VT b2 THE

TarsIUrEE

(1989, 12.
DT 0T T LDT Ny JICET B KEGRHICDO T

Hih 8 AR B
NTT v 7 + v = T HISeE

HHoFEL

BRER—ACTIDH T a VI LF Ny FEBWT, FL—2Ff v by FL—2
FUDIGEICHEID 7 0 £ RICE e H B KIROGRMRIBAT 5, 71— 27 #4 v } Gl
BH— T 2 e ARMOFHOV OB E I, REHBRILT 2 BHOMSTEET BT A=Y X
LERT . o, FREHPE—T v AGEONOBOHE I, BHOHETEILT 2
TATLY XLBHFELRNE ERkRTo ¥l HOE, FMOBENRERD b L— 2S5
KOWT P —R%FS5TADY XL®RFT,

Global Condition in Debugging Distributed Programs

Yoshifumi Manabe Makoto Imase
NTT Software Laboratories

3-9-11 Midori-cho, Musashino-shi, Tokyo 180 J apan

ABSTRACT

This paper describes facilities for a distributed program debugger based on the in-
stant replay technique. Most distributed program debuggers restrict the predicate for
specifying the breakpoints and selective trace conditions to an expression for one pro-
cess. This paper introduces two kinds of distributed global predicates (Conjunctive and
Disjunctive Predicates) which are expressions related to plural processes. An algorithm
is shown which halts at the first global state in which a Conjunctive Predicate is satis-
fied. It is shown that it is impossible to halt at the first state, but possible to halt at
some state in which a Disjunctive Predicate is satisfied. An algorithm for a selective
tracing function is also shown when a Conjunctive or Disjunctive Predicate selection
condition is given.

1 Introduction

A distributed computing system is a collection of com-
municating and cooperating processes which work towards
a common goal. The software for these systems is a collec-
tion of programs, each of which corresponds to a process.
These programs operate in an integrated fashion to achieve
the common system goal.

Debugging distributed programs is considerably more
difficult than debugging a sequential program, because the
execution behavior in response to a fixed input may be in-
determinate, with the results depending on a particular res-
olution of race conditions existing among processes.

The indeterminism of the distributed system prevents
some distributed program debugging packages from recre-
ating the event sequences that precede errors {1 [8] [9] [15].
Some packages record a trace and offer the programmer dif-
ferent facilities for analyzing the trace information [1] [8].
Other packages provide a mechanisn for stopping execution
with an assertion violation {9] [15].

The disadvantage of these techniques is that all infor-
mation needed to diagnose the program ervors that might
arise must be collected during a single exccution. There is
no mechanism for gathering additional information about
an error after it is observed.

As another approach, some packages have a mechanism
that guarantees reproducible behavior of the distributed
programs and provides cyclic debugging techniques, in which
the programs are executed until an error manifests itself,
the programmer then postulates a set of underlying causes
for the error, trace statements or additional breakpoints are
inserted to gather more information about the causes of the
error, and the program is reexecuted [4] [5] [12] [14]. This
paper-also considers a debugger based on a cyclic debugging
technique.

To allow re-execution, BugNet [5] and Recap [14] record
all input values, such as the contents of messages received,
the values of shared memory locations referenced, the val-
ues of timers referenced, and all events that affect the state
of the process for each process. This approach is convenient
in the sense that each process can be reexecuted indepen-
dently. However, logging all events requires a large amount
of storage[14].

If the distributed programs do not contain nondetermin-
istic statements such as asynchronous interrupts or time
dependent statements such as reading a clock, the size of
the log can be reduced drastically. When each process is
supplied the same input values. which correspond to the
contents of messages received or the values in shared mem-
ory locations referenced. in the same order during successive
executions, it will produce the same output values in the
same order. Each of those output values may then serve
as an input value for some other process. Therefore. by

ensuring that each process sees the same input values at

every step of execution, successive executions will exhibit
the same behavior.

"Instant replay’[12] is based on this premise. In the mon-
itoring phase, the order of input events such as receiving
messages and referencing shared memories is recorded for
each process. In the replay phase, this mechanism ensures
that each process reads the inputs in the order recorded.

