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Abstract

A new theory, Graph Rewriting Systems is proposed for ‘graph reduction’ that is very
similar to Term Rewriting Systems. By using this theory a serious reduction problem
in network reliability analysis can be solved. This problem stems from the fact that
graph reduction result often are extremely different , even though all of them from the
same original graph. The Term Rewriting Systems theory has a keyword , called the
Church Rosser (or sometimes “Confluence”) property that has originally appeared in
Jambda calculus and can produce the same final reduction result from a ‘term’ under
termination.

Using this property, suflicient information can be obtained to solve a reduction prob-
lem. The informalion is based on “critical pairs” obtained by superpositioning the two
reduction rules and preserves the Church Rosser property. This property can be used
for graph reduction in network reliability analysis, since it gives an orientation to control

the mechanics of the graph reduction methods.
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On Graph Rewriting Systems and Application to Network Reliability

1 Introduction

Network reliability analysis is of major importance to
computer communications and power nelworks. Even
the simplest models often lead to computational problems
that are NP-hard for general networks [2], [12].

The network model used in this paper is an undirected
graph G = (V,.F) whose lines can fail independently of
In 1977
Rosenthal & Frisque [13] presented a method which re-

each other according to known probabilities.

duced network size by transforming three-terminal sub-
networks into Y — shaped networks called A — Y.

The terminal degrees were thus reduced and possible se-
ries combinations were created capable of being reduced
to a single line. This transformaltion method, called the
“reduction” method, preserves the original network prob-
abilities between terminals.

In 1985 Satyanarayana & Politol [11] showed thal a
class of series-parallel networks, [or which only exponen-
tially complex algorithms were previously known, can be
analyzed in polynomial time by a reduction method. Tlow-
ever, reduction methods cause a serious problem. If the

application rules and places are correctly selected a sim-

ple graph can be obtained, but if the selection is incorrect
the resultant graph size is still large. This makes it very
hard to compute network reliability due to the size of the
graph.

On the other hand Term Rewriting Systems have the
Church Rosser property {1}, [6], [7], [10] as reduction rules
capable of preserving any term reduced to as a unique
reduction result for every reduction step at reduction ter-
mination. This concept of Church Rosser property was
extended to the Abstract Reduction Systems (7],

Il you can introduce this Church Rosser property into
graph reduction, we can get a simple graph without com-
plex reduction strategy. Therelore this paper proposes a
new theory, Graph Rewriting Systems, which contains the
Church Rosser property as well as Term Rewriting Sys-
tems. 1t should also be noted that the other kinds of graph
rewriting systems exist, (3) and (9), which treat graph as
objects having various meanings, but this theory gives
sulficient information to solve the reduction problem.

To create this theory a new concept, boundary points,
had Lo be introduced flor the graph reduction methods
since it is needed when the overlapping between any two

rules is well defined. The introduction of this boundary



concept into Graph Rewriting Systems, whether the sys-
tem has a Church Rosser Property or not, is decided by
checking the convergence of the critical pairs obtained by
the ‘superposition’ of all possible rule pairs.

2 A problem of Network Relia-
bility Analysis

In this section the fundamental definitions of graph the-
ory will be presented and a problem of network reliability
analysis pointed out. Harary’s notation (4] for graph the-
ory is followed in this section. It also defines the problem
of network reliability analysis as “Why are graph reduc-
tion results extremely different, even though all of them
from the same orignal graph ?”

The relationship between graph reduction rules and this
problem and its cause will be presented later. Further-
more, this section shows that the critical pairs in graph
reduction produce sufficient information about the topol-
ogy of the final reduction graphs.

