VI N 2T HEMER 33 4
Tar I 7EE 23 -4

(1989, 12. 8)

WH| A T x U FERELisp - POLDEZEHICDWT
On the design of a Parallel Object-oriented Lisp ---POL

PrE— gelitidhee T @R SHEGL (KiEEZS

Akikazu Takeuchi Etsuya Shibayama Michiaki Yasumura Toshihiro Takada Nobuyuki Saji

RET %4

Mitsubishi Electric Corp.

*EIT A *BEZEMER HNTT *SEAER
Tokyo Inst. of Tech. HitachiLtd. NTT NEC Corp.

5% L YA 7Y x 2 b {5[ASEE POL (Parallel Object-oriented Lisp) ? i% 512 2 v THH
HET B, POLIE, ISLisp(EBEELisp) D EMWBECIDA A b0 LT, ERAESES
SC22/Lisp-WG AdHoc 200iE8 & L TEREH % T-> T3 b D TH B, POLRIEIA 7Y x 2 } &
FOMDORA Y £— VRIZE N EISER T OS5 LERBT SO OLIspY AT LA TH B,

Abstract Intermediate status of design of the language POL (Parallel Object-oriented Lisp)
which incorporates features we consider desirable in the long range target of IS (International
Standard) Lisp is reported. POL is a system on Lisp for describing parallel/distributed programs
in terms of concurrent objects and message passing among them. This work is done as an activity

of Japanese SC22/Lisp Wg AdHoc-2.

1 Introduction

Lisp has been an up-to-date professional Al language
(or a family of languages) for many years. In order to
hold this status, however, Lisp must be enriched to
cope with new computational environments
particularly in the following areas:
Network computing, distributed processing,
concurrent computing, multi-media databases,

computer graphics, animation systems, and so on.

For the purpose, we consider that future Lisp
systems should support mechanisms for:
1. controlling parallel and distributed execution;
2. guaranteeing realtimeness;
3. modeling complex entities in a sophisticated

manner.

Parallel Object-oriented Lisp (POL), which is a
happy marriage of Lisp and parallel object-oriented
computation model, is our current solution to a part
of these requirements. With the notion of concurrent
objects, POL supports mechanisms for description of
distributed computation and those for natural

modeling of entities in a wide variety of problem
domains.

2 Design Issues of POL

In design of a Lisp language for distributed
computing, we have to make several decisions
concerning at least the following:
1. degree and granularity of parallelism
2. basic communication and synchronization
mechanisms
3. code sharing mechanisms
4. persistence of data objects
5. compatibility with existing sequential Lisp
systems

Note that appropriate solutions may depend not only
on application areas but also on target machine
architectures. This means that we have to figure out
future computing environments and application
areas of Lisp somehow.

2.1 Models for Underlying Architectures
One reason of the difficulties in design of a parallel
language standard is that we do not have any single

— 27 —

standard parallel architecture. Instead, we have a
wide range of parallel machines: SIMD machines
and MIMD machines, shared memory machines and
distributed memory machines, ethernet connected
workstations and massive parallel multi-computers.
This is not the case of sequential language design, in
which we can assume the Von Neumann style
architecture without any argument.

Of course, the details of underlying architectures
are not our primary concern. Programming lang-
uages should provide more abstract views and
conceal the architectural details. But still natures of
underlying architectures often restrict high level
abstractions since, for instance, with a SIMD
machine we cannot expect efficient execution of
MIMD style parallel programs.

Although universalities of programming
languages are important and desirable (particularly
when the languages are candidates for the
international standard), we do not consider it
feasible to design a language which is suitable for all
sorts of parallel machine models. We have to choose
appropriate range of target architecture models.

SIMD models versus MIMD models:

In our application problem domains (e.g.,
Distributed Artificial Intelligence), we need
concurrent processes each of which does its own
distinct work and which, as a whole, cooperate
and solve a given problem. Since this sort of
paréllel computation is hard to be described on
top of any SIMD model, we think that MIMD
models are more appropriate for our purposes.
Fortunately, in near future, various kinds of
MIMD machines seem to be available.

Note that, if one's requirement were to
support data parallelism (such as the one in
Connection Machine Lisp) alone, a massive
parallel SIMD model might be promising.

