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Abstract

We propose reflective logic programming language R-Prolog* formalizing its operational and declarative
semantics, and we show the soundness and the completeness results based on these semantics. In R-Prolog*,
we can deal with names of syntactic objects and computational states explicitly by means of quote, up,
down and reflection facilities. As a result of that, some of extra-logical predicates of actual Prolog can be .
redifined from a consistent framework. At the end of the paper, we introduce an idea of reflective concurrent
logic language Rena, which is given by incorporating concurrency in R-Prolog*.
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1 Introduction

In this paper, we investigate reflective computation in logic programming language and its formal semantics.
We proposed a reflective logic programming language R-Prolog in[8] and gave it the formal semantics. The
modified version of R-Prolog, called R-Prolog*, is presented in this paper. Same as R-Prolog, R-Prolog* can
be obtained by meta-level extension and reflective extension from pure logic language. Meta-level extension
is the employment of quote, up, down symbols; we can solve the problems of variables [5] by means of them.
Reflective extension is the introduction of computational reflection[6] by means of reflective predicates. Re-
flective extension allows us to redefine several extra-logical predicates in Prolog. In this paper, we provide the
operational and declarative semantics and prove the soundness and completeness of R-Prolog* computation
with respect to the declarative semantics. Furthermore, we try to incorporate concurrency in R-Prolog* in
order to investigate what reflection is to be in concurrent logic languages. We introduce a concurrent reflective
logic language Rena, and the idea of it is described.

In logic programming area, several works on meta-programming and reflection have been carried out so
far, e.g. [10, 2, 7]. Hill and Lloyd analized meta-programs in logic programming language with negation[3].
They present a many-sorted logic language in order to distinguish object level and meta level computation.
Unlike their language and some other formalizations, R-Prolog* has only one sort and it amalgamate object
level and meta level, just like an idea by Bowen and Kowalski {2]. This feature is not a disadvantage of our



language because levels of terms and atoms are distinguished by quote symbols. Furthermore, the language
has a consistent framework including capabibity of computational reflection.

The organization of this paper is as follows; we introduce reflective logic programming language R-Prolog*
in the next section; in section 2 the syntax of R-Prolog* is presented introducing up , down, quote symbols and
reflective predicates, and its computational semantics, with new unification called p-unification and reflective
computation rule, is described. In Section 3, a declarative semantics of R-Prolog* is provided and some
semantic properties (soundness and completeness) of R-Prolog* are shown. We try to incorporate concurrency
in reflective logic language in the section 4. In the section 5, we make some discussions and concluding remarks.

2 Reflective logic language R-Prolog*

2.1 Syntax of R-Prolog*

The syntax of R-Prolog* is an extension of Horn clause logic (pure Prolog). Its language has extra three
symbols, ' (quote), T (up), | (down). Furthermore, besides usual predicate symbols, a special kind of predicate
symbols, called reflective predicates, are included to materialize the reflective computation.

Definition. 2.1 (Language of R-Prolog*)

Language of R-Prolog* L is a sextuple; L = (VAR,FUN,OP, RP, DL,SS) where V AR is the countable set of
variables; FUN is the finite set of function symbols; OP is the finite set of ordinary predicate symbols; RP is
the finite set of reflective predicate symbols; DL is the set of delimiters, comma(,), period(.), implication(—),
parentheses{ ( ) ); SS is the set of special symbols, |(down), (up), '(quote). 0O

Each element of FUN, OP, RP is related to a non-negative integer called its arity. We always assume FFUN
contains two special function symbols, cons(arity 2) and nil(arity 0).
Terms and atoms of R-Prolog* are defined as follows.

Definition. 2.2 (Terms, atoms, upped form and downed form)
Terms, atoms, upped and downed forms of R-Prolog* are defined recursively as follows;

1. Terms.
(a) A variable is a term.

(b) An upped form and a downed form is a term. an upped term.

(¢) If s is a function symbol, an ordinary predicate symbol, a reflective predicate symbol, up symbol,
down symbol, or a variable, then ‘s is a term. This term is called a quoted symbol.