2.1 Fundamental Definitions in Graph
Theory

Definition 1 Graph and Subgraph : A graph, G,
consists of a finite nonempty set V of points together with
a prescribed multiset, E, of unordered pairs of distinct
points of V. G is labeled when the points are distinguished
from each other by names such as vy, v,,...,v,. Each pair,
z = {u, v}, of points in E is a line of G, and z, said to be
join u and v and u and v are adjacent points (sometimes
denoted u adj v). Point u and lines z are incident with
each other, as are v and z. If two distinct lines, = and y,
are incident with a common point, then they are adjacent
lines. A subgraph of G is a graph having all of its points

and lines in G.

Definition 2 Walk and Path : A walk of
graph G is an alternating sequence of points and lines
Vg, 1, V1, --ry Un1, Tn, U beginning and ending with points
for which each resultant line is incident with two points
immediately preceding and following it. The walk is
closed if vg = v,,. It is a path if all the points (and thus
necessarily all the lines) are distinct. If the walk is closed,
then it is a cycle, provided its n points are distinct and
n > 3.

Definition 3 Connected
every pair of points is joined by a path.

A graph is connected if

Definition 4 Degree of Point : The degree of a point
v; in graph ¢, denoted d; or deg v;, is the number of lines

incident with v;.

Definition 5 Isomorphic Graphs : Two graphs, G
and H, are isomorphic if there exists a one-to-one corre-
spondence between their point sets which preserves adja-

cency.

2.2 Graph Reduction Rules and the
Problem of Reduction Strategy in
Network Reliability Analysis

Network reliability analysis is of major importance in
computer, communication and power networks. The net-
work model used in this paper is graph, G = (V, E),
whose lines can fail independently each other according
to known probabilities. The problem of reliability anal-
ysis is how to determine the probability that a specified
set of vertices, K C V, will remain connected, i.e., the K
-terminal reliability of G. v

In  conventional reliability analysis, reliability-
preserving graph reduction methods are known eflicient
algorithms [11], [14].

In 1985 Satyanarayana & Wood [14] showed that in the
reduction method the way application ordering is chosen
and where it is applied to a graph is independent of prob-
ability considerations. Our main purpose has been to re-
search graph reduction methods since 1985. The three

fundamental reduction rule set [14] is shown below in Fig.
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[ig. 1. T'undamental graph reduction rule set
In Fig. 1:

(1) series reduction. Suppose that e, = (u, v) and ¢, =
(v, w) with deg(v) = 2 are series lines in graph G.
A series reduction replaces e, and e, with single line

e = (u, w).

(2) parallel reduction. Suppose that e, = (u, v) and
ey = (u, v) are two parallel lines in graph G. A par-
allel reduction replaces e, and ¢, with a single line
e, = (u, v).



(3) A — Y reduction. Suppose e, = (u1, uz), € =
(w1, us) and e, = (ug, ug) are three lines of A,
A —Y reduction replaces ¢,, e, e, with ¥ (See Fig.

1).

A lot of graphs are reducible by these rules. One such

example is shown below in Fig. 2.

Fig. 2. Graph reduction by the fundamental reduction

rule set

When a graph is recursively reduced into a simpler one,
a serious trouble occurs when the original graph result in
different final forms.

One of the main reasons is that the reduction results
depend on where a rule is applied on a graph and the
rule application ordering which is applied to it. A typical
example is shown below in Fig. 3.
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T
Iig. 3. Example of different reduction results

By using the three reduction rules, the results for a
given graph will differ from Fig. 3, because it is only a
typical example of the problem. If the correct direction is
selected (  in Fig. 3), only two terminal points can be
reached.

If an incorrect direction is selected ( N\ in Iig. 3), a
complex form results. Differing final results often occur
with different reduction sequences. Therefore sufficient
information must be give to solve this problem.

The production of differing results is a typical problem
in ARS [7). If in ARS a system has the Church Rosser
property it produces a unique reduction result upon ter-
mination. We tried to introduce this property into graph
reduction and succeeded in creating a new theory, Graph
Rewriting Systems. In this new theory, the convergence

of critical pairs will solve the ramification problems.