Single Address Space versus Multiple Address

Space:
Although on a shared memory multi-processor
system, we can easily implement a single address
space language, it is hard (or at least inefficient)
to maintain a single universal address space on a
loosely coupled multi-computer system. It is
obvious that shared memory models are more

expressive, while a shared memory system with a
large number of processors seems infeasible.

We therefore should cope with multiple
address space. Fortunately, Lisp does not depend
so much on a mechanism mapping addresses to
their contents. Instead, what we need is a
mechanism which chases references. With an
appropriate abstraction mechanism such as the
one provided by the notion of parallel object-
orientation, the number of remote references can
be kept small (at lease much smaller than the
number of the addresses) and a reasonable
implementation on loosely coupled multi-
computer systems may become possible. Anyhow,
a large number of concurrently accessible global
addresses will cause trouble in programming, and

thus we need a good abstraction mechanism.

Fine-grained Computers versus Coarse-grained

Computers:
In fact, a wide variety of parallel computers,
which support fine, medium, and coarse grained
parallelism are available (or will be available
near future). Currently, many organizations
have work-station systems connected via local
area networks and they support coarse grained
parallel computing, in which processes (or
threads) provided by operating systems are units
of parallelism. Massive parallel multi-computers
based on message passing will be available in
near future. Since both styles can be popular and
widely used, our target Lisp language should
support a wide range of granularities (or it is
preferable to support variable grained parallel-
ism).

The framework of parallel object-orientation
can be applicable to any grain sizes1)1. However,
we are wondering whether it is possible for
programmers to effectively control fine grained
parallelism with a reasonable amount of efforts.
Perhaps, we should consider a way to support
variable grained parallelism, i.e., a way to
describe programs which can be executed
efficiently both on network-connected work-

stations and massive parallel multi-computers.

10ne problem is that, to cope with fine grained parallelism,
the dispatch mechanism of arriving messages must be simple
and light.

According to the observation above, we have
designed POL so that it is suitable for MIMD,
multiple address space with a wide range of grain
sizes. Note that, however, shared memory machines
are acceptable since, in general, any parallel lang-
uages which have (or can have) implementations on
top of distributed memory machines can be
implemented more easily on shared memory

machines.

2.2 Basic Synchronization Mechanisms

Until now, a lot of mechanisms for synchronization
and communications are proposed and employed by
parallel computing models and languages such as
MultiLisp [Hals84], Qlisp [Gabr84], CSP [Hoar78],
CCS [Miln80], Actor [Agha87], Concurrent Prolog
[Shap83], and Linda [Carr89)]. Multi-Lisp and Qlisp
are parallel Lisps developed on top of shared memory
machines. Without drastic modifications of their
language semantics, it is difficult to transport them
on a distributed computing environment. However,
the “future” mechanism originated by Multilisp is
notable.

CSP, CCS and the Actor model are well-suited for
distributed memory models. Synchronization and
communications of CSP and CCS are based on
synchronous operations and those of the Actor model
is based on asynchronous message passing. Both
synchronous and asynchronous communications
have advantages and disadvantages: with asyn-
chronous communications we may exploit more
parallelism, while possibly distorting program
structures. As a result, POL supports both syn-
chronous and asynchronous communications
primitives (even though we consider that asyn-
chronous models, which are more effective but
dangerous, are a good bet). Note that the “future”
mechanism might support safer asynchronous
interactions.

Inheritance

In Concurrent Prolog and other parallel logic
programming languages including PARLOG
[Clar86] and GHC [Ueda85], logical variables are the
means for process interactions. We consider that
logical variables are useful and attracting, but we
have not yet successfully integrated them into the
language POL. One more interesting point is that
these languages can, in some degree, support
variable grained parallelism because the application
orders of the unification operation, which is the most
fundamental one, are not significant, i.e., it is
commutative.

Linda is the name of a family of languages which
support the tuple-space communication mechanism.
We do not want this mechanism to be the only
synchronization/communication primitive, but with
introduction of the notion of hierarchical decomposi-
tion we may accept it as “one-of-them.”

2.3 Inheritance and Delegation

When building a large scale software, we need a
sophisticated code sharing mechanism. Currently,
for the purposes we have two alternatives, namely,
inheritance and delegation. Inheritance is a popular
mechanism and supported by most object-oriented
languages including Smalltalk-80 {Gold83], Flavors
[Flav86], CLOS [CLOS88], and C+ + [Stro86]. Even
though there are criticisms, we agree that an
inheritance mechanism has been a necessary aid for
building a large program. In contrast, an explicit
language support for delegation is rare: SELF
[Cham89] is one exception. We do not know any
concrete example in which a delegation mechanism
helps to build a large scale software, but we consider
that a delegation mechanism has similar ad-
vantages. .