(d) Let f be an n-ary function symbol (n < 0) and ?;,...,t, be terms. f(t1,...,t,;) is a term. This
term is called a compound term.

2. Atoms.

(a) If t1,...,t, are terms and p is an n-ary ordinary (reflective) predicate symbol, then p(t;,...,t,) is
an atom. This atom is called an ordinary (reflective) atom.

(b) A downed form is an atom.
3. Upped and downed forms.

(a) Ift is a term or an atom, then T ¢ is an upped form.

(b) If t is a term, then | t is a downed form.
[m]

We write TERM for the set of terms and ATOM for the set of atoms. Note that TERM and ATOM
are not disjoint due to downed forms. Following the conventional list notation, nil is denoted by [] and

cons(ty, cons(ta,. .., cons(ty,nil)...)) is denoted by [t1,22,. .. ,t5]. These terms are called list. If ¢ is a term
and [ is a list, term cons(t,1) is also a list and denoted by [t]l]. Furthermore, we adopt the following syntactic
sugar. For a term ¢t = f(¢1,...,ts) and an atom a = p(t1,...,tn), 't stands for [ f,/t1,..., t,] and ‘a stands

for 'p, t1,..., ta).
Quoted terms, upped terms and downed terms are newly introduced in R-Prolog*, which allow us to deal
with meta-level object legally in its own language. So we sometimes call them multi-level terms. A quoted term



represents a “term” before quoted as syntactic object. They are dealt with as ground terms because they are
data as they are. Contrasted with that, upped and downed terms have somewhat dynamic feature. Variables
in these terms can be binded to some terms by unifications when goals including them are executed, and after
that they are transformed to their name(quoted form). In other words, they are used as information carrier
from object (meta) level to meta (object) level.

Atoms of R-Prolog* are defined almost same as that of usual logic programs. The distinctive difference is
that downed terms can be used as atoms.

As stated above, terms without up and down symbol are considered as ones staying in the same level
everytime. This leads to the following definition. We call a term without up and down symbol an S-term.
Similarly, we call an atom without up and down symbol an S-atom. S-terms and S-atoms play important roles
in the procedural and declarative semantics of R-Prolog*.

Clauses of R-Prolog* can be classified into the following three ; ordinary clauses, reflective clauses and
reflective definition clauses. In the followings, we define these kinds of clauses and some special terms. the
following three definitions are mutually recursive ones.

Definition. 2.3 (Clauses and some special terms)

1. Clauses
(a) Let ag be an ordinary S-atom and ai,...,a, (n > 0) be ordinary or reflective atoms. Then,
Qg « @1,...,0Qs. i called reflective clause(RC) if a; is a reflective atom for some ¢ (1 < i < n),
ordinary clause (OC) otherwise.
(b) Let 7 be a reflective predicate and ay, ..., a, be ordinary (or reflective) atoms. Reflective definition
clause (RDC) for 7 is r(arg, envl, env2) « ay, ..., an. where arg, envl, env2 are S-terms satisfying

the following condition.

1. they are either a variable or a list structure.

ii. if envl (env2) is a two element list, its first element is a program term and its second element
is a substitution term.

r{arg,envl,env2) is called an RD-atom. Note that an RD-atom is not an atom.
2. Clause term, program term and substitution term

(a) For an ordinary, a reflective and a reflective definition clause a « ay, ..., ay,, its quoted form is a list
of quoted atoms, ['a,’ a1,..., a,]. This kind of terms are called clause terms

(b) If a term is a variable or a list of quoted forms of clauses, it is called a program term.

(¢) If a term is a variable or a list whose elements are lists of a quoted variable and a quoted term, it
is called a substitution term.

[m]

A Program P of R-Prolog* is a finite set of ordinary clauses, reflective clauses and reflective definition
clauses. A program form is a corresponding term to a program. A substitution is defined as a function o from
VAR to TERM whose domain (the subset of VAR whose elements are mapped to different elements by o)
is finite. A substitution form also corresponds to a substitution. For a program P and a substitution o, a
program term corresponding to P is denoted by P, a substitution term corresponding to o is denoted by &.
On the contrary, a program corresponding to a program term ¢ is denoted by 7, a substitution corresponding
to a substitution term s is denoted by 3.