3 Introduction to Graph Rewrit-
ing Systems and Their Various

Properties

3.1 Abstract Reduction Systems

Definition 6 Abstract Reduction Systems : An
Abstract Reduction System (ARS) is a structure A =
{A, —,) consisting of a set A and a sequence of binary
relations — on A, also called reduction or rewrite rela-
tions. If for a,b € A we have (¢, b) € —q, we write
a —b and call b a one-step (o — reduct) of a. This is
sometimes briefly described as A = (4, —).

Definition 7 Transitive-reflexive Closure

The transitive-reflexive closure of —, is denoted by
—54 - So a—,b, if there is a possibly empty, finite
sequence of ‘reduction steps’ a = ap——q G1—q.. =
—,0, = b. Here = denotes the identity of the elements
of A. Element b is called an a— reduct of a. The equiv-
alence relation generated by —, is =,, which is also
d the convertibility relation generated by —,. The re-
flexive closure of —, is +—,=. The converse relation of
—q 18 &—4 or —4-1. The union —, U —5 is de-
noted by — 4. The composition —, 0 — 4 is defined

by a— s 0 —gb, if a—, c—g b for some ¢ € A.

The next definition is needed to preserve stop in the

finite reduction step.

Definition 8
ARS :
Let A= (A, —,)

Normal form and Normalizing in

(1) @ € Ais a normal form, if there is no b € A such

that a——,b.
b€ A has a normal form if there is a normal form

@ such that b =5, a.

(2) ais strongly normalizing (SN) if there are no infi-

nite reduction sequences ag—+a;—as....

Weakly Church Rosser and Church Rosser are essential
properties in this paper and they are defined as follows:

Definition 9 Weakly Church Rosser and Church
Rosser on ARS :
A= (4, —.).

(1

The reduction relation of —, is weakly con fluent
or weakly Church— Rosser(WCR), if for all a,b,c €
A with a— b and a—,c we can find d € A such
that b —5, d, ¢ —5, d. This d is called the

common reduct of b and ¢



(2) — is confluent or has the Church — Rosser(CR)
property (see Fig. 4), if for all a,b,c € A with a .
band a —5, ¢ we can find d € A such that b -5, d,

¢ 5, d.

SN
N oA

b

Fig. 4. Church Rosser Property

Note that difference between weakly Church Rosser and
Church Rosser. The former has a common after only one
reduction in each direction. The latter has one after any
reduction even in steps. The concept Church Rosser origi-
nally came from lambda calculus [1], [6] and In T'RS there
are a lot of systems [7], [8], [15], [16] containing it.

The following facts are well known about the relation
between the Church Rosser property and weakly Church
Rosser. .

Newman’s lemma plays a very important role on ARS.
Because under SN the completeness of —s, can only be

tested by checking weakly Church Rosser.

Lemma .1 (Newman) Let A = (A, —,) be a ARS.
If —4 is WCR and SN then —, is CR.

This proof originally came from Newman [10] and the
simple proof came from Hue {7]. By the lemma it follows
that under SN —, is WCR, iff —, is CR. -

Proposition 1 Let —, be a confluent ARS. Then
——4 has a unique normal form; i.e., if ny =4 ny and

ni1, ne are normal forms then ny = nq.

Definition 10 Complete System : —, with prop-
erties SN and CR is called complete.

3.2 Fundamental Definitions in Graph

Rewriting Systems and Properties

This section introduces Graph Rewriting Systems and
gives their related properties.

Definition 11 Boundary on Graph and Compli-
ment Graph : Let graph G be a connected graph and
subgraph g of G. A point in G is called a natural boundary
for subgraph g, if it is incident with a line not in g. A set
of all boundary points in subgraph ¢ of G is denoted by
B,.(g). Graph ¢° n which all points and lines have been
removed from G except for the boundary points in sub-
graph g, is called the compliment graph of g and denoted
by ¢, as shown in Fig. 5.

