VI MY THEBER 35— 1
(1990. 5, 24)

Recursive Functions on a Completed Set
of Natural Numbers

Tohru NAOI and Yasuyoshi INAGAKI
School of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, JAPAN

Abstract: This paper proposes a new approach to the recursive function theory, which is
suitable for dealing with computational models based on term-rewriting. The set of natural
numbers is completed to a countable algebraic cpo with partial numbers and co. Primitive
recursion is interpreted as a way to define continuous functions on this “non-standard” structure
of numerals. It is shown that recursive functions can be formalized as functions definable
by the constant co and semi-primitive recursion, a slightly generalized primitive recursion.
Finally, computability of those functions is discussed through an order-theoretic semantics of

non-overlapping linear term rewriting systems.

SEfifi 7 EARBUER G (C 3V B I BaBGER

[G S
AEEARY T

HbE L AFLTH, Scott OHEICIES e, FRHBIBER O L v Hfll b & 4
T 50 CORMAIE HOFBHRA KT {FIHET A ET 5EEFHTOBIE % H
RICHHFITE 3 & w5 RFE R,

AT T, THAR offss N e MK & 2S5t
EARBASEIEFRE & LCERET 20 RIC, RGN E C OIFFIRE Lo
BB DRLIR & BT € L IC X o T FUNRRIE OB 22 52 50 X bIC,
AR & MEIRIRRRRE & LB 2T~ b P oIk L, RO L %, Tk
bbb, HEFR SRR 2 BIBCE I B TS MIRRA) ofif %5+ c ik b,
/MU 2 EORATAE T H B0 Lichio Ty T TICIRRAMIBIS o UL 72 2L A3
Bohicr tichdo CORFNBIBOFISFIREM X, kb O WEIBIEHTHE £
FREEHEFLL L. 2O BIEBIBICIL T S BRI EE L D C L CRE NS,

0. Introduction

As widely known, the recursion theory has been
developed on the basis of the following formulation

for the semantics of programs:

The input-output relation of a program
determines a partial function, which is de-
fined for an input if and only if the pro-

gram terminates for the input.

It should be noted, however, that this formulation
is too restrictive to deal with computational mod-
els based on rewriting, such as A-calculus or term
rewriting systems. Under so-called lazy evaluation
strategy, some non-terminating rewriting processes
should be understood as processes of producing an
infinile object, e.g. an infinite list. As far as this
strategy is employed, it implies an inconsistency
concerns-the composition of programs to interpret
the output of such a process as undefined (see [1] for
the case of A-calculus). Thus, the conventional the-
ory is forced to prohibit either lazy evaluation, or
rewriting schemes such that the choice of strategies
can affect the termination of computation; The for-
mer is the case of Herbrand-Godel-Kleene system
of equations [5], and the latter is the case of Al-
calculus [3]. These settings, however, restrict the
peculiar feature of computation by rewriting.

In the present paper, we therefore propose a
new approach to the theory of recursive function,
which is based on Scott’s order-theoretic framework
[10] and able to treat lazy evaluation processes eas-
ily. Our study is sketched as below.

We first construct a directed-complete partial
order (N°°, L), as our set of data, which includes
the set N of natural numbers. N is completed to
N by being added (1) partial natural numbers
1, s(1), s(s(L)), ... generated from an least de-

fined element 1. by the successor function s, and (2)
an infinity oo defined as the limit (Lu.b.) of those
partial objects. We shall study the computability
of total functions on the structure N°°. Note that
if an extra axiom s(L) = L is placed on, then, we
get s"(L) = L for every n and also have oo = L.
Consequently, any theory on total functions on N
would be just a copy of an theory on partial func-
tions on N. Nevertheless, our lazy successor func-
tion never satisfies s(1) = L, which is a crucial
difference between the starting points of ours and

of the conventional theory.