A notion of a goal in R-Prolog* is defined as almost same as that of ordinary logic language. Let a;, ..., an
be ordinary or reflective atoms. A Goal clause of R-Prolog* is defined as follows, « ay, ..., a,. It is sometimes
written as < ai,...,a, > in a semantical context because we just expect them to be sequences of atoms. We
present some examples of R-Prolog* programs below.

In the actual representation of R-Prolog* programs, we declare each reflective predicate to be reflective
to distinguish it from ordinary predicates. In the followings, we employ a declarator “reflective” to specify
reflective predicate symbols. The example below is a definition of assert in R-Prolog*.

reflective assert/1
assert([X], [Pr, Sub],[Prl, Sub)) — insert_clause(X, Pr, Prl).

where insert_clause embeds X in a suitable place in Pr and return Prl.



2.2 Computation of R-Prolog*

In this subsection, we describe the operational semantics of R-Prolog*. Computations of R-Prolog* programs
are sequential, depth first search without backtracking.

We first have to define the unification in order to deal with multi-level terms, i. e. upped, downed and
quoted terms. The unification is based on p-equivalence relation =p on TERM U ATOM.

Definition. 2.4
We define a relation >3 on set TERM U ATOM as the smallest one satisfying following conditions.

1. If t and s are S-terms or S-atoms and t = s, then ¢ >pr s.
. If t and s are terms or atoms without variables and t >y s, then ¢ > /1 ¢.

. If t is a quoted term s for some s, then s >pr] t.

FE U

. Let f be an n-ary function symbol, and ti,...,t,,s1,...,5, be S-terms. If t; > s; for any i(1 < i < n),
then f(t1,...,tn) >um f(s1,..-,5n).

0

The symmetric transitive closure of >p is denoted by =pr. The relation >, defined above is clearly a
partial order relation and the relation =y is clearly an equivalence relation. In the followings, TERM/ =
is denoted by ETERM, ATOM/ =y is denoted by EATOM. Each equivalence classes in ETERM and
EATOM has the maximum element with respect to >3s, and we write p(t) the maximum element of the
equivalence class including t. In R-Prolog* computation, if two terms are equivalent in the above sense, they
are identified. The p-unification defined below unifies two terms under that constraint. Let ¢ and s be S-terms.
t and s are said to be p-unifiable if there exists a substitution o such that to =pr so. Furthermore let @ and b
be a pair of S-atoms or RD-atoms. a and b are said to be p-unifiable if they have the same predicate symbol
and each corresponding arguments are p-unifiable. We can also define a generality relation between p-unifiers
and can prove the existence of the most general p-unifier of two S-terms, S-atoms up to renaming. It is also
proved the most general y-unifier of terms, atoms or unifies them into an S-terms or S-atoms.

Next, we have to introduce an important partial function to give an operational semantics of reflective
operation. A partial mapping n: TERMUATOM — STERM USATOM maps well-formed terms and atoms
to the greatest element with respect to >pr in the equivalence class it belongs to. For example, (1 ¢) = ‘c,
n(l’ s) = s. 7 transforms terms and atoms to an S-term and S-atom respectively if it is defined.

We now describe states of R-Prolog* computation. Let PROG be the set of programs of L, Subst be the
set of substitution of L, and GOAL be the set of goals of L. The set of goal queue GQ is defined as the set
of finite sequence of goals. A goal queue is represented by list notation. Meta Continuation v of R-Prolog* is
defined as a finite sequence of elements of GQ x Var x Var. The set of meta continuations is denoted by MC.
A ‘meta continuation stacks the remaining goals in lower levels. Variables in a meta continuation are used as
conveyers of new environments.

Now, we define the computational state of R-Prolog* as follows. The set of computational states of R~
Prolog* is defined as follows.