Indeed, the definitions of “inheritance” and
“delegation” vary from language to language. In
order to continue the discussion, now, we present our
views of them focusing their differences. Table 1
shows four dimensions.

Delegation

Parents

Statically determined
Shared entities Methods of the parents

Dynamically determined
parents themselves

Copied entities Instance variables of the parents

User's view

Implementations are inherited Behaviors are inherited

Table 1: Inheritance and Delegation

Static Parents and Dynamic Parents:
From the table, it is obvious that a delegation
mechanism is suitable for the situation in which
the child-parent relationship may be modified
dynamically during execution. In contrast, if the
relationship is statically determined, inheritance
may be more efficient.

Sharing and Copying:
With a delegation mechanism, more than one
object can share the same parent object. Thus,
this mechanism seems a means to control the
degree of sharing. Note that in a distributed
environment it is very important to control the
degree of sharing explicitly. On the other hand,
owing to concurrent accesses to a parent object,
we need some concurrency control mechanism for
the object. When a delegation mechanism
forwards messages in an implicit manner, serious
problems may occur.

In case of inheritance, no problem concerning
shared objects may occur since what an
inheritance mechanism can do at best is to share
immutable methods 2.

If class variables (in Smalltalk-80) or shared
slots (in CLOS) were allowed to be inherited, a
serious problem might occur. Inheritance does
not provide a way to share objects during
execution but to share source codes prior to
execution.

Inheriting Implementation and Behavior:

In design of the hierarchy among concurrent
objects, which model entities in a given problem
domain, we probably classify the objects based on
externally observable “similarity.”On the other
hand, when implementing these objects, we
probably require a good mechanism for reuse of
implementation details.

From this observation, we consider that we
need two sorts of classification hierarchies: one

for external behaviors and the other for internal

2If class variables (in Smalltalk-80) or shared slots (in
CLOS) were allowed to be inherited, a serious problem might
occur. Even without inheritance, extensive use of class
variables or writable shared slots would cause trouble on a
distributed environment.

representations. Delegation and inheritance
seem to play these two roles, respectively, since
an inheritance mechanism reuses the (details of)
internal structures of parent classes, whereas a
delegation mechanism just reuses the external
behaviors of parent objects.

Consequently, inheritance and delegation are not
necessarily competitors but we think that their
cooperation will grow the modeling and expressive
powers of programming languages. Currently we
think delegation is harder to be used in distributed
environment though it has more attractive
characteristics.

3 Objects

POL has three kinds of objects, active, monitored and
unmonitored objects. Monitored and unmonitored
objects are called passive objects. An active object
has its own local state, script, message queues and
single execution thread. Such an object receives
messages and processes them one by one in a
sequential manner. It is a unit of parallelism. In
contrast, a passive object has no thread. An
unmonitored object is a private datum of just one
active object, the owner of the passive object. When
an active object sends unmmonitored objects to other
active objects, what is actually sent must be their
copies. The notion of a unmonitored object
corresponds to the notion of objects in sequential
object system such as CLOS and Flavors. In contrast
with unmonitored objects, monitored objects can be
accessed by any active object. However their
accesses are controlled in mutually exclusive
manner, that is, only one method call can be
processed at one time.

POL is basically a classless language. An object
can be defined and created by a defobject form.
However, for convenience, a defclass form is also
provided, and its instances are created by a make-
instance form. The syntax of defobject and defclass
forms is shown below:

(defclass class-name (super-class...)

((queue-name option...)...)
((instance-variable option...))

option...)

(defobject object-name
((queue-name option...)...)

option...)

The syntax and semantics of defobject and
defclass forms are similar to those of CLOS
[CLOS88). However the following difference should
be noted:
defobject A defobject form is a short hand
for defining a unique active
object.

Multiple queues An active object can have more
than one message queue. This
will be explained in detail below.

No class slot Note that no classes can contain
any shared slot since a shared
slot cannot be implemented in
any reasonably efficient manner
on a distributed computer system
at least under the today's
technology.