Cooper proposes recording of the order of receive mes-
sage events based on message passing. According to his re-
search, the effect of this recording on the message-receiving
mechanism is to slow it down by at most 2.5%([4]. Thus,
the recording mechanism can also be used as a constant
background monitoring of programs believed to be correct.
The record is used when an error is detected which was not
found in the debugging phase. For systems based on shared-
memory communication, LeBlanc and Mellor-Crummey pro-
pose an cffective algorithm for recording a partial order of
shared memory access events, and show the possibility of
constant monitoring[12]. Takahashi proposes an improved
algorithm and compares the efficiency and power of various
algorithms{16]. This paper discusses various facilities for a
debugger based on the instant replay technique.

Debuggers should provide the following dynamic tracing

functions|7].
e setting breakpoints and halting
e tracing
o single-step execution
e examination of state

The examination of state for a distributed debugger can
be easily implemented by a method similar to that used in
sequential program debuggers. The other functions require
further prudent consideration.

To set breakpoints, many sequential program debuggers
introduce logical predicates, which are written at the source-
code level to describe relationships among components of
the current program state (e.g., J < 10 and A(I) = M).
When the specified predicate becomes true, the execution is
stopped and the control is transferred to the programimer’s
terminal. Most distributed program debuggers restrict the
predicate to an expression for one process(4][12]. However,
distributed processes may cause many kinds of errors in
which the over-all system has an error but each individual
process has no error. To cope with such errors, global predi-
cates, that is, expressions related to plural processes, should
be introduced. Global predicates for non-replay debuggers
are discussed in {13]. However, there is no discussion of
global predicates for instant-replay debuggers. This paper
considers global predicates for specifying breakpoints and
proposes a halting algorithm for the breakpoints.

Some debuggers have a selective trace function, whicl

prints, during execution, the values of specific variables and

—98 —

the executed statement numbers, not at every step, but at
certain points of interest. This paper introduces a selective
trace function based on point selection according to global
predicates.

In Section 2, after presenting models for a distributed
syvstem, the instant-replay based debugger is explained. Sec-
tion 3 discusses halting by breakpoints and Section 4 covers
selective traces. Section 5 discusses single-step execution
and other facilities peculiar to the distributed debugger.
Section 6 presents conclusions and describes further stud-

108,

2 Model Definitions

2.1 Distributed System Model

[this paper, it is assumed that values exchanged be-
tween processes depend only on the initial values in each
process and the order in which processes communicate. That
is, the deterministic nature of processes is assumed. Stated
somewhat differently, there are no nondeterministic state-
ments such as asynchronous interrupts and no time depen-
dent statements such as reading a clock and timing out from
a semaphore in the program.

The distributed system execution model is the same as
that proposed by Lamport[10], which is based on message-
passing communication. A distributed system consists of a
finite set of processes and a finite set of channels. Channels
are assumed to have infinite buffers, to be error-free and to
be FIFO. The delay experienced by a message in a channel
is arbitrary but finite.

Each process consists of a sequence of distinct events.
Depending upon the application, the execution of a sub-
program on a computer could be one event, or the execu-
tion of a single machine instruction could be one event. We
are assuming that the events of a process form a sequence,
where « is before b in this sequence if a happens before b. In
other words, a single process is defined to be a set of events
with an a priori total ordering. This seems to be what is
generally meant by a process.

Sending a message and receiving a message are consid-
ered as events and are called a send event and a receive cvent,
respectively. We can then define the “happened before” re-
(In 10}, — is used

”

lation, denoted by “<”, as follows.

rather than <)

»

Definition 1 The relation “<” on the set of events of a
system is the minimum relation satisfying the following three
conditions: (1) If a and b are cvents in the same process,
(2) If a is the sending of

a message by one process and b is the rceeipt of the same
qe 0y

and @ comes before b, a < b.

message by another process, then a < b. (3) If a < b and
Two distinct events a and b are said to
OQb” if not a < b and not

b < ¢ then a < c.
be concurrent and denoted by “a

b<a.”

For two events a and b, a < b ifa <bora=5b.