STATE = GQ x MC x Prog x Subst.

a computational state consists of goal queue of current level, meta continuation which stacks remaining goals
in lower levels, current program, and current substitution (binding information). A computation of R-Prolog*
is represented as a sequence of computational states, which is defined as follows.

Definition. 2.5 R-computation beginning at the state s € State is a (finite or infinite) sequence of
elements of STATE, sg,s1,...,8;,..., satisfying the following conditions.
1. so =s,

2. Assume s; = (G;,Cj, P, 03)(i > 0).

(a) If G; is empty,
i. When C; is empty, there is no descendent s;(j > ).

ii. Otherwise, let C; = [crirst|Crest] and cpirsr = (G, V1, V2). There exists the next state s;;; =
(Git1,Cig1, Pig1,0i41), with the following form;

Giy1 =G, Cip1 = Crest, Pip1 =Vioi, 0i41 = Voo,



(b) IfG; = [< ay,...,an > |Girest](n > 0), then
i. The case the selected atom a;(1 < k < n) is an ordinary atom.
There is a fresh variant of OC or RC ¢l = b «— by,...,by, in Po where ayo; is p-unifiable
with the head b, and T be the most general p-unifier of a;o; and b. There exists the next state
si+1 = (Gi41,Cit1, Pit1,0441), with the following form;

Gi+1=[< bl)-'-abm >)<al:~~~1ak—1)ak+1v-"yan>'Gire31]
City1=Ci, Pjay=F, oip1=o0i-1

ii. The case that aj is a reflective atom r(¢1,...,1).
There is a fresh variant of RDC ¢l = b « by, ..., b, whose head b is unifiable with the RD-atom
d= r([’)(T t1o9), .., (1 tioi)), [Py, 63, [¥,2])
where Y and Z are variables not appearing before, and 7 is the most general unifier of b and d.
There exists the next state s;11 = (Git1,Cit1, Pig1,0i41), with the following form;

G,’+1 = [< by, .. bm >]
Ciy1 =[([<a1,...,8k-1,8k41, ..., 80 > |Girest), Y, Z)|Ci]
Py=Ph, oip=0-7
a

In the above definition, e fresh variant of a clause means a variant of the clause which does not include any
variables which appeared before.

The definition 2.5 describes the whole computation in R-Prolog*. The case (a) is for the current goal
quere is empty. In this case, if the meta-continuation is empty, the R-continuation terminates at that state.
Otherwise, there exist the remaining goals of lower levels and the next goal should be the goal at the top of the
meta-continuation. The next environment is represented by the variable in the top of the meta-continuation.
When the goal queue is not empty, an atom in the goals at the top should be selected. If the atom is
an ordinary one, the R-computation succeeds same as pure logic programming language. If the atom is a
reflective one, say r(t1,...,t,), all the arguments are upped and the function 7 is applied to them, RD-
atom r([n(1 t104), ..., 9(1 ti04)], [}3,-,0”,-], [Y, Z]) is constructed where [P,-,:f",-] is the current environment, and a
reflective definition clause is selected whose head is unifiable with this RD-atom.

The next definition defines an R-computation at the top level.

Definition. 2.6 R-computation of goal G in program P is defined as an R-computation beginning at the
state s = (G, [], P, €). [m]
If there is a finite R-computation sg, s1,...,5, of a goal G in a program P, it is called an R-refutation of

G in P (of length n). Furthermore, if s, = ([],{}, P/, o), P’ is called the final program of the R-refutation and
o is called the final substitution of the R-refutation. Assume there is an R-refutation of a goal G in a program
P. Let o be the final substitution of the R-refutation and FV(G) be the set of free variables in G. Restriction
of o to FV(G), o|rv(e), is called an answer substitution of G in P.

2.3 Examples of R-Prolog* programs
Up and down

In R-Prolog[8], up and down construction was closely related to freeze and melt proposed by Nakashima et al.
[6]. That is, up (down) transforms only terms to their name (the name of terms to terms themselves) in one
direction. In R-Prolog*, however, they are used in both direction. See the following simple example.

p(X) — q(1 X).
q('a).

q('d).

