reader is familiar with elementary
algebraic notions such as ring and ideal (sce {van der
Waerden 37, 40}, for example), in particular in Boolean

algebras (see [Halmos 3], for example).

For a Boolean algebra < B.V.A, = >. define ¢ +b =
(aV=b) A (maVb)and a x b= a A bfor cach «, b
in B, then< B, x,-+ > is known to be a commutative

ring with a unit with the following properties.

Yo € B axa=u (idempotence)

A ring with these properties is called a Boolean ring.
As usual, we often abbreviate x symbols (¢ x b is de-
noted ab, for example) if there is no danger of confu-

sion.

A Boolean ring beconies a lattice if the order a < b
is defined as ab = a. Given a subset F' of a Boolean
ring B, let IF denote the ideal generated by F. IF
is characterized in two different but equivalent ways,

namely

IF = {byay + -+ b [ 0o by € Boage. .
and

IF ={b]|3ay,...,an € F h<ap Ve Va,}

Ly, € F}

The following lemma is immediate from the second

characterization.
Lemma 2.1

Let F = {a1...., @y} be a finite subset of a Boolean

ring. Then,
(1) supF e lF
(27 o <wsup FAorall o < [F,

where sup F is the least upper bound of F, aq V- -Va,,.
Therefore. for a finite subset F, I'F 1s a principal ideal

generated by sup F, namely IF = I{sup F}.

3. Boolean equation

In what follows, let B be a fixed Boolean ring. Ele-
ments of B are denoted by symbols a, b, ¢. ... (possibly

with suffix).
Definition 3.1

Let us have a set V' of Boolean variables. We do not
put any constraint on the cardinality of V' for gener-
ality of the theory. Boolean variables are denoted by
symbols .y ... (possibly with suffix). A Boolean

power product is an expression of the form
rpa, (0<n),

where 2y.....2, arc distinet Boolean variables. In
the case n = 0. the power product is denoted by 1.
We use synibols a. 3.~.... (possibly with suffix) for
Booleaw power products. & Boolean polynomial is an

expression of the form
ayay 4o aya, (0<n),

where aj..... a, are non-zero clements of B, and
aq.....a, are distinct Boolean power products. In
the case n = 0, the polynomial is denoted by 0. We
use symbols @1, ... (possibly with suffix) for Boolean
polynonials.  The set of all Boolean polynomials is
denoted B[V].

It is well-known that B[V] forms a Boolean ring by

computation using the basic properties of a ring (that



1s, distributivity of ~ wart. 4. comnmtativity and
associativity of 4+ and x) and the idempotence law.

For example,

(a2 +by)lcr +d) = (ac+ ad)x + (be)ry + (hd)y.

A Boolean equation is a formula of the form ¢ ~ ¢
where o and o are Boolean polynomials. (We do not
use the svwbol = 1 a Boolean equation, to avoid con-

fusion. )

A function 7 from 1V to B is called a substitution.
A substitution 1s obviously extended to a homomor-
phism from B[V] to B. That is, (¢r)o = (e0)(yo)
and {¢ = wjo = (oo} + (vo) for all o and v in B[V].
(According to rradition. we will use postfix notation

for substitution.)

Let E be a set of Boolean equations. A substitution o
15 called @ solution of E if ¢o = o for all ¢ ~ v+ € E.
E s called solvable if it has solutions. Since ¢ >~ i and
&40 2 0 have the sanie solution. we can assume every
Boolean equation has the form ¢ ~ 0 without loss of
generality. For a set of Boolean polynomials F. we
denote the set of Boolean equations {¢ ~ 0| ¢ € F}
by F ~ 0.

The following lemnia is clear from either of the char-

acterizations of ideals in Section 1.
Lemnmna 3.2

Let F be a set of Boolean polynomial and o is a solu-

tion of F =~ 0. Then ¢ is a solution I{F) ~ 0

4. Unsolvability of Boolean equations

Lemma 4.1

Let o be a Boolean polvnomial and let »q.. ... &, beall
the variables occurring in ¢. If {¢ ~ 0} is unsolvable,
then there exists o polvnomial 1» € IT{¢} with variables
Ce vy— only such that {¢" >~ 0} is unsolvable.

Namely, variable a, can he eliminated.

Proof: We can put ¢ = ¢1a,, + ¢g where ¢y and ¢y nre
polynomials with variables @y, ...,2,-; only. Then

v ois defined as ¢1¢y + ¢o. It is easy to verifv that

Vo= (@ 4 op 1+ ogjo. Therefore, e T{o}. Tt
remains to be shown that o is unsolvable.  Asswme

that there is a solution ¢ of {¥ >~ 0}. Then.
wo = {910)(9g0) + ¢yo = 0.

Let us consider the substitution ¢', which differs from
o only in that its value at 2, is ggo. Namely, r,0' =
opo and wo' = 1o for any other variable x. Clearly,
oo’ =0, which contradicts that {¢ =~ 0} is unsolvable.

Lemma 4.2

Let ¢ be a Boolean polynomial. Then {0 =~ 0} is
unsolvable if and ouly if there is a non-zero polynomial
o€ I{e} without variables. In other words. there is
a non-zero intersection hetween B and I{¢}. since a
polynomial without variables can he regarded ax an

element of B.

Proof: The if part is obvious. In order to prove the
only-if part, let us use Lemma 4.1 to eliminate
variables in ¢ one by one. The proof is easily com-

pleted by induction on the number of variables in ¢.

Theorem 4.3

Let F be a finite set of Boolean polynomials. Then
F ~ 0 is unsolvable if and only if there is a non-zero

polynomial ¢ € I'F without variables.

Proof: It is clear that E is solvable if and only if
{sup F’ = 0} is solvable. Therefore, the proof is easily

completed by Lemma 4.2 and Lemma 2.1. |

The above theorem does not hold in the case that F is
not finite. In order to see this, let N be the set of all
natural numbers and B the class of all finite subsets
and cofinite subsets (that is. the subsets whose com-
plements ave finite) of N. It is clear that B forms a
Boolean algebra with respect to usual set operations.
Consider the following infinite set of Boolean polyno-

mials:

F={{2n}2 + {2n},{2n 4+ 1}a | n € N}



Intuitively, the equation set F' ~ 0 means that x is the
subset consisting of all and only the even numbers,
which is neither finite nor cofinite. Therefore, F' ~ 0
is unsolvable in the above B. It is solvable, however,
if B is the class of all subsets of N, which is also a
Boolean algebra. Therefore, from Lemma 3.2, there
cannot be any non-zero polynomial without variables
in I(F).
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