The distributed program execution can be expressed by
a 2-tuple (E, R), where F is a set of events and R is a par-
tial order on E. For given programs and inputs, if two
executions have the same (E,R), they will produce the
same result and can be considered identical from the as-
sumption that the programs do not contain any nondeter-
ministic statements. A set of events E is partitioned into
E, By, ..., Ey, where E; is a set of events in process i. E;
has a total ordering.

In some distributed systems, processes communicate via
shared memory [12]. For such a system, writing values to
a shared memory location can be simulated by sending a
message and reading the values from that location can be
simulated by receiving the message. This paper refers only
to a message-passing based system for simplicity of discus--
sions, but the results are also applicable to systems com-
municating through shared memory. A

Next, global states of the distributed system are defined.

Definition 2 For (E, R), an N-tuple of events of processes
s = (ti,ta,. .. tn) (ti € Ei) is said to be a global state if
tiOt; for any distinct events t; and t;.

Let U be the set of all the global states for < E,R >.

The global state is intuitively considered as a set of concur-
rent events for some execution with < E, R >.
The “happened before” relation for global states is de-

fined as follows.

Definition 3 For the two global states s = (ty,tq,...,tn)
and s' = (3,15, ..., th),

s < s’ aft; < t! for every i(1 <7< N).

s<s'ifs<s' and t; <t for some j(1 < j < N).

2.2 Debugger Model

The instant-replay based debugger D considered here
consists of one global debugger GD and local debuggers LD;
corresponding to the processes (Fig. 1). Every pair of GD
and LD, has a communication channel. Process ¢ is con-
trolled by LD;, which is similar to a sequential program de-
bugger. LD; is controlled by GD. D executes the programs
twice. The first execution is called a monitoring phase and
the second is called a replay phase.

In the monitoring phase, each LD; stores the communi-
cation history of the process to its local storage indepen-
dently. The communication history is a sequence of items
corresponding to receive events. The item is a process num-
ber or a Null symbol. When the process receives a message
from process j in the a-th receive event, the a-th itemn of
history is j . Null means that no message was received in
this receive event.

In the replay phase, message receiving is controlled by

LD; such that the order of message arrival at the process is

[Processll IProcess2J [ProcessN1
A A A A 3
messages
between
Y | processes \ y
|
S e N R I
A
Y
GD
D
Y
user
Fig.l The Instant-Replay Based Debugger

the same as in the original execution. From the determin-
istic nature of the processes, the execution behavior of this
replay is the same as that of the original execution.

LD; controls process i, in the replay phase, with the fol-

lowing operations:

Definition 4 LD; can do the following operations to process
i in the replay phase.

1. see the type of event to be ezecuted neat, where the type

is “receive event”, “send event” or “normal event”,

2. buffer the messages sent to ¢ and to see the messages

sent from 1,

3. execute the next event and halt the process (if the exe-
cuted event is a receive event, also specify which mes-

sage should be read), and

4. ezamine the current state of the process.

These facilities are generally installed in sequential debug-
gers. Appendiz A shows the functions that are installed in
LD;. They would be used in the algorithms proposed here.

3 Halting by breakpoints

This section discusses how to set breakpoints and halt
the system. First, predicates are defined to specify break-
. points.

3.1 Global Predicate

Simple predicates[13] are typically used in sequential pro-
gram debuggers. They can be expressed in terms of the
boolean values of variables in the program and the instruc-
tion address variables. The simple predicate is instanta-
neous in the meaning that its validity does not depend on
the execution history but on the state at a instant. The

restriction is that a simple predicate is based on the state

Process

2 3
SPo

e2 ¢ false
0 o3
0

b true 37
€5 | Time

message passing between processes

—_—

Fig.2 3-process distributed system

local to a single process. Let the simple predicate for pro-
cess i be SP;. The value of SP; right after the execution of
event e is denoted by SPi(e)-

Two kinds of global predicates are introduced. One is
called a Disjunctive Predicate (DP), which consists of single
predicates joined by disjunctive operators “U”. The otheris
a Conjunctive Predicate (CP) consisting of single predicates
and Conjunctive operators “[)”. Note that global predicates
are functions mapping from U to {true, false}. The pred-
icate should be supposed to be given after the monitoring
phase.