In this example, goal — p(‘a). succeeds, but «— p(a). fails. And «— p(X). returns the answer X = a or X = b.
Note that «— p(X) fails in R-Prolog with the same example.

However, reflective call do a kind of freeze operation. When a reflective goal is executed, its arguments are
freezed and transformed into their “names”. So, freeze operation can be redefined by means of reflection as

follows.
reflect freeze/2,melt/2

freeze([X,Y],[P,S],[P, S1]) — insert_binding(S,[Y,1 X],S1).
melt({X,Y],[P,S],[P, S1]) « insert_binding(S,[Y,| X],S1).

— 71—



Predicate var

The predicate var in Prolog is somewhat problematic in logical sense. Hill and Lloyd tried to give the logical
semantics in their many-sorted logic language which strictly distinguishs meta and object levels[3]. Their
language is similar to ours in the sense that a notion of quote (or name) is utilized in it. However, there are a
large amount of difference between them, such that their language does not have up and down construction,
it can deal with “negation” but ours cannot, and so on. Although the predicate checking whether a term is
a variable is difficult to define generally, they showed it is possible by means of “negation”. Because we do
not have “negation” in R-Prolog*, we cannot adopt the same manner. However, if we extend R-Prolog* by
allowing internal representation for quoted variables in a suitable style, we can define the predicate variable
to check if a terms is a variable.

Meta Programming

Meta-level reasoning is also realizable by means of reflective operations. Using meta-interpreter presented in
section 2.2, well known predicate demo [2] can be defined in R-Prolog* as follows; '

Reflective demo(Db, Gl).
demo([Db, Gl), Pr, Pr, Sub, Subl) «— solve(Gl, Db, Db1, Sub, Subl).

It has been shown that this kind of demo predicate makes many kind of applications realizable, such as database
management, knowledge representation, and so on [2, 1]. For example, with the following programs,

believe(Person, Knowledge) — haskb(Person, K B), demo(K B, Knowledge).
haskb(john, [lazy(paul), lazy(...),...,]).

the goal « believe(john, 1 lazy(X)). retreives the person who John believes to be lazy.

3 Declarative semantics

In this section, we present a declarative semantics of R-Prolog*. Because computational reflection is a procedu-
ral notion, we cannot adopt the usual declarative semantics given as logical consequence of programs. In order
to incorporate a procedural aspect of reflective computation, we define the extended notion of interpretations
and models.

3.1 R-interpretation and R-model

We first define the equivalence relation on the set of programs PROG. Let P and P’ be programs. A relation
=p on PROG is defined as follows.

P =p P' <= For each clause cl in P there exist a clause ¢!’ in P’ and substitutions o and
such that clo = cl’ and cl'T = ¢l, and vice versa.

=p is clearly an equivalence relation. We define EPROG as PROG/ =p. Two programs are equivalent in the
above sense if they are same up to renaming.

Now, we define the reflective variant of the notion of interpretation. The set of IO-pair IO is defined as
IO = EATOM x ENV x ENV, where ENV is defined as ENV = EPROG x SUBST. A subset of 10 is
called R-interpretation. It is easily shown that the set of all R-interpretation 2/€ is a complete lattice with
respect to set inclusion. In the following, elements of EPROG, ETERM and EATOM are denoted by P,
f and @ respectively, where P, t, a are their reprsentatives. However, equivalence classes will sometimes be
denoted by their representatives for simplicity in case that it is obvious from context.

Definition. 3.1 Let P € EPROG, cl = a «— ay,...,a,(n > 0) be OC, RC or RDC in P. I0-description
of ¢l in program P is defined as follows.

1. If ¢l is OC or RC, an I0-description of ¢l in P is

((b»ﬁ()}ao)r(aklyﬁl)61>r'~-7(aknxﬁnyaﬂ))

where

(a) ak,,.-.,ak, is a permuted sequence of ay,...,an.
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(b) b is an S-atom p-unifiable with a and op is an mgmu of a and b,
(¢) a1,...,0n are substitutions, such that oy = ooo) for some o} for each i (1 < i< n),
(d) By,...,P, € EPROG and P, = P.