Natural boundary points and compliment graphs play
important roles in GRS. Note that this notation is quite
different from Harary’s definition [4], since we simply refer
to “graph” and “subgraph” instead of “connected graph”
and “connected subgraph.” henceforth.

O/\(“X oe‘boundary point
N
<> g°

Fig. 5. g , ¢¢ and boundary points

e

This boundary conception can be extended as follows.
To simultaneously handle conventional and special graphs
occurring on both sides of the rules representing transfor-
mations between graphs.

Definition 12 Extended Concept of Boundary on
Graph : Let graph G be a connected graph. Let spe-
cially marked (usually black) points in' G be defined as
artificial boundary points, which means indefinite (at
least one) lines not containing G. We refer to this as
boundary, not artificial boundary.

Definition 13 Boundary Graph : alabeled graph, g,
with boundary points is called a boundary graph. A set of
boundary points in s is denoted by B(s). Points which are
not a boundary in g are called interior points. A set of
interior points in s is denoted by I(s). Graphs having only
interior points can also be regarded as boundary graphs

without boundary points.

. ® boundary point

O . interior point

Fig. 6. Boundary graph.



Definition 14 Isomorphic between Boundary
Graph : Two boundary graphs G and I are
boundary isomorphic if there exists a one-to-one corre-
spondence between their point sets which preserve adja-

cency and labels of boundary points.

Intuitively speaking two boundary isomorphic graphs
have the same boundary points preserving the correspon-

dence between them.

A
ta) —_— Q}—Q
2 4 — 2 @
3

RVl

Fig. 7. Isomorphic boundary graph (a) and

nonisomorphic boundary graph (b)

Definition 15 Reduction Rule on Graph : Risa
set of pairs (s, ¢} with s,¢ of the boundary graph subject

to the following constraints.

o left side s and ¢ are not a boundary graph, but a
single boundary point.

s boundary points are invariant; i.c., if boundary nodes
exist in the left hand side, they also exist in the right
hand side. The converse must also be true.

Pairs (s, t) are called rewriting rules and are written
as s — t hencelorth. BExample of the reduction rules
are shown in Fig. 8. Black points with labels represent
boundary points and white points without labels represent
interior points.

. N

2 3 2 3

I'ig. 8. reduction rules.

Rewriting systems are defined as graphs in the same
manner as T RS, which is useful for network reliability
analysis. A lot of notations used are quite different from

other systems, [3], [9].

Definition 16

graph rewriting system is a pair, (G, R). Here, G is a

Graph Rewriting Systems : A

family consisting of boundary graphs. R is a set of pairs,
(s, t). Syntactical identity = is given by a boundary iso-
morphic map between the boundary graphs.

We usually write R instead of (G, R) and r: s — 1

ort — s.

Definition 17 Imbedding : Let s (not necessarily
connected) and G be a boundary graph. Mapping o from
s lo G is called imbedding from s to G, if ¢ is an iso-
morphic map {rom s to a subgraph denoted by s, in G,

subject to the following constraints:

Tor every point v in s
(1) itv € I(s), then o(v) € I(s) with deg(v) = deg(o(v)).
(2) il v € B(s), then o(v) € B,(o(s)) U B(o(s)).

We denote this as G = s, * 5, henceforth.

An example of imbedding is shown below in Fig. 9.

Fig. 9. Imbedding

Proposition 2 Lel s , Gy , G be a boundary graph such

that two imbeddings are o1 : 8 — Gy and 03 : s — Gy

with Tiip(s) = P2y

(1) There is a boundary isomorphic map ¥ : oy(s) —
05(8) with ¢ o 01 = 0y that insures the following dia-

ram, where o is a composite of the maps.
g s

S ——— T 5 s,
2
Gty TGy

(2) if G = oy(s) * 01(s)° and G' = 03(s) * o2(s)° with
a1(8)° = 09(s), then G =G,

Proof.