Next, we shall define primitive recursion on
N®. Primitive recursive definitions of functions
are formulated as syntactical objects, i.e., sets of
equations. These systems of equations could be in-
terpreted as descriptions of functions on N. How-
ever, we interpret them, in a non-standard way, as
descriptions of continuous functions on N, More
accurately, we shall proceed with semi-primitive re-
cursion that generalizes primitive recursion; it has

the same descriptive power as primitive recursion

when it is interpreted on N.

We can obtain a more general class of continu-
ous functions, i.e., the class of recursive functions,
by allowing a constant symbol inf, a representation
of 00, to occur in semi-primitive recursive defini-
tions. We shall see that “semi-primitive recursion
4 oo” is the counterpart of “primitive recursion
+ minimalization” in the conventional theory, by
showing that minimalization can be described by
the new scheme.

To see that those functions on N® are com-
putable, we utilize term rewriting systems (TRSs)
as computational devices. A recursive definition is
now viewed as a TRS. The input-output relation

of the TRS program is defined through an order-

succ
succe

succe

Fig. 1. An infinite tree.

theoretic semantics, which has been investigated
in authors’ papers [6,7,8]. By the semantics, the
output of computation is defined as the limit of a
(possibly infinite) rewriting sequence of terms; the
limit is an infinite tree in general. Hence, non-
termination need not involve undefinedness.

To finish this chapter, let us see a few exam-
ples that illustrate the notion of the limit of non-
terminating rewriting sequence, and the existence

of 0o as the behavior of TRS programs.

Consider a rewrite rule
inf — succ(inf),

where the function symbol succ represents the suc-
cessor function s. This rule causes an infinite

rewriting sequence that starts from inf:
inf — suce(inf) — succ(suce(inf)) —---.

The limit of the above sequence is defined as an in-
finite tree shown in Fig. 1, which will be interpreted
as oo in N°°. The sequence itself can be interpreted

as an increasing sequence of partial numbers:
LE (L) Es(s(L) T

The next example suggests how inf can be used
in our programming. The following three rules com-
putes less-than-or-equal-to predicate:

lieq(zero, &) — true,
lteq(suce(z), zero) — false,

lteq(suce(z), succ(y)) — lteq(z,y).

With these rules, we obtain a rewriting sequence

lteq(succ™ (zero), inf)
— lteg(succ”(zero), succ(inf))

— lteq(succ™ ' (zero), inf)

— lteg(zero, inf)
— lrue,

which claims that n < oo holds for n in N. Also
in arithmetic operations, inf behaves as we expect.
For example, consider the following well-known def-

inition of addition:
add(zero,z) — =,
add(suce(z),y) — succ(add(z,y)).

It will be seen that the limits of the two rewrit-
ing sequences start from add(inf, succ” (zero)) and
add(succ”(zero), inf) are both identical with the
tree in Fig. 1. In other words, co4-n=n+o00 =00
holds for every n.

We shall develop our study of computable func-
tions on this non-standard structure (N°°,) of
numerals. Although it may seem somewhat curious,

it is tightly supported by the behavior of programs.
1. Preliminary Definitions.

1.1. CPOs and Continuous Functions.

We introduce preliminary notions on CPOs and
continuous functions, originated from [10]. For
more details of the subjects, see e.g., an accurate
tutorial in [1].

Let (D,C) and (D',C') be partial orders.
A function ¢:D* — D' is said to be mono-
tone if d, C ey, ...,d, Ce, implies p(d,,...,d,) [
e, €D A

oley,....e,) forany dy,...,d,,and e, ...

subset S of D is directed if it is nonempty and for
any d,,d, € S, there exists d € S such that d, C d
and d, C d. A complete partial order (CPO) is a
partial order (D, C) such that there is a least ele-
ment in D, and every directed subset .S of D has
an Lu.b. denoted by LIS.