2. If ¢l is RDC and a = r(t;,t2,t3) is RD-atom of ¢l where r is an n-ary reflective predicate, an I0-
description of ¢l in P is

((bx ﬁo,ﬂ'@),(dkl,ﬁhdl),”.,(akn,Pn,O‘n))

a) ag,,.-.,0ak, is a permuted sequence of ay,...,a,.

(
(b) b= r(s1,52,s3) is an RD-atom unifiable with a and oo is an mgmu of a and b.

(¢) o1,...,0n are substitutions, such that o; = o¢o] for some o} for each 7 (1 < < n)
(d) P,...,P, € EPROG and Py = P
(e) s1 = [u1,...,us], where n is the arity of » and uy,...,u, are S-terms,

(f) s2= [f’, ¢] for some substitution ¢ in which each free variable in ¢l does not appear,

(g) s3 = [X1,X,] where X; and X, are variables, X 0, is a program and X,0, is a substitution.
[}

Before defining a notion of model in R-Prolog*, we define a auxiliary function as a preparation of that. For
a program P and an R-interpretation I € 270, Wp(1) is defined as {P} if I = §. Otherwise, Wp(I) is defined
as the set of programs occuring in 1.

In the followings, we use the notation r[s] for r(ui,...,u,) if 7 is a predicate symbol and s = [uy, ..., us].

Definition. 3.2 Let P be a program and I be an R-interpretation. I is said to be an R-model of P if the
followings hold;

1. Pewp(l).
2. For any Q € Wp(I), Q € @, any OC or RC in Q, say ¢l = a — ay,...,a,, any [O-description of ¢l in Q,
((b)ﬁO)alO)) (akl)ﬁlxal)y .. .,(akn,}s,,,a,.))

and any substitution ¢ in which each free variable in cl does not appear, if for any i (0 < i < n—1),
(Qkiy1 04, [P, 803), [Piy1, 0ig1]) € I, if ax,,, is an ordinary atom, (n(up(ak.,,:)), [Pi, 40, [Piy1, 0is1]) €
I, if ag,,, is a reflective atom, then (b, [Po, 6], [Pn,d0s]) € I.

3. For any Q € Wp(I), Q € Q any RDC in Q, say ¢l = a «ay, ..., an, any 10-description of ¢l in Q,
({8, Po, 00), (ak,, P1,01), ., (akn, Pa, 0n))

where b = r(sy, 82, 53) and sp = [Q,q@], if for any i (0 < i < n—1), (a,,, 0%, [B;, ¢03), [P;11,¢U;+1]) el,if
ak,,, is an ordinary atom, (T](“P(ak.+."'i)), [15,-,¢0',~], [Pit1,00i41]) € I, if ag,., is a reflective atom, then
(1‘[81], [Q7 ¢]y [Xlo'n; Xzo'n]) €l

[m]

It is easily shown that, the intersection () J is also an R-model of P, where J = {I;} is a non-empty set
of R-models of program P, The intersection of all R-models of program P is denoted by M(P). M(P) is the
smallest R-model of program P.

3.2 Fixed point semantics and some results

In this subsection, we show the smallest R-model of P, M(P), is obtained as the least fixed point of a certain
continuous function on 2/ determined by P. Furthermore, the soundness and completeness results based on
given semantics are proved. We have shown these results for R-Prolog in a previous paper [8]. Because proofs
of those result in that paper are able to apply to theorems in the followings, we omit the proofs of the following
theorems.

We define the function Tp on 279 as follows. It is a reflective variant of the usual characterization function
of pure Prolog.