POL has three important built-in classes active-
object, monitored object and unmonitored
object. Except for objects defined by a defobject
form, each active object is an instance of a class
which inherits the built-in class active-object.
Each monitored object is an instance of a class which
inherits monitored object. Such generic methods
shared by all kinds of objects as copy which makes a
copy of the target object are also being considered.

An active object can have multiple message
queues. Each message queue is given a name by the
queue declaration. If there is no queue declaration,
one queue is allocated and has the same name as the
object name. Although the total number of queues is
determined statically by the definition, the actual
queue entities can change during the computation.

A queue is the first class data object. A queue isa
monitored object keeping a sequence of objects
together with at least following operations:

(send Queue Object) putting Object to the
end of Queue

(get Queue) getting an object from

the head of Queue

(append Queue-1 Queue-2) appending two queues,
Queue-I and Queue-2

A monitored object which satisfies the minimum
requirement above is called a primary queue. We can
define several kinds of message queues, for example
a queue handling normal messages and express
messages, using the inheritance mechanism as
usual. Message queues associated with an active
object must be of this class or a sub-class of this class,
and are shared by the owner (the receiver) and
sender of messages, while their accesses to a queue is
controlled in mutually exclusive manner.

Each queue has the state indicating that it is
either owned by an active object (precisely speaking
it is acting as a message queue of an active object) or
free. If a queue is owned by an active object,
operations to the queue are restricted depending on
the executor. For example, objects except the owner
can not get while the owner can do every operation
(Capability). There are two basic operations which
establish and cancel the ownership relation between
an active object and a queue.

(own Queue {QueueName}) An object calling this
method makes Queue
its message queue.
QueueName is optional.
If it is omitted the
name primary is used.
QueueName is needed
when an object has
more than one queue.

(release{QueueName}) The queue specified by

QueueName is releas-

ed. The returned value

is the identifier of the
queue.

A queue owned by an object O with the queue name
Q can be referred to as the following form: 0.Q.
When an object refers to its own queue with the name
Q, the form, self.Q, can be used.

Multiple-queue has three advantages. First it
distributes accesses to one message queue over
multiple queues and reduce access traffic to each
message queue. The effect will be significant since
message queues are realized as monitored objects to
which read and write accesses are controlled in a
mutually exclusive manner. Secondly it enables

partial reorganization of message queues. Since a

queue can be manipulated independently we can, for
example, replace part of queues by new queues. The
third advantage is related to description of behavior
of an object. Multiple-queue is a way to separate
messages from different objects. In other words, it
can prevent messages sent from different objects
from being merged into one queue. Therefore by
assigning a distinct queue to an object with a special
role we can write some behavior elegantly. For
instance, suppose an object O has a superviser S
which sends control messages such as suspend,
resume and terminate to O. These messages control
processing of messages sent from an object O The
behavior of O can be easily described by defining two
queues @1 and Q2, QI from O'and Q2 from S. The
description of O's behavior is:

If there is a message in Q2 then process it.

Otherwise process a message in Q1.

Note that the third advantage is not a unique
feature of the multiple-queue. In fact, the same
effect can be obtained even in the single queue case
by defining a queue with multiple local queues.
Such a queue has a keyword index of local queues
and read/write access to a queue must be associated
with a key in order to be interpreted as read/write
access to a local queue with the identical key.

4 Methods

In POL, the behavior of objects is defined in
defmethod and defaction forms:
(defmethod (method-name object-name {qualifier})
(formal-parameter...
{reply-to formal-parameter}
{:from formal-parameter}
{:constraint expression})
form...)
(defaction (object-name {qualifier})
(formal-parameter...
{:reply-to formal-parameter}
{from formal-parameter}
{:constraint expression})

form...)

Defmethod is used for passive objects and active
objects with single queue. Defaction is used only for
active objects with more than one queue. The syntax

and semantics of defmethod are similar to those of
new Flavors [Flav86] rather than CLOS since POL
does not support multi-methods. The defmethod
form defines a method named method-name for an
object specified by object-name if it is a classless
object, or for instances of the class specified by object-
name. Defaction has the similar semantics except
that it does not have method-name. When object-
name inherits active-object, these forms can have an
optional formal parameter following the key-
word :reply-to. Upon invocation of a method or an
action (i.e. upon message acceptance), this formal-
parameter is bound to the reply-destination (the
destination to which the reply of a message should be
Method
combinations and action combinations are being

sent back) of the accepted message.

considered. Hereafter invocation of a method and
that of an action are called method call and action
call, respectively.

