V7 by TEMSR O3
TarsIUrEE 2
(1989. 12. 8)

3—5
3—5

MFU=A 7 = & IFEEEEE
C o n c u r r e n t C O B (=Z F 17y >
151 &+ 4L FE 2= ZF| L) A Z L0 FP

mn o8
BAT7A Y- ZTLKRASH HEREBRHEHR
102 RRBTFREARX=FE5-19

HHEL WA AT 22 FEREEConcurrent COBIZH I35 BIAAMIT X 2y
ABPEBEODVTHERTWS, FABBRSI-IX -V a3V EFIIECETT VLS,
ZOEFILTRANNEE FALEBULTOSSLA0MEM IO - 3ELET B,
£72, BVRABPMBE YV TV aVEFLEETOTOS, B YA LM R,
BNVAAXZ 7075 L% 70— (3#ESNE ZOEETE FTY
2 POWMEEFE>TTF 74V FOBIAREBNYFSERARTE-ENTE B,
SHIZ, FRTHLCRYMBEIBRIREE AHAOEBLE—WEERS — 1T
g 5.

Exception and Interrupt Handling
in Concurrent COB

Kaoru Hosokawa
IBM Research, Tokyo Research Laboratory
5-19, Sanbancho, Chiyoda—ku
Tokyo 102, Japan

Abstract The design of exception and interrupt handling. for a con-
current object oriented programming language, called Concurrent
COB, is described. Exception handling is based on a termination
model. In this model, after the exception is handled, the program that
caught the exception terminates. Interrupt handling is based on a re-
sumption model. Here, the interrupted program resumes execution.
This language allows the specification of default handlers using inheri-
tance.The propagation of exceptions are dealt with uniformly for se-
quential function calls and for synchronous communications between
concurrent objects.



Introduction

A program written in a programming
language without exception handling
facilities must use gotos and flags.
Although it is possible to use gotos in
a structured manner, because gotos
are too general, there is a tendency
for programs with gotos to become
difficult to understand. Thus to im-
prove the readabilty of COB pro-
grams, the additon of exception
handling support is considered.

Concurrent COB (C with OBjects)
[Hosokawa and Kamimura (89)] is
a concurrent object oriented pro-
gramming language. One of the re-
quirements of Concurrent COB
(CCOB) is for programmers to able
to write systems software. Hardware
interrupt handling is often required
when writing systems software, es-
pecially when writing device drivers.
To help the programmers in this re-

spect, interrupt handliing is being
considered as an inclusion to
CCOB.

Exception handling for COB has al-
ready been designed [Yokouchi
(89)]. Since exceptions and inter-
rupts have some commonality, for
example, both require a handler to
handle the exception or interrupt, an
attempt is made to incorporate inter-
rupt handling into the design of COB
exception handling. The design is
also extended further to cope with

concurrent programs dealing with
exceptions and interrupts.

Concurrent COB

CCOB is an extension of COB with
concurrency constructs. A process
is introduced as a special class; its
instance is a concurrent object that
executes in parallel to the creator of
the object. Synchronous communi-
cation is provided as a means of
communication. Here is a buffer
consumer system written in CCOB.

process decl consumer {
void init(void);
void put(int);

}s

process decl producer {
void init(void);

}s

consumer cons;

producer prod;

process impl consumer {
int i
implementation:
void init(void) {
for (;;) {
accept put(int);
printf ("%d\n", 1);
}
}
void put(int x) {
i=x;
}
}s
process impl producer ({
implementation:
void init(void) {
int i = 0;
for (;;) {
cons—>put (i++) ;

— 38—



b

void main(void) {
cons = new();
prod = new();

}

The accept statement signifies that
the object is ready to engaged in a
synchronous communication of the
specified function. When both the re-
quester and accepter of function are
ready, then synchronous communi-
cation occurs. Until then the objects
are in a waiting state. During syn-
chronous communication, the ac-
cepted function is executed. When
the execution of the accepted func-
tion completes, the synchronous
communication terminates. The ob-
jects are in a synchronous commu-
nication state when they are en-
gaged in a synchronous communica-
tion. Another state that a concurrent
object can be in is called the
autonomous state. In this state, a
concurrent object is executing in
parallel relative to other objects —
this is when it is not in neither waiting
nor synchronous communication
state.