When a global predicate P is given to specify a break-
point as the command, “stop if P”, there are many global
states satisfying P. Let G(P) be {s € U|P(s) = true}. At
which global state in G(P) should the debugger halt the
system?

Many distributed program debuggers do not seem to at-
tend to this problem. The sequential program debugger
halts the process at the first state in which the simple pred-
icate is satisfied. According to this strategy, the processes
should be stopped as soon as possible after P becomes true.
For example, consider a 3-process distributed system with
P given as SPi(NSP,. This predicate has no conditions
concerning process 3. Thus, in the case that execution is
as shown in Fig. 2, there are two different global states
(el,el,¢ed), (e}, €3, €e3) which satisfy P. The cause for P be-
coming true is contained not only in process 1 or 2, but
also in process 3. The message from 3 might cause P to be
true. If process 3 proceeds beyond the sending event, its
contribution to the cause might be destroyed and the real
reason for the error might be hidden. Therefore, it would be
best to stop the processes at the first global state in G(P).
The first global state satisfying the predicate is defined by
Inf(P) as shown below.

Inf(P) = {s|s € G(P) and ¢ ¢ G(P)forany s'e U

—100—

such that & < s},
where P is a global predicate. Note that Inf(P) may in-
clude plural global states.

For non-replay based debuggers such as described in [9]
or [15], it is not possible to stop the processes at some s €
In f(P) even when P is a simple predicate. Miller and Choi
propose an algorithm which stops them at some s € G(P)
when P is a DP and shows that it is impossible to stop
them when P is a CP [13]. Section 3.2 and 3.3 show that it
is possible to stop the processes at s € Inf(P) when P is
a CP and at s € G(P) when P is a DP.

3.2 Halting for CP

This section proposes an algorithm which stops the pro-
cesses at Inf(P) when P is a CP.

For each process, we introduce two states, “active” and
“passive”. If the process is being executed, it is called ac-
tive. A passive process does not become active by itself, but
only when another active process activates it. System halt-
ing means that all processes are passive and never become
active.

Initially, processes with a simple predicate are active
and the others are passive. An active process with a sim-
ple predicate becomes passive when the predicate becomes
true. Suppose an active process tries to read a message M.
The message M may not have arrived, because its sender
S is passive or the execution of S is delayed. At that time
the receiver R sends a control message to ask S to send
M. Then S becomes active and executes the program to
send M. After sending M, S returns to a passive state. In
other words, a process is active when its predicate is false
or it must send a message. The part that checks the process
status and manages program execution is called a local con-
troller, denoted by Lc;. L¢; is installed in LD;. The detailed
LC; algorithm is shown in Appendix B.

In a control message, it is necessary to specify which mes-
sage R needs in order to proceed. Thus the control message
contains, as an identity, the message number, which is a se-
quence number of the messages going through the channel
from S to R. LC; counts the number of messages sent to or
received from every channel. Note that it is unnecessary to
send the message number attached to the message.

We should be able to detect when every process is pas-
sive and does not become active. This is one variation of
the distributed termination detection problem proposed by
Dijkstra and Scholtem{6] and many algorithms have been
proposed for different assumptions regarding the system.
The part that detects the termination is called a termina-
tion detector. LC; reports the status to the termination
detector when the status changes. To simplify termination
detection, control messages go through the termination de-
tector, which can be implemented in either a distributed

fashion or a centralized fashion. The distributed algorithm

shown in [3] can be used for this termination detector.

Proof of the correctness of this algorithm is beyond the
scope of this paper. It is shown only that the above algo-
rithm stops the processes at some s € inf(P). For prepa-
ration, a definition and two lemmas are presented.

Definition 5 For two events e and €' in one process, let
min(e, €') be the event which was not happened after. For
two global states s = ey, e3,...,en) and s’ = (€}, e}, ..., e)
min(s,s’) is defined as

min(s,s’) = (min(ey, €}), min(ez, €}), ..., min(ex, ely)).
Lemma 1 Ifs,s' € U, min(s,s') € U.