Definition. 3.3 Let P be a program. The function Tp : 279 — 270 s defined as follows. Let I € 2/©.
Tp(I) = Up(I) UVp(I)

where

Up(I) = Uéewp(l) UQeQ Ucler{a)’ [150’¢]1 [ﬁn,¢an])|((b,ﬁo,ao), (aku]sl’al): RN (akn’ﬁmoﬂ)) be an
10-description of el = a «ay,...,a, in Pp=Q, disa substitution in which~ each free variable
in ¢l does not appear, and for any i (0 < ¢ < n — 1),{ak,,,0:, [P, ¢0i], [Piy1, ¢0i41]) € 1, if
a,,, is an ordinary atom, (n(up(ax,,,0:)), B, ¢oi], [Py, d0ip1)) € 1, if ak,,, is a reflective
atom. } :

VP(I) = UQGWP(I) UQG@ UcleQR{<r[sl]’ [Q: ¢]v {Xl”ny XZUn])I((ey ﬁO; UO)y (akl ) ﬁl;“l)» ceey (ak,,: Isn»an))
be an [O-description of ¢l = a < a1,...,a, in Py = Q where b = 7(s1,...,s5), and s4 = é
and for any i (0 < ¢ < n—1),{ax,,, 0, [Pi, 0], [Pix1, ¢0i11]) € 1, if ax,,, is an ordinary atom,
{(n(up(ak,y,0:)),[Bi, ¢03], [Piy1,60i41]) € I, if ag,,, is a reflective atom. }

a
Theorem. 3.1 Function Tp : 2/ — 219 s continuous. =]

It is well known that a continuous function on a complete lattice has the least fixed point given as the lub
of w-chain beginning at the bottom. We now write {fp(Tp) for the least fixed point of Tp. Then, we can get
the following result.

Theorem. 3.2 Let P be a program.
M(P) =1fp(Tp)
]

This theorem shows that the smallest R-model of an R-Prolog* progam P is obtained as the least fixed
point of the continuous function Tp. This corresponds to the well-known result on pure logic language[4].

The following theorems show the soundness and completeness of R-refutation with respect to the declarative
semantics defined above.

Theorem. 3.3 (Soundness of R-computation)
Let P be a program and G =« a be a goal clause for an atom a. If G has R-refutation in P with the final
substitution o, and the final program P’

(a, P, P ¢,0) € 1fp(Tp).
]

This theorem shows that, for an atom a, if there exists an R-refutation of «— a in a program P with the final
program P’ and the final substitution &, the IO-pair of the initial environment (P, ¢) and the final environment
(P’,o) for a is in the minimal model of P.

The next theorem shows the converse of theorem3.3, i.e. completeness of R-refutation.

Theorem. 3.4 (Completeness of R-computation)
Let a be an S-atom, P, P’ be programs, o, ¢’ be substitutions. If

(aiﬁ,ﬁ’i oY UI) E pr(TP)

then there exists an R-refutation of goal « a. in P. a

4 Concurrency

In this section, we describe an idea how to incorporate concurrency in reflective logic language. Concurrency
brought several problems to logic language, such as one of syncronization. Following currently presented
concurrent logic languages, especially GHC[9], we adopt notions of guard, committed-choice and the suspension
rule of input guard. Thus, our language can be said to be a kind of reflective dialect of flat GHC. We call this
concurrent reflective logic language Rena. Althouth the sematics of Rena in detail will be presented in other
paper, we describe just a general framework of Rena in the followings.
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4.1 From R-Prolog* to Rena

In R-Prolog* computation, an atom in the goal clause is selected, candidate clauses are tested if they are unifi-
able with the selected atom sequentially, the first one satisfying the condition is selected and other possibilities
are discarded at that time. That is, R-Prolog* computation is executed sequentially without backtracking,
and it has a kind of commitment mechanism. In Rena, like GHC, atoms in the goal clauses are executed
concurrently, and the commitment mechanism is extended by input guard commitment rules.

Rena has an extra symbol commit (|) and the syntax of Rena is similar to GHC. Ordinary and reflective
clauses of Rena is defined as follows;

h *—gl)"'agmlbla-”ybn

where h is an ordinary atom called head, g1,...,9m(m > 0) and by,...,b.(n > 0) are atoms. The left hand
side of commit is called guard part and the right hand side of commit is called body part. Reflective definition
clauses are defined like in R-Prolog*. Furthermore, we give a restriction on atoms gi,...,gm in guard part.
Predicates in these atoms have to be non-productive predicates in the program, that is, executions of these
atoms do not produce any bindings. This restriction corresponds to a notion of “flat” in concurrent logic
language.