COB Exception Handling

The following features characterizes
COB exception handiing.

* The termination model of excep-
tion handliing is adopted. This

means that when an exception is
raised during the execution of a
statement and upon completion
of the exception handler, the
statement terminates and does
not resume execution.

e Exception handlers can be at-
tached to statements using the
try statement.

Try Statement

Exception handlers are attached to
statements using the try statement.
Here is an example,

try {
y = 0;
X =X /Yy;

}
with {
zero_divide() =>
fprintf (stderr,

"zero divide\n");
floating point() =>
fprintf(...);

};

The statement between try and
with is called a monitored state-
ment. The exception handlers for
the monitored statement are defined
after the with. In this example,
zero_divide and floating point
are names of exceptions and state-
ments after the => are their respec-
tive handlers.

When an exception statement is
raised, the following actions are
taken.



1. The execution of the monitored
statement terminates.

2. The with portion is searched for
a matching exception name and
when found the handler is exe-
cuted.

3. Upon completion of the handler,
the execution of the try state-
ment completes.

In this example, a zero_divide ex-
ception is raised from x = x / y;
and results in output of ‘zero di-
vide''.

When a handler is not found, the ex-
ception is propagated to its sur-
rounding try statement.

Propagation of Exceptions

When the propagation of an excep-
tion reaches the outer most try
statement and stil no handler is
found, the propagation of that excep-
tion continues to the caller of that
function. This allows the caller of the
function to handle exceptions. For
example,
class decl calculator {
int divide(int, int)
raises zero_divide
(void);

};

class impl calculator {
implementation:
int div(int x, int y)
raises zero_divide
(void) {

— 40—

return x / y;

}s

calculator calc = new();
y = 0;
try

calc->divide(x, ¥);
with {

zero_divide() =>
fprintf (stderr,
"Oops!\n");
}s
In this example, a zero_divide €x-
ception is raised within the divide
function. Since no handler exists, the
exception is propagated to the caller
of the function. The call to divide is
a monitored statement with the ap-
propriate handler and so the handler
is executed with the output of
““‘oops!”.

COB Interrupt Handling

When a hardware interrupt occurs,
the usual action taken is to suspend
the current execution of the pro-
gram, execute the interrupt handler
and upon completion of the handler,
resume the execution of the inter-
rupted program. The original COB
exception handling mechanism is
based on a termination model, how-
ever the hardware interrupt handling
mechanism requires a resumption
model. The resumption model is a
model where upon completion of the
handler, the interrupted program is



resumed instead of terminated. Fig-
ure 1. shows the different models.

One way to approach the problem is
to combine the two models of ex-
ceptions into one by allowing the
handler to specify whether termina-
tion or resumption of the interrupted
program is required [Goodenough
(75)]. However, in this model, it is
possible to write exception and inter-
rupt handlers with a mixture of termi-
nation and resumption controls. One
can imagine the difficulties in under-
standing such handlers when analys-
ing propagation of exceptions for ex-
ample. Thus the current design
deals with exception handling and in-
terrupt handling separately.

Interrupt Handling

Interrupt handlers are attached to
objects. The reasoning for this is
that, the point at which an interrupt
can occur is not clearly defined as
in exceptions and thus the need to
attached interrupt handlers to state-
ments is not great. For example, the
occurrence of a zero divide excep-
tions can be narrowed to a divide
statement, but a keyboard interrupt
occurrence spans the whole pro-
gram.