A method call whose first argument is a passive
object is evaluated as in new Flavors. Whereas, a
method call whose first argument is an active object
is interpreted as a message passing form. Assume,
for instance, that some active object, say O, executes
the following method call:

(method-name O' arguments ...)

where O 'is an active object. O sends to O'a message
which contains method-name, arguments, and some
other extra information such as the reply destina-
tion. This message is asynchronously received by O'
and first put into its message queue. By the message
passing, the current execution of O is not blocked and
O continues the execution. Just when O becomes
necessary to get the evaluation value of the method
call, O is blocked until the reply to the message
passing is arrived. In parallel, O'processes messages
in its message queue one by one and will eventually
encounter the message sent by O (if O'neither enters
infinite loop nor signals an error) and, at that time,
O'invokes its method specified by method-name with
the arguments enclosed in the message. In the body
of the method, the reply to the message may possibly
be sent back by a reply form:

(reply form) or (reply-to form reply-destination)

where the evaluation value of the form can be
multiple values. Notice that, in the body of the

method, the reply destination to the message can be
forwarded to another active object, which is, in this
case, responsible to send back the reply. Upon
evaluation of a method call whose first argument is
an active object, a future structure is automatically
generated, by default, and specified as the default
reply destination. POL will support forms which
explicitly generate future structures and those
which explicitly specify reply destinations of
message passing.

Formal parameter part in defaction specifies
message patterns of multiple queues where a queue
name is used as a keyword and is followed by
message pattern. A sequence of a pair of a queue
name and message pattern is translated into a
sequence of get and comparison procedures by the
underlying mechanism. An active object with
multiple queues checks actions in nondeterministic
way. When an object receives a message, it searches
for candidate actions in which its message pattern
matches with the current situation and its con-
straint. If there are several candidates, then one of
them is arbitrarily selected. In this sense constraint
acts like a guard. Note that get operation involved
in actions not selected are all undone.

In order to send a message which may consitute a
part of message pattern calling some action, the
message must be sent to a queue first. There are two
ways to specify the queue address.

(send Qid message) where Qid is an

identifier of the queue.

(send Oid.Qname message) where Oid and Qname
are an identifier of the
object and the name of
the queue, respectively.

These two forms differ in the effect when the target
object has changed the actual queue entity
associated with the queue name Qname. The former
sends messages to the old queue while the latter
sends to the new queue.

In POL, the concept of an object is broken into
queues and the others. In other words, queues are
extracted out from the concept of an object. Together
with the fact that queues are external view of an
object, this will enable the replacement of objects
without being known by other objects. The

implication of this is illustrated below using several
examples.

(1) Safe mechanism for object recompilation
‘When an existing object is defined, we could safely
replace the
object by a new one in the following way:
1. suspend the object soon after it processed a
message
2. install a new object and copy state information
to it.
3. have the old object release the queue and have
the new own it.
Note that the above scenario needs some help by
another object (may be a meta object).

(2) Low cost mechanism for (restricted)
reflective object-oriented computation

Since a message queue can be directly manipulated

and a pair of states and script can be changed safely

as stated above, some sort of reflective computation

can be efficiently implemented.

(3) Reverse delegation
A queue is regarded as a job queue to be processed by
an object. Now an object can throw its job queue to
another object. Usually delegation is realized by
installing a back-end object processing those re-
quests which can not be processed by the object. In
reverse delegation, instead of a back-end object a
front-end object is introduced in the following way:
1. suspend the object and get it to release the
queue.
2. create a front-end object and have it own the
queue.
3. create a new queue to which the front-end
object sends requests which it can not process.
4. have the object own the new queue.

(4) Optimizing message flow

Sometimes messages are forwarded to an object via
several objects even when intermediate objects do
nothing on them. But now we can make short-cut
without disturbing both the sender and the receiver.
Suppose that there is message flow from A to B via C.
C is forwarding message from A to B. Hence it is not
needed. Assume that:

1. Chas a queue Qc for messages from A,

2. B has a queue Qb for messages from C,

3. A always sends messages to C by
(send Qc message), and

4, C always sends messages to B by
(send Qb message).

Then we can eliminate C from the message route by
the following C's actions:

1. (release self.fromA)

2. (append Qp Qc)

The effect of the above action is that Qc is
concatenated at the tail of @b. After this action, A's

messages are directly sent to Qb (new Qb). Note -

that, by the append, the following two operations
become obsolete, which can be detected by an error
handler:

-(send Qb something)

- (get Qc something)

These operation should be handled as exceptions.