Proof Assume that min(s,s') = (ef, ¢y, ..., e%) ¢ U.
There is a pair of 7 and j such that e < ¢ from the def-
inition of U. Since e = min(e;,¢}), ef = ¢; or € = el
Without loss of generality, it can be assumed that €] = e;.
Then

’)
e = ¢ < e = min(ej,€}) < g,

which contradicts s € U. n

Lemma 2 If P isacP |Inf(P)| <1

Proof Let the predicate P be SP,, N SPi,N... SP,.

Assume two global states s and s’ € Inf(P)(s # §).
If s < &, then s’ ¢ Inf(P), which implies s ¢ s’. Thus
min(s,s’) < s.
P(min(s,s")) = SP; (min(ti,, t},)) N S Py (min(ty,, 1))
N...SP,(min(t;,,t,)) = true.
min(s,s') € U from the above lemma.

Thus min(s,s') € G(P). The fact that min(s,s') < s
and min(s, s’) € G(P) contradicts s € Inf(P). u

Let inf = (t1,5,...,1,) be the global state in Inf(P).
To show that the system halts at inf, the following prop-

erties must be demonstrated.

¢ The processes do not terminate at any s € U such that
s <inf.

® Process i does not go over ;.

It is clear that the system halts at some s € U. Every
SP;is true at s. Thus s is contained in G{P). If s < inf,
the definition of In f(P) is contradicted.

Next we show the latter proposition. Process i executes
the next event if and only if one of the following conditions
is satisfied.

¢ 2 has an SP; and SP; = false

e i received a control message requesting a message and
has not yet sent the message.

Suppose that the system halts at s such that some pro-
cess ¢ goes over ;. Let s’ be a global state during the replay

such that s’ = (s1,52,...,sn) < inf, and for some process

—101—

i which goes over t; in s, s; = t; in s. Let Sins be the set
of processes which satisfy s; = ;. No process in Siny exe-
cutes the next event by the first of above conditions becanse
s; = t;. Thus, they do not execute the next events unless
some process j & Sins sends a control message to a process
k € Sins to ask for a message which has not been sent at ¢.
Let the send and receive events of the requested message
be s; and rj. Since tx < sp .75 St and sg < 1, t < 4.
This contradicts inf € U.

Therefore, no process moves beyvond ;. n

3.3 Halting for DP

When the given predicate is a DP, it is impossible for D
to stop the processes at s € Inf(P) as shown below.

‘Theorem 1 There is no debugger D which stops the pro-
cesses at s € Inf(P) when P is a DP.

Proof

number of processes n is 2, and P = SP,USP,. Processes

Let us consider the following example. The

1 and 2 do not satisfy SP; and SF;, respectively, in the ini-
tial state. Processes 1 and 2 never communicate with each
other. From the initial state, assume that D lets process
1 move one step. In this case, it may occur that process
1 never satisfies SP; and process 2 satisfies SP; after ex-
ecuting some events. Thus, D cannot stop at Inf(P). A
similar situation may occur if D lets process 2 move one

step. Therefore, the proposition is valid. n

If we want to stop the processes at some s € G(P), we
can obtain a simple algorithm by modifying the termination
algorithm for cP. In this case, the termination detector is
not used. In addition to the active and passive states, a
halt state is introduced. The “passive” or “halt” processes
do not try to execute the program. Initially the processes
with a simple predicate are active and the others are pas-

sive. The state transition rule is:

o The “active” process with a simple predicate becomes
“halt” and the halt message is broadcasted to the oth-
ers when the predicate becomes true.

e The “passive” process without a predicate becomes
“active” when it is asked to send the message M and
it has not yet sent A, and returns to “passive” when

it sends M.

Every process becomes “halt™ when it receives the halt
p !
message, and becomes neither “active” nor “passive”

even when it receives a message.

4 Selective Tracing

Many sequential debuggers have the following selective
tracing facility.

trace [condition] print [expression]

This command means that the debugger displays the
value of [expression] whenever [condition] is satisfied. The
expression consists of some variables, the program counter,
and arithmetic and logical operators. In the distributed de-
bugger, selective tracing is considered to be display of the
value of the global expression when the global condition is
satisfied. The global condition is given by the global pred-
icate, and the global expression consists of plural process
variables and program counters.