(1) Since oy is imbedding s — ¢, inverse map o7t
01(s) — s exists. Let 1 be 05 00y by (1), then
is an isomorphic map.

Also if v € oy(s), then o171 (v) € B(s) from the defi-
nition and the following conclusions can be made.
¥(v)
= (0200171 (v)
= (o2(c71(v)))
(01(017(v)) ( by a1lpey = oalp(,y and o4(s) €
B(s))

= .

(2

=

By ‘71[5(5) = 02!3(5) and o(s)°
G

= g1(s) * o1(s)°

= ay(s) * 02(s)° (by 01(s)° = 03(s)° )
= 03(s) * 02(s)° (by o1]p(,) = 02lp(,))
GI

Thus, % is a boundary isomorphic map.

Definition 18 Reduced Graph :
be a rewriting rule. and o :

Let 7 :
s — @ be an imbedding,

s — 1

which means G = s, * 5,°. & is a reduced graph for G
using r and imbedding o if G’ =t,, *t,.°, 5, =1,,° and
o|B(s) = o, for rewriting rule r : s — ¢, imbedding map
o from s to G, where ¢, is a graph obtained by replacing
8o with rule r.

Intuitively speaking, the G’ obtained from G by replacing
8, with rule r preserves the compliment graph of s,.

For the above reduced graph we have the following
properties.

Proposition 3 Let v : s — ¢ be a rewriting rule, o :
s — G be an imbedding and G be a reduced graph for
G using r and an imbedding o, if we have the following

properties.

(1) By reducing G to G', B(G) is invariant, i.e., B(G)
B(G").

(2) Reduced graph G' for G using r and imbedding o is
uniquely determined.

Proof.

(1) If boundary point v is in s,¢ or v € B(G), then
v € B(G') is trivially obtained from definition of
the rewriting systems. If boundary point v in s,
then o1(v) € B(s) = B(t). Hence v € B(t) from
the definition of imbedding.
B(G) C B(G'). Similarly, the converse is obtained;
i.e.,, B(G) D B(G"). Hence B(G) = B(G").

In two case we have

(2) By superposition G = s, * 3,°, G = t,, *1,,°, and
t.¢ = t,,° Suppose graph G” is also reduced from
G using r and imbedding ¢’ : ¢ — G", then G” =

tor, * 1y, ¢, and t,0 ¢ = t, ° from the definition. This

concludes G’ = G” from proposition 2.

The definition of the next reduction step is well defined
by this proposition.

Definition 19 Reduction Step : The rewriting rules
of GRS R give rise to the reduction step, such that :
G—-srG" iff G' is a graph reduced for G using r and
imbedding o : s — G.

In that case subgraph s, of G is called a redex. To
specify the rewriting rules used in this reduction step, we

write G —L» G,

Definition 20 Superposition : Let r; : @« — 8 and
ry 1y — & be two rewriting rules. We have superposition
s of two rules, where s is a boundary graph satisfied with
the following conditions:

Let subgraph g (not necessarily connected) be in « and
imbedding f : ¢ — v, where g is a subgraph that does
not have only boundary graphs. By imbedding f : ¢ —
v, g and f(g) are identified with each other as follows:

for point v in g we consider

(1) v and f(v) as interior points, if v € I(g) and f(v) €
I(f(g)) with deg(v) = deg(f(v)) or if v € B(g) and
f(v) € 1(f(9))

or v and f(v) as boundary points, if v € B(g) and
Jlg) € B(f(9))

By identifying ¢ with f(g), we naturally have two
natural inclusions to map oy from «a to itsell in s
and ¢y and from 7 to itself in s simply as graphs ,
therefore 1 and o, must be imbedding.




One superposition of the two rules is shown in Fig. 10.

U N

Sokedy oY

Fig. 10. Superposition.