The original COB exception handling
design does not allow one object to
raise an exception of another object.
Considering hardware interrupts, it is
usually the case where one object

)

Exception

Termination Model

Figure 1. Termination and Resumption Models

Interrupt

Resumption Model




raises an interrupt of another object,
for example, a keyboard object may
raise an interrupt of a terminal ob-
ject, signifying that a key is de-
pressed on the keyboard, and that
the terminal object should retrieve
that key value. Thus a way of raising
exception/interrupt of other objects
is added.

The raising of an exception/interrupt
is considered as a special function
call. Thus the form of declaration
and definition is similar to that of a
function of an object. It is possible to
declare public and private excep-
tions/interrupts and exceptions/inter-
rupts can be publicly and privately
inherited. Public exceptions/interrupts
are visible to the user of an object
and private exceptions/interrupts are
visible only within the object itself.
Similarly, public inheritance is visible
to the user and private inheritance is
not. This means that exceptions/in-
terrupts may be publicly inherited
and visible to the user or they may
be privately inherited and hidden
from the user. Here is an example,

class decl time {
void reset(void);
void inc(void);

}s

class decl

default exception {

exception:
void hangup(void);
void interrupt(void);
void quit(void);

}s
class decl stopwatch <
default exception {
void init(void);
interruption:
time stop(void);
}s

default exception is publicly in-
herited by stopwatch. This means
that the exception functions hangup,
interrupt, quit, etc. can all be
raised by the user of the stopwatch
object. Note also that default han-
dlers for system defined exceptions
are used by inheriting them. The im-
plementation of stopwatch is as fol-
lows.

class impl stopwatch ({
time t = new();
int go;
implementation:
void init(veid) {
disable stop{();
go = 1,
enable stop();
while (go)
t->inc () ;
disable stop();
}
time stop(void) {
go = 0,
return t;
}
1
The essence of stopwatch is to
continuously increment time and stop
when an interrupt is raised and re-
turn the value of the current time.
Enable and disable allows and dis-
allows the raising of the exception/in-



terrupt, respectively. If the interrupt
function is called when that interrupt
is disabled, the interrupt function sim-
ply returns as if an empty body has
been executed.

Concurrent COB Exception Han-
dling

The extended COB exception han-
diing design is now applied to con-
current programs.

Here is an example of a simple ter-
minal handler. The system consists
of three concurrently executing ob-
jects, signified by the keyword
process. The controller accepts a
get operation whenever the buffer
is not empty and waits for a syn-
chronous communication of the get
operation. When a key is de-
pressed on the keyboard, the key
value is stored in ¢ and the key-
board object raises a put interrupt
of the controller. When the put inter-
rupt is raised, the key value is
stored into buffer and also dis-
played onto the screen.

process decl keyboard {
void init(void);
void start(controller);

}s

process decl screen ({
void put (char);
}s

process decl controller {
void init(void);
char get(void);

— 43—

interruption:
void put(char);
}s

process impl keyboard ({
controller cont;
char «c;
implementation:
void init(void) {
accept

start (controller) ;

for (;;) {

/* when a key is
hit ¢ holds its
value */

cont—->put (¢) ;

}
}
void start(controller
cont)
self->cont = cont;
}
}s
process impl controller ({
int size = 0;
char buffer([512];
keyboard key = new() ;
screen scr = new();
implementation:

void init (void) {
key->start(self);

for (;;) {
when (size > 0)
accept
get (void) ;
}
}
}
char get(void) {
char c¢;
¢ = buffer{size];
size——;
return c;
}
void put(char c¢) {
size++;

buffer(size] = c;



scr—>put(c);
}
}s
The actions taken when an excep-
tion occurs in a concurrent object is
similar to that of the sequential ob-
ject. Since exceptions can be raised
from several concurrent objects, the
exceptions are queued and proc-
essed sequentially.