When the predicate P is a CP, the selective tracing can
be implemented by Algorithm 1. When the processes halt
at Inf(P), the debugger calculates the expression value at
the global state aud prints it out. When the printing is
finished. the debugger returns the process states to the ini-
tial value, “active” or “passive”, and executes the programs
again (under the control of Algorithm 1).

When P is a DP, it is impossible to halt at Inf(P) as
shown in Section 3.3. However, to print out the expression
value it is necessary only to save the values of the variables
used in the expression and calculate the expression value
when Inf(P) is detected afterwards. The saved values be-
come useless after the calculation is finished and can be
discarded. The tracing algorithm is outlined, focusing on
the data saving and discarding mechanisms.

The tracing algorithm in LD; is implemented as follows.
Let P be SP, USP,U...USP;,. Let ¢ be the state of
process j; at some instant during execution. The first global
state for e, is defined as Infle;} = {s = (s1,52,...,5n5) €
Uls;,, = ejand s}, < ¢; forany s’ = (s},8...,8n) <
sand s € U}. LD, prepares k virtual program counters
PCi(j1), 1=1,2,....k, which correspond to SF,.

All the LD;’s cooperate to maintain PCi(j;) such that
Infle;] = (PCi(7), PC2(31)s - - -, PCn(jr))- LD: such that
process i has a variable in the expression maintains the vari-
able value at PC;i(j;) for each j;. When SP;, becomes true,
LD;, collects the variable values at PC;(j;) and calculates
the expression.

If P has only one simple predicate SFP;, LD; maintains
PCy(5;) in a way similar to Algorithm 1. To maintain k
virtual program counters, k programs for Algorithm 1 are
executed simultaneously. During the execution, the send
and receive event sequence is recorded.

The control message contains the predicate number j.
When process S receives a control message with predicate
number j; from process R, S moves PCs(ji) to the next
send event to process R according to the send and receive
event sequence.

In Algorithm 1, the process sends the program message
to R in response to the control message from R. Here,
instead of the program message, process S sends a pseudo
message which consists of the predicate number [; and the
message number.

The variable values at events which all PC have passed

—102 —

are not used any more and are discarded.
During the tracing, the total number of control messages
and pseudo messages is 2k times of the number of program

messages.

5 Other Commands

5.1 Single step execution

Single step execution for sequential program debugger
means that the debugger executes the next step of the pro-
gram and stops. For distributed program debuggers, single
step execution has two different concepts. Either concept

might be used, according to the purpose.
e next step for any process.

o next step for the specified process the user is interested

m.

The latter execution is not always single step for the en-
tire system. If the next event of the process is a receive
cvent and the sender has not sent the message, many steps
might have to be executed. This single step execution can
be achieved by applying the control message sending mech-

anism in Algorithm 1.

5.2 Reverse execution

Some distributed debuggers are capable of reverse exe-
cution [5] [14]. Tu the cyclic debugging technique, after a
bug is detected and the system is stopped by a breakpoint,
the user must look for the bug, which is sometimes located
To find it, the
user generally has to reexecute the replay from the begin-

in some process before the halted state.

ning. However, the replay re-execution might take a long
time, because distributed programs run for a long time. Re-
verse execution logically goes back to see an earlier state of
the execution. Reverse execution is implemented by check-
pointing global states periodically([5][14]. The reverse exe-
cution for this distributed debugger can be implemented in

the same manner.

6 Conclusion

This paper introduced global conditions for some com-
mands of distributed program debuggers. Conjunctive and
disjunctive predicates were considered. General global pred-
icates, that is, any predicate consisting of simple predicates,
disjunctive operators, and conjunctive operators, can be
considered as global conditions. Halting at In f(P) when
P is a general global predicate was shown to be impossible.
Suppose the program is executed twice in the replay phase.
During the first replay, a history of each simple predicate
value is recorded. After the first replay, Inf(P) can be cal-

culated from the history. Then during the second replay,

each process can stop at Inf(P). However, it is NP-hard
to calculate Inf(P), because the satisfiability problem is
NP-complete.

More generally, the condition might need to be global
such as V| = V3, where V; is a variable in process ¢. This
type of condition seems to be no easier to deal with than a
general global predicate, because if these variables have a
finite domain {a1,as,...,a,}, the condition can be written
as UL (Vi = aiNVe = @),

For further study, other global conditions which con-
sider the time relationship between events, such as linked
predicate[13], must also be considered.