5 Input Output

Here we describe how TO features are realized in
POL. In POL, streams are implemented as active
objects and the read/write request to them are
performed.

5.1 Special variable
Lisp systems often provide the following special
variables to control input and output operations
(Table 2).

In POL, the roles of the special variables in the
categories A and B which controls /O functions are

A. Input control

B. Output control

played by the instance variables of stream objects. In
contrast, the roles of the special variables in the
category C which designate 1/O streams are played
by namespace objects, details of which will be
described later.

5.2 Stream objects
An output stream is an object which has *print-
escape*, *print-pretty* and so on as instance
variables and has at least a method “write”.
(defcalss output-stream (stream)
((*print-escape* :init-form t
:accessor stream-print-escape) ...))
(defmethod {write output-stream)
(object &key ...) ...)

Other methods such as princ, print, format and so on
can be defined by using write. For example, princ
might be defined as follows:
(defmethod (princ output-stream) (object)
(write self object :escape nil))

In this case, it is just nuisance to specify a stream as
the first argument. Suppose that the method called
print-self were defined at the top level class, and any
other class could inherit this definition and also
could define its own print-self method, then the
definition of write would be something like:
(defmethod (write output-stream)
(object &key ...)
(print-self object self))

5.3 Namespace databases

Though the special variables in the categories A and
B in Table 2 can be confined as local variables of a
stream, the other special variables like *standard-

C.Stream designation

read-base
read-suppress
readtable

read-default-float-format

print-escape
print-pretty
print-circle
print-base
print-radix
*print-case®
print-gensym

standard-input®
standard-output
*error-output®
query-io
debug-io
terminal-io
trace-output®

print-level
print-length
print-array

Table 2 Special variables for 1/0

output* may not be. Such information should be
managed by shared data bases which are shared by
several active objects. For this purpose, we introduce
namespace objects and the concept of packs. A
namespace object, which serves its clients as a name
server, keeps symbol-value pairs. A client of a
namespace is an object which has a reference to a
namespace object and may send to it requests for
inquiring the associated values of symbols and those
for registering new symbol-value pairs.

A pack is nothing but a collection of objects which
share a single name-space object. This means that
all the objects in a pack share the same standard-
input stream, standard-output stream, and so on.
Conceptually, objects in a pack cooperate with one
another and aim for one particular goal. The reader
can consider that the granularity for a pack in POL
is analogous to the one of a process in a traditional
operating system such as Unix. Currently, POL does
not support at least directly pack declarations. The
pack mechanism is supported as follows: A pack is
born when a new namespace object is created and its
first client specifies the namespace as its name
server; The name server of an object is specified
implicitly or explicitly upon birth of the object (by an
invocation of a make-instance form or by use of copy-
object primitive); If the name server of an object is
not specified explicitly, the default name server, the
name server of the object creating the new object, is
used. An object may not have any name server. For
instance, a global shared object such as a window
manager or a printer spooler might not belong to
any single pack but is shared by a number of packs
since a printer spooler might have to display its error
message on the error-output stream of the requester.
For such shared objects, POL supports a mechanism
that every message implicitly contain the reference
to the name server of the sender object. In this
fashion, a shared object can use the namespace object
of the requester object.

6 Comparison
CLOS (Common Lisp Object System) is an object-

oriented system which integrates types and classes
and it gracefully supports user definable generic

functions [CLOS88]. Unfortunately CLOS does not
support concurrency.

The object-oriented model on which POL is based
includes a mechanism which coordinates multiple
processes executed in parallel. POL and CLOS are
designed for orthogonal directions. CLOS is designed
mainly for integrating an existing Lisp system and
an object-oriented system with the emphasis on
generic programming. One the other hand, POL is
designed mainly for describing distributed systems
whereas some part of POL is designed with some
influences by CLOS. The semantics concerning
classes, inheritances, etc. and the syntax of POL are
strongly influenced by new Flavors and CLOS.
However, its semantics concerning concurrency is
similar to the one of ABCL/1 [Yone86].