What should be explicitly dealt with as a computational states in concurrent language when reflective
computation occurs? The answer depends on how the semantics of GHC is given. While we do not describe
it here, we give an example. We can consider input and output stream as computational states in addition
to that of R-Prolog*. ENV = PROG x SUBST x INS x OUTS Examples of Rena reflective programs are
followings;

reflective read/1

read([X), [P, S, [A|IS),08], [P, S1,1S,08]) « linsert_binding(S, [X, 4], S1).

This defines input predicate read by means of reflection.

When we incorporate reflective computation in concurrent language, we have to consider scope of reflec-
tion. Scope of reflection means what amount of current computation should be influenced when reflective
computation occurs and states has been changed. In R-Prolog*, because computation is executed sequentially,
the whole current level computation pauses and meta-level computation is started when reflection occurs. In
concurrent language, however, the whole computation does not have to be influenced and it depends on what
components of states are changed by reflection. This brings us the critical problem of the scope of reflection.
One resolution for the problem is an introduction of a notion of process in Rena and managing the scope of
reflection by means of that. However, this is just an immature idea and a further investigation is required. We
are going to present it later in other opportunity.

5 Conclusion

We proposed reflective logic language R-Prolog*, formalized its semantics and proved soundness and complete-
ness of its operational semantics with respect to the declarative one. Based on these fundamental results, we
believe we can discuss the formal properties of behaviors of programs with reflective operations. Furthermore,
we introduced the idea of concurrent reflective logic language Rena. More detailed investigations on semantics
of Rena is required. Other important works to be occupied with are listed as follows.

In R-Prolog* programming, anything is allowed to be changeable by users in some sense. Although this
increases the language’s flexibility, it involves somewhat dangerous situation, e. g. a given program might be
a self-destroying one. We have to investigate in which case programs describe meaningful computation and in
which case it leads to inconsistency. In order to enable that, much finer arguments about R-Prolog* programs
is required. We are very interested in making behavioral characterization of some syntactic classes.

Rena is a new-born language and we must make more detailed investigation on its semantics. There are
lots of things to make clear to understand the reflection in concurrent language. We are also trying to make
more illustrative applications for reflective computation in sequential and concurrent logic language.

Acknowledgements
This research was carried out as a part of Fifth Generation Computer System project of Japan. 1 wish to

thank Susumu Kunifuji, Jiro Tanaka, Masaki Murakami, Youji Kohda and Munenori Maeda for their fruitful
discussions and helpful comments.

— 75—



References

[1] K. Bowen. Meta-level programming and knowledge representation. New Generation Computing, Vol. 3,
pp. 359-383, 1985.

[2] K. Bowen and R. Kowalski. Amalgamating language and metalanguage in logic programming. In S. Tarn-
lund, editor, Logic Programming, pp. 153-172. Academic Press, 1982.

[3] P. M. Hill and J. W. Lloyd. Analysis of meta-programs. In Proceedings of the Workshop on Meta-
Programming in Logic Programming (META 88), pp. 27-42, 1988.

[4] J. W. Lloyd. Foundations of Logic Programminyg, 2nd. edition. Springer, 1987.
[5] H. Nakashima, S. Tomura, and K. Ueda. What is a variable in prolog? In FGCS ’84, pp. 327-332, 1984.

[6] B.C.Smith. Reflection and semantics in lisp. In Proc. 11th ACM Symposium on Principles of Programming
Languages, pp. 23-35, 1984. ‘

[7] V. S. Subrahmanian. Foundations of metalogic programming. In Proceedings of the Workshop on Meta-
Programming in Logic Programming (META 88), pp. 53-66, 1988.

[8] H. Sugano. A formalization of reflection in logic programming. Technical Report No.98, ITAS-SIS, 1989.
[9] K. Ueda. Guarded Horn Clauses. Technical Report TR-103, ICOT, 1985.

[10] Richard W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence,
Vol. 13, pp. 133-170, 1980.

— 76—