The authors would like to thank
Masaru Takesue for their guidance and encouragement.
They also wish to thank Dr. Naohisa Takahashi for his

useful discussions.

Acknowledgements.

Reference

(1] P. Bates: “Debugging Heterogeneous Distributed Sys-
tems Using Event-Based Models of Behaviors”, Proc.
of the ACM Worksliop on Parallel and Distributed De-
bugging, pp. 11-122 (May 1988).

=

K. M. Chandy and L. Lamport: “Distributed Snap-
shots: Determining Global States of Distributed Sys-
tems,” ACM Trans. on Computer Systems, vol. 3, no. 1,
pp. 63-75 (February 1985).

(3] S. Cohen and D. Lehmann: “Dynamic Systems and
Their Distributed Termination”, Proc. of 2nd ACM
Symp. on Distributed Computing, pp. 29-33 (1982).

[4] R. Cooper: “Pilgrim: A Debugger for Distributed Sys-
tems”, Proc. of 7th Int. Conf. on Distributed Comput-
ing Systems, pp. 458-465 (Sep. 1987).

[5] R. Curtis and L. Wittie: “BugNet: A Debugging Sys-
tem for Parallel Programming Environments,” Proc.
of 3rd Conf. on Distributed Computing Systems pp.
394-399 (Aug. 1982).

[6] E. W. Dijkstra and C. S. Scholten: “Termination De-
tection for Diffusing Computations,” Inform. Process.
Lett., vol. 11, no. 1, pp. 1-4 (1980).

[7] R. E. Fairley: “Software Engineering Concepts”,
McGraw-Hill, pp. 288-289.

[8] H. Garcia-Molina F. Germaro Jr. and W. H. Kohlar:
“Debugging a Distributed Computing System”, IEEE
Trans. Software Engineering, vol. SE-10, no. 2, pp.
210-219 (Mar. 1984).

[9] P. K. Hartre Jr., D. M. Heimbiigner and R. King:
“IDD: An Interactive Distributed Debugger”, Proc. of
5th Int. Conf. on Distributed Computing Systems,
pp. 498-506 (May 1985).

—103—

[10] L. Lamport: “Time, Clocks, and the Ordering of Events
in a Distributed System,” Communications of the ACM,
vol. 21, no. 7, pp. 558-565 (July 1978).

[11] B. Lazzerini and L. Lopriore: “Abstraction Mecha-
nisms for Event Control in Program Debugging,” IEEE
Trans. on Software Engineering, vol. SE-15, no. 7, pp.
890-901 (July 1989).

[12] T. J. LeBlanc and J. M. Mellor-Crummey: “Debugging
Parallel Programs with Instant Replay,” IEEE Trans.
on Comput., vol. C-36, no. 4, pp. 471-480 (April 1987).

[13] B. P. Miller and J.-D. Choi: “Breakpoints and Halt-
ing in Distributed Programs,” 8th Int. Conf. on Dis-
tributed Computing Systems, pp. 316-323 (June 1988).

[14] D. Z. Pan and M. A. Linton: “Supporting Reverse

" Execution of Parallel Programs”, Proc. of the ACM
Workshop on Parallel and Distributed Debugging, pp.
124-129 (May 1988).

[15] M. Spezialetti and J. P. Kearns: “A General Approach
to Recognizing Event Occurrences in Distributed Com-
putations”, 8th Int. Conf. on Distributed Computing
Systems, pp. 300-307 (June 1988).

[16] N. Takahashi: “Partial Replay of Parallel Programs
‘Based on Shared Objects”, IEICE Techinical Report
COMP389 (Dec. 1989) (In Japanese).