If we represent superposition s of 71 on 7y, g% oy,

Vo2 * 1°,, Where two imbeddings oy @ o — s and

0y 1 ¥ — s are natural inclusions into superposition s,
then it can be reduced two possible ways: a,, * a%, —

¢ ¢
ﬁﬁl* Agy and Yo * Vop- — 602* 'Ycal‘

Definition 21 Two Rules Overlapping and Criti-
cal Pairs in GRS :

The pair of reducts (s, * &5y, 8o, * 7°,,) called a
critical pair-is obtained by the superposition of a —
and v — 6. Two rules are called overlapping if they
produce a superposition. In this case s is called the over-
lapping redex. Otherwise, it is called a nonoverlapping
redex. If @ — B and v — § are the same rewriting
rule, we furthermore require that s is required not to be

identical to v = a.

Intuitively speaking, an overlapping rule can reduce ev-
ery graph to which the two rules apply. This causes crit-
ical pairs to have a a key word for each different graph
reduction results. This definition is quite different from
TRS. Such pair is shown below in Fig. 11.

Fig. 11. Example of critical pairs

Definition 22 Convergence of Critical Pair : Crit-
ical pair < s, t > is called convergent if s and ¢ have a
common reduct; i.e. , a boundary isomorphic map exists
between s and t.

@ boundary point

O interior point

For the above critical pairs we have the following prop-
erties.

Lemma .2 Critical Lemma in GRS : GRS R is

WCR iff all critical pairs are convergent.

Proof.

overlapping cases. In the nonoverlapping redex case two

Separate the redexes into nonoverlapping and

reduction rules are independently applicable to the redex
and do not effect each other. Thus, any two redexes sep-
arated from any redex will obtain the same final graph
after both rules are applied and R is WCR. In the over-
lapping case, WCR is evidently concluded by hypothesis.
Thus, the lemma is proved. Conversely, if R is. WCR the

right hand side assertion is obvious from the assumption.

Theorem 1 Let R be a GRS which is SN then R is CR
iff all critical pairs of R are convergent.

proof. This proof is trivially obtained from Lemma .1
and Lemma .2.

4 Application to Network Relia-
bility Analysis

This section explains how GRS is applied to network
reliability analysis. It also give a solution for reduction
methods used by all — terminal reliability [11].

4.1 Relations between Reduction Prop-

erties in GRS and Reduction Meth-
ods in Network Reliability Analysis

The problems of reduction methods in network reliabil-
ity analysis can be solved using GRS, which gives simple
principles with respect to these methods.

4.1.1 Three Reduction Rules in Network Relia-
bility Analysis

The fundamental rule set used in network reliability anal
ysis is shown below in Fig. 12.

2.
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Fig. 12. Fundamental reduction rules



Cycle+Line Reduction Ordering and Strongly
Normalizing

Definition 23 Cycle+Line :
graph. The Cycle+Line in s denoted by s is the sum of

Let s be a boundary

the number of elements in a set defined as follows:

(1) a set of cycles consists of all the closed paths in s.

(2) a set of lines consists of all the lines in s.

Definition 24  Cycle+Line Reduction Order-
Let R be a GRS, where R has a fundamental
rule set. R has cycle+line reduction ordering if s* > ¢! for

ing :

any one reduction step : s — ¢

In graph reduction, reduction orientation is often essen-
tial because serious trouble often occurs in the nontermi-
nation reduction sequences. For example, if A — Y and
Y — A are used simultaneously as same reduction rules,
infinite cycle results. Here, we define reduction ordering
in the rules as the sum of the numbers of cycles and lines
that is decreased in each reduction step. By using this
ordering it can be trivially concluded that a reduction se-
quence will terminate in a finite number of steps, since
this preserves strongly normalizing.

Note that the Y — A rule is not decreased in cycle+line re-
duction ordering, because the sum of the cycles and lines

conversely increases in each reduction step.

Proposition 4 R with cycle+line reduction ordering is
strongly normalizing.