The state of an concurrent object
has an effect on exceptions are
handled. When an exception is
raised when a concurrent object is
in a synchronous communication
state and termination of the function
is required, the accepted function is
terminated and the new state is a
ready state. When an object is in a
waiting state and termination is re-
quired, the accept function request
or synchronous communication re-

quest is removed from the sched-
uler, accept function is terminated
and the new state of the object is
the ready state. When the object is
in the autonomous state and termi-
nation is requested, the statement
that was executed when the excep-
tion was raised is terminated and the
object state is made ready. A sum-
mary of the termination rules are
given in table 1. The accept state-
ment is undone, since termination
without undoing accept statements
will lead to deadlock because the
requestor may wait for a terminated
accept statement.

Propagation of Exceptions

Recall that in the sequential case,
when a handler for an exception is
not found within a function, the ex-
ception is propagated to the caller of

current new action
state state
communi— ready terminate accepted
cation function
- d remove scheduling request
waiting ready terminate accept statement
autonomous ready terminate statement
Table 1. Termination rules




the function. This is the same for the
concurrent case. When an excep-
tion is raised during a synchronous
communication and no handler is
found at the callee, the exception is
propagated to its caller of the syn-
chronous communication. However,
when an exception is raise when the
concurrent object is not engaged in
a synchronous communication and
when the handler is not found, the
exception is propagated to the crea-
tor of the concurrent object, since
no caller is involved.

A concurrent object may engage in
a nested synchronous communica-
tion. This is a situation where an ac-
cepted function contains an accept
statement. When an exception is
raised and the exception is propa-
gated, all synchronous communica-
tion must be unraveled. This means
that the accept functions must be
terminated and exceptions must be
raised to the caller of the accept
functions. This mechanism is re-
quired, since leaving an accepted
function that will no longer be exe-
cuted to completion wil lead to
deadlock.

Comparisons to Other Languages

In Ada [Ichbiah et al. (79)] an inter-
rupt is considered as an entry call to
a task and not as an exception. This
has the advantage that a select

statement can be used to choose
between interrupts, but complicates
the meaning of the select statement
when normal entry calls and interrupt
entry calls are specified together —
priorities, specifying the order of ac-
cepting an entry call, are attached
to accept statements which reduce
the clarity of the select statement.

Exceptions in ABCL/1 [Yonezawa
and Ichisugi (89)] are supported by
passing an object which handles ex-
ceptions. Since exceptions are han-
dled by an exception object, modu-
larity of the exception handler is im-
proved, but it seems difficult to pass
all the necessary exception informa-
tion to the exception object since
the exception object is usually out of
scope from where the exception is
raised.

Acknowledgements

! would like to thank H. Yokouchi for
his COB exception handling design
and T. Kamimura for his valuable
comments and discussions.

References

[Goodenough (75)] Goodenough,
J. B., Exception Handling: Issues
and a Proposed Notation, Commu-
nications of the ACM, Vol. 18, No.
12, December 1975, pp. 683 -
696.

[Hosokawa and Kamimura (89)]
Hosokawa, K. and Kamimura, T.,



Concurrent Programming in COB,
distributed at the 2nd UK/Japan
Workshop on Computer Science,
September 25 - 27, 1989.

[Ichbiah et al. (79)] Ichbiah, J. D.,
Barnes J. G. P., Heliard, J. C,,

Krieg-Brueckner, B., Roubine, O., -

and Wichmann, B. A., Rationale for
the Design of the Ada Program-
ming Language, ACM SIGPLAN No-
tices, Vol. 14, No. 6, June 1978.

[Yokouchi (89)] Yokouchi, H., De-

sign of Exception Handling for
COB, IBM Tokyo Research Labora-
tory, Programming Languages Group
Report, February 17, 1989.

[Yonezawa and Ichisugi (89)]
Yonezawa, A., and Ichisugi, Y., Ex-
ception Handling and Real Time
Features in an Object-Oriented
Concurrent Language, distributed at
the 2nd UK/Japan Workshop on
Computer Science, September 25 —
27, 1989.

— 46—