A Common Functions in LD;

/* Some data types and procedures installed in LD; */
const

I = ..., /* this process number */
N = ..., /* the number of processes */
PredicateEzist = ...,

/* true if a simple predicate exists for this process */
Null =0,
Infinity = ..., [* 00 */
Forever =false;
type
boolean = {true, false};
simple_predicate = ...;
process =0 .. N;
status = {passive, active};
message_no = 0 .. Infinity /* the message number */
event _type = { send, receive, others };
message = record /* messages between the processes */
sender : process; receiver : process; data: ... end;
function NextEvent : event_type;
begin /* Return the type of the next event */ end;
procedure LastEvent(var e : event_type, var p : process);
begin /* Return the event type last executed. If e = send,
p is receiver’s process number. If others, p = Null. */ end;
procedure EzecuteNext Event(rm : message);
begin /* Execute next event. If it is a receive event,
execute with the message. */ end;
function JudgePredicate(SP : simple_predicate) : boolean;
begin /* Return the predicate validity*/ end;

function ReadProgramMessage : message;
begin /* read a message */ end;
procedure InsertQueue(m : message)
begin /* store the message into queue */ end ;
function ReadQueue(i: process) : message ;
begin /* return the first received message from ¢ if one exists.
If no message exists, message = Null */ end;
function ReadHistory : process;
begin /* return the next item of communication history
and increment the pointer where the item shows the sender*/
end

B Algorithm for Lc,

program HaltAtBreakpoint
/* This is the program for L¢; to halt the system for a P */
type
external event_type = { MessageArrival, ControlMessage-
Arrival, ExecFinish, TeminationDetected };)
/* ExecFinish means one event execution has finished.*/
control_message = record
/* request to send the message */
dest : process; soc: process; mno : message-no end
procedure wait(var event : external_event_type);
begin /* Wail for an external event to happen */ end;
procedure SendControlMessage(req : control_message);
begin /* send a control message */ end;
functionReadControl Message : control_message;
begin /* receive a control message */ end;
procedure SendStatus(stat : status);
begin /* send the status to the termination
detector*/ end;
function TerminationTest
(sent,mustsend : array [process] of message-no,
SP : simple_predicate) : status;
begin /* return “active” if SP is false or
sent[i] < mustsend[i] for some process i*/ end

procedure MAIN;
var
sent, /* the number of messages sent to 7. */
received, /* the number of mesages received from i.*/
mustsend: [* i requested that the message be sent */
/* I is active if sent{i] < mustsend[i] */
array [process] of message.no;
waitp : process;

/* waiting for the message from waitp*/
bstat,cstat : status; /* previous and current status */
extevent : external_event type;

SP : simple.predicate;
e : event.type ;
m : message; cm : conlrol_message; i : process
begin

for i :=1to N do begin

sent(i) := 0; received(i) := 0; mustsend(¢) := 0 end;
waitp := Null ;
cstat := TerminationTest(sent, mustsend, SP);
if cstat =active

then TrytoExecuteN ext(recieved, waitp);
repeat

wait(extevent);

case eztevent of

—104—

ControlMessage Arrival:
begin
cm:=ReadControl Message;
mustsend{cm.soc] := em.mno;
bstat := estat;
cstat := TerminationTest(sent, mustsend, SP);
SendStatus(cstat);
if bstat =passive and cstat =active
then T'rytoEzecuteNezi(recieved, waitp)
end;
ExecFinish:
begin
LastEvent(e,);
if ¢ = send then sent(i) := sent(i) + 1;
if e = receive then received(i) := received(s) + 1;
cstat := TerminationTest(sent, mustsend, SP);
if cstat =passive then SendStatus(cstat) ;
if cstat =active
then TrytoEzecuteNext(recieved, waitp)
end;
MessageArrival:
begin
m = ReadProgramMessage;
if waitp = m.sender then
begin
waitp := Null;
ExecuteNextEvent(m)
end
else InsertQueue(m);
end;

;
TeminationDetected: /*halt the system*/;

end

unitl Forever

end

function TrytoExecuteNeat

var s,7,: process; m : message; cm : control-message
begin
if Neat Event =send or NextEvent =others

then EzecuteNextEvent(Null);

if Next Event =receive then

begin

s = ReadHistory;
if s = Null then EzecuteNext Event(Null);
if s # Null then
begin
m = ReadQueue(s);
if m # Null thenEzecuteNext Event(m) else
begin
cm.soc = s; em.dest = I
cm.mno = recieved(s) + 1;
SendControlMessage(cm); waitp:=s
end
end

end

end

(received : array[processlofmessage_no, var waitp : process);

~—105—