Proof. The proof is trivial since the cycle+line is finite

and monotonically decreases.

Completeness of a Set of Four Reduction Rules

When a R is complete, we call R a complete rule set
because R is determined by the rule set of the system.

In the systems, any rule in a complete rule set is gen-
erated by the fundamental reduction rules. However, it
has been proved [5]that any graph that can be reduced to
one link by the fundamental rule set with adequate con-
trol strategy can be reduced to one link by a complete rule

set. The complete rule allows us to reduct graphs without

using complex reduction strategy shown below in Fig. 13.
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Tig. 13. Example of complete rule sets
(1) A rule set consisting of r1 and ry is called S — P.
(2) A rule set consisting of 7, , 75 , and r3 is called A'— Y.

(3) A rule set consisting of ry, ra, r3, and ry is called
octahedral or A — Y.

The octahedral rule set is not equivalent to the original
A —Y set in regard to reduction power, but it does have

the following advantages.
Theorem 2 The above rule sets are complete.

Proof.

normalizing in cycle+line reduction. Thus we only have

It is obvious that each rule set is strongly

to show that every critical pairs of R is convergent, ac-
cording to the following.

(1) In the S — P rule set case, the proof is trivially ob-
tained. i

(2) In the A'— Y rule set case, the critical pairs obtained
by the superposition of 71 on r3, r, on r3 and r3 on
r3 have to checked, since the critical pairs obtained
by the superposition of r; on ry, 7y on 71,73 on ry
are convergent for (1). To prove convergence of the
critical pairs obtained by the superposition of r3 on
r3 is slightly complex, but will be shown below in
Fig. 14. The proofs for other superposition case are

obvious by the same calculation.

AN

VR TN
A AL
v/ v
1 I'*O—.;

Fig. 14. Convergence of critical pairs obtained by the

superposition of r3 on 7.



(3) In the octahedral rule set case convergence of the
critical pairs obtained by the superposition of 7y on
r4, and r; and others still has to be proved, since
we got the result in (2). In these superpositions we
only needed to prove the critical pairs obtained by

the superposition of 4 on r3 and 4 on r4.

The convergence of the critical pairs obtained so far
by the superposition of 74 on 73 and rq on ry is shown
below in Fig. 15. Proofs can be €asily obtained for

other superposition by the same calculation method.

~®
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Fig. 15. Convergence of critical pairs obtained by the

superposition of ry on r3 and ry on 7.

An example reducible to one link by the above complete

reduction rules is shown below in Fig. 16. Note that the

original graph is reduced to one link in each reduction
sequence and the same final result is obtained for each

reduction path.

Fig. 16. Reduction by complete reduction rules

4.1.2 Another Interesting Example

In the previous section we showed that the A~ rule set
is complete, but more rules can be added to ry,72,73, 74
Rule 4 is denoted by A and rs by A®. This procedure is
defined recursively as in Fig. 17 below. rg,—g) is denoted

by A", Here n? stands for the number of triangles in A™,

A

o

Tig. 17. Recu;'sively defined class.

Tere UA™ = SP U AU ..A™, thus the next theorem

is easily obtained.

Theorem 3 For any n, UA™ is complete.



Proof. For n < 2, the proof is obtained from The-
orem 2. If n > 3, let 1,5 be satisfied with 3 < ¢,7 < n,
then the critical pair for the superposition of A™ on AJ
is obtained by the same as for A in Fig. 15. Also, the
other critical pairs are convergent according to Theorem
2. Thus, the proof is obtained.

Note the this theorem means we can infinitely produce

an increasing chain of complete rule sets.

5 Conclusion

This paper presented a new theory Graph Rewriting
Systems and its application to network reliability analysis.
In GRS a necessary and sufficient condition is given for the
Church Rosser property under termination. Furthermore,
the octahedral rule set is complete in GRS, thus allowing
graphs to bereduced without taking rule application order

or application place into consideration.
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