Let (D,C) and (D',C') be CPOs. A func-
tion @: D" — D' is said continuous if for any di-

, S, of D, o(usSy,...,us,) =

rected subsets S;,..., 5,

Up(S;, ..., S,,) holds. It is known that every contin-
uous function is monotone.

An element d of a CPO (D,C) is compact if for
every directed subset S of D, d C LIS implies d C d’
for some d’ in S. Let E be the set of all compact
elements in D. We say that the CPO (D,C) is
algebraic (with base E) if for any d in D, we get
d=Uu{e|EdeCd}.

For a function ¢: D — D’ and a subset S of D,
¢|p denotes the restriction ¢ N (S x D) of p to S.

1.2. Terms and Infinite Trees.

The notion of infinite trees is introduced informally.
A precise treatment of the notion is found in [2].

Let F', B, and X be the set of unknown func-
tion symbols, base function symbols, and wvariable
symbols, respectively. These three sets are mutu-
ally disjoint, and each symbols are associated with
a natural number, called arily. The set F' is given
by F = |, F,, where each F, is a countable set of
n-ary symbols, and X is a countable set of nullary
symbols.

An (F'U B, X)-tree is a finite or infinite tree
such that its nodes are labeled with symbols in
FUBUX, and the number of sons of a node is
equal to the arity of the label. We denote the set
of (F U B, X)-trees by T (F U B, X), and the set
of finite (F'U B, X)-trees by T(FU B, X). We shall

write T (F U B) for T°(F U B, ¢), and T(F U B)
for T(FUB, $). A finite (F'UB, X)-tree is identified
with a well-formed term.

For a tree T, Var(7T) denotes the set of vari-
able symbols occur in a tree T as labels. We de-
note the set of nodes of T" by Node(T). For a tree
T, we define an order <, on Node(T') by: for all
p and ¢ in Node(T'), p <, q iff p is an ancestor of
q. For a subset P of Node(T'), we write ming(P)
for the set of minimal nodes in P under <. For p
in Node(T), T(p) and Tp «— T'] denote the label
of p and the tree one obtain by replacing the sub-
tree of 7' with root p by T”, respectively. Finally,
RV EVE T

each a; in T" has been substituted by T}, simultane-

T,/z,} is the tree such that for all i,

ously.

We now define the denotation of a term as a
continuous function on a CPO (D, C). For simplic-
ity, we shall treat elements in D as nullary functions
on D. For a subset G of F'U B, an interpretlation
of G (on D) is amap I: G — |J,{D" — D} such
that for any ¢ in G with arity n, I(g) is a con-
tinuous function from D" to D. We often write
gy for I(g). Let I be an interpretation of G. For
such that

n

Var(t) C {z,, ..., 2,}, a function ¢;**": D" — D

any distinct variable symbols z,,...,z

is defined inductively by:
(1) Ift = =z, for some i, then, (7" (dy, ..., d,) =
d; for any d, ..., d,,.
(2) If t = g(¢;,..,t,,) for some g and ¢,...,t,,
£ (dy, o d) = gy(eq,

let ¢; = (¢;)7" """ (d,, ..., d,) for each i.

¢,,) where we

Proposition 1.2.2. For any interpretation [

of G and any t in T(G, {=,,...,z,}), the function

T1,en®n .
if" * is continuous. (]

2. Recursive Functions.

2.1. Completion of Natural Numbers.

We now construct the ordered set {N*°, C) men-
tioned in Introduction.

Let N be the set of natural numbers, and let
N® ={{n}| n € N}
U{{kln<keN} nenN}
u{¢}.

We define an order " on N® by: dC d iff dD d’
for d and d’' in N*°. We shall identify a singleton
{n} with n and denote a set {k| n < k} by n1; the
latter is called a partial natural number, which can
be understood as a possible output from a program
running. The set {n] | n € N} of all partial natural
numbers is denoted by NT. We also write L for 0
and oo for ¢. Under the convention, we can write
N® = NUNTU{oo} and draw Fig. 2 to illustrate
the order. Note that n < m iff n{C m iff nTC mfT,
and oo = U{nf | nf€ NT}.