There are some proposals of parallel Lisps
[Hals84], [Gabr84}. They are primary designed for
multi-processor and extended from Lisp by adding
parallel constructs, such as futures in MultiLisp
[Hals84] or qlet and glambda in Qlisp [Gabr84l.
They do not have data abstraction mechanism. On
the other hand, a parallel object-oriented language,
such as ABCL/1 [Yone86] is also proposed which is
designed based on object-oriented model for describ-
ing both multi-processing and distributed processing.
But it does not take care large built-in functions,
since it is not an extension of Lisp.

7 Conclusion

Here we proposed a parallel object-oriented Lisp
called POL, which is suitable for describing wide
spectrum programs of distributed processing. In
POL, message passing and receiving of an object can
be done in parallel with its intrinsic execution. POL
has dynamic multiple queues which will be used for
describing flexible message handlings. POL also
supports namespace databases which can be used for
accessing large shared library in consistent way.
This report is just an intermediate report, but we
hope it will contribute to make a better long range
object-oriented Lisp standard.

Acknowledgements
We would like to acknowledge Prof. Itoh, the chair of
Japanese SC22/LispWG, for his continual support to

our activity. We would also like to acknowledge
Dr.Yuasa and other members of the LispWG for
their helpfull comments to this report.

References

[CLOS88]

[Yone86]

{Agha87]

[Hoar78]

[Miln80]

[Stee84]

[Lieb86]

[Flav86]

[Hals84])

[Gabr84]

[Gold83]

ANSI-X3J13, Common Lisp Object
System Specification, 88-002R, June,
1988.

Yonezawa, A., Briot, J.-P., Shibayama,
E., An Object-oriented Concurrent
Programming Language in ABCL/1,
Proc. of OOPSLA'86, pp. 258-268, 1986.
Agha, G., Actors: A Model of Con-
current Computation in Distributed
Systems, The MIT Press, 1987.

Hoare, C.A.R., Communicating Sequ-
ential Processes, Comm. ACM, Vol. 21
No. 8, pp. 666-677, Aug. 1978.

Milner, R., A Calculus of Communi-
cating Systems, Lecture Notes in
Computer Science 92, Springer-Verlag,
1980.

Steele, G., Jr., Common Lisp: the
language, Digital Press, 1984.
Lieberman, H., Using Prototypical
Objects to Implement Shared Behavior
in Object Oriented Systems, Proc. of
OOPSLA'86, pp. 214-223, Nov., 1986.
Symbolics Inc., Symbolics Flavors,
Sept. 1986.

Halstead, R. H., Jr., Implementation of
MultiLisp: Lisp on a Multi-processor,
Proc. of the 1984 ACM Symp. on Lisp
and Functional Programming, pp. 9-17,
Aug., 1984,

Gabriel, R. P., McCarthy, J., Queue-
based Multi-processing Lisp, Proc. of
the 1984 ACM Symp. on Lisp and
Functional Programming, pp. 25-43,
Aug., 1984,

Golberg, A., Robson, D., Smalltalk-80:
The Language and its Implementation,
Addison-Wesley, 1983.

[Ueda85]

{Clar86]

[Shap83]

[Stro86]

[Carr89)

[Cham89]

[Dijk72]

Ueda, K., Guarded Horn Clauses, ICOT
TR 103, also in Logic Prog. Cof., LNCS
221, Springer-Verlag, 1985.

Clark, K., Gregory, S., PARLOG:
Parallel Program in Logic, ACM Trans.
Prog. Lang. Syst., Vol. 8, No. 1, pp. 1-49,
1986.

Shapiro, E., A Subset of Concurrent
Prolog and its Interpreter, ICOT TR-
008, Jan. 1983.

Stroustrup, B., The C+ + Programming
Language, Addison-Wesley, 1986.
Carriero, N., Gelernter, D. Linda in
Context, Comm. ACM, Vol. 32, No. 4,
pp. 444-458, Apr., 1989.

Chambers, C., Ungar, D., Custom-
ization: Optimizing Compiler Technolo-
gy for SELF, a Dynamically-Typed
Object-Oriented Programming lang-
uage, Proc. of the SIGPLAN '89 Conf. on
Programming Language Design and
Implementation, SIGPLAN Notices,
Vol. 24, No. 7, pp. 146-160, July, 1989.
Dijkstra, E. W., Hierarchical Ordering
of Sequential Processes, in C.A.R.
Hoare, and R.H. Perrot eds., Operating
Systems Techniques, Academic Press,
pp. 72-93, 1972.