Theorem 2.1.1. (N, C) is an algebraic CPO
with base N U N1 and a least element L. 0

Lemma 2.1.2. Let ¢ : N® — N be a function
such that ¢|y, 5 Is monotone. Then, ¢ is continu-

ous iff p(o0) = LU{e(nT)| nT€ NT} O

There are two properties on functions on N*°
to be defined. We say that an n-ary function ¢ is
stable if (N, ...,N) C N. This notion corresponds
to the totalness of functions in the conventional the-
ory. An n-ary function ¢ is strict (w.r.1. the i-th ar-
gument) if o(dy, .., d;_;,L,d;,,,...,d,) = L holds
for any dy, ..., d;_;,d; 4, ..., d,, in N%.

Let us define the successor function s on N*°
as follows: s(n) = n+1 and s(n]) = (n+ 1)1

for all nin N, and s(c0) = co. Note that N* is

0 Rt
N /
! €1
Fig. 2. An CPO (N®,).

partitioned into two well-founded s-chains N and
NT, and a singleton {oo}. Clearly, co is a unique
fixedpoint of s. It is the successor of itself and can
not be the successor of any other elements. The

function s plays an essential role together with C.

Theorem 2.1.3. The successor function s is sta-

ble, continuous, and not strict. O

2.2. Semi-Primitive Recursion.

We shall now formulate semi-primitive recursion,
together with primitive recursion, in a more formal
way than the conventional framework; it will be
interpreted as a method to define continuous func-
tions on N°°.

An equation (on T(F U B, X)) is a pair (¢, u)
of terms in T(F U B, X), which will be written as
t = u. TFor a set E of equations, we denote, by
Fun(F), the set of unknown or base function sym-
bols that occur in equations of E. Let I be an
interpretation of a set G of function symbols such
that G D Fun(E). We say that I satisfies E if for
any ¢ = u in E, {7977 = w7 """ holds with
{z,,...,2,} = Var(t) U Var(u).

From now on, we suppose that the set B con-
sists of zero and succ with arities 0 and 1, respec-

tively. We denote, by Ap, the standard interpreta-

tion of B such that zero — 0 and succ s s.

Definition 2.2.1.
inition (SPRD) is a set of equations on T(FUB, X)

A semi-primitive recursive def-

defined inductively as:

(1) An empty set is an SPRD.

(2) Let E, be an SPRD and G = Fun(E,)UB. For
a set E| of equations, E,U E, is an SPRD iff
for some function symbol f € F —Fun(E,) and
mutually distinct variable symbols z,, ...z,
one of the following conditions holds:

(2a) for some t in T(G, {2, ...2,}),

t},

(2b) for some t,1,,..,t, in T(G,{z,,..,z,})

and v in T(G, {y,z,, ..., 2, }),

E = {f(:cl,...,:cn) =

E = {f(zero, Ty, 2,) = 1,

f(suee(zy), zq, ..., 2,) (*)
= u[f(2y,t508,)]}

A primitive recursive definition (PRD) is an SPRD

such that whenever the case (2b) is applied, t, =

Z,,...,t, = x, are satisfied. O

The next lemma claims, roughly, that the sys-
tem of equations in the form (*) uniquely deter-
mines a continuous function represented by f when-
and u represent continuous func-

ever t,1,,...,1,

tions.

Lemma 2.2.2. Let E, be a set of equations given
by (x), H be any set of function symbols such that
f ¢ H and u,t,t,,...,t, € T(H,X), and I be any
interpretation of H on N*. Then, an interpreta-
tion I of H U {f} that satisfies the following condi-
tions uniquely exists.

(1) I extends I, and satisfles E,, and,

(2) fi(L,4d,,...,d,) = L holds for any d,, ...
N, 0

,d, in

This lemma can be shown by induction on N

and on N 1, and Tarski’s fixedpoint theorem. It

help us to formulate an interpretation specified by

an SPRD:

Definition 2.2.3. For an SPRD E, the deno-

tational interpretation of E, denoted by A, is an

interpretation of Fun(E)UB defined inductively by:

(1) Ag=AgifE=¢.

(2) Otherwise, there are a partition {Ey, E,} of E
such that B is an SPRD, and f € F—Fun(E,).
There are two subcases:

(2a) IFE, = {f(z},...,2,) = t}, then, Ap =
Ap, U{f =12),
(2b) If E| is of the form (x), then, Ag is I in
Lemma 2.2.2 with H = Fun(E,)U B and
Iy =Apg,.
0

Theorem 2.2.4. For any SPRD E, the denota-

tional interpretation A g satisfies E. O

Definition 2.2.5. An n-ary function on N is
semi-primitive (resp. primilive) recursive if it is in

the range of Ay for an SPRD (resp. PRD) E. [

Theorem 2.2.6. Every semi-primitive recursive

function Is continuous. (]
It can also be shown that:

Theorem 2.2.7. Every semi-primitive recursive

function is stable. (]

About the relation between semi-primitive and
primitive recursion, we can show that they have the
same descriptive power as far as we compare them

from the conventional point of view. That is,

Theorem 2.2.8. For any n-ary semi-primitive
recursive function o, there is an n-ary primitive
recursive function w such that ¢ N (N" x N) =

TN(N" x N). |

Nevertheless, we conjecture that: The class of

semi-primitive recursive functions properly includes
the class of primitive recursive functions.

The reason to treat semi-primitive recursion
will be seen later in this section and the next sec-
tion. ’

Let us see some important examples of semi-
primitive recursive functions. In those examples,
we shall not name an SPRD and write merely f,
for a function symbol f, instead of e.g. f,_; each
function symbol will be understood as a represen-

tation of a particular function on N°.

Projection. The k-th projection uf from (N°°)"

is simply defined by
Up(@yy ooy Tpyy ey Tpy) = T

This projection function is not strict (w.r.t. any ar-
gument except the k-th). One who needs a strict
“projection”, say ﬁg, should define it by primitive

recursion such as

ﬂg(zero, z,) T,

- ~2
W (suce(x)), zy) = gz, T,).

From Lemma 2.2.2, we have (ﬁg)A(.L,d) = 1 for
any d € N®. Then, by induction on N1 and The-
orem 2.2.4, we obtain (@2),(n1,d) = L for any
n1€ N 1. Finally, by the continuity and Lemma
2.1.2, we get (@2),(00,d) = L. t

Degeneration. The degeneration function defined
below maps every n € N to n and every d ¢ N
to L. This function will project our results on the

functions on N® to the conventional world.
degen(z) = @(z,z).

Conditional. The following defines the condi-

tional function with true represented by 0 and false

1 Strictly Speaking, ﬁg is not a projection.

represented by any d € N — {0, L}.

if (zero, z,, x,) z,,

Il

if (succ(z), &y, z,) z,.

Bounded minimalization. Let = and § be
(k + 1)-ary functions on N° and write i for a k-
tuple {n,...,n;) in N*. We say 8 is a bounded
minimalization with respect to = if for any m € N
and 7 in N k,
m<in{i € N| =(i,7) = 0}
B(m,#) = it % <m =i, i) =0,

m+ 1 otherwise.

Lemma 2.2.9. For any semi-primitive recur-

sive function =, there is a bounded minimalization
w.r.t. = which is semi-primitive recursive. If 7 is
represented by a function symbol p, then the follow-
ing two SPRDs define the bounded minimalizations

represented by symbols b, and b,,:

by (zero, &,y) = if(p(y, %),y succ(y)),
by (suce(z), &,y) = if (0(y, ¥), v,
B (2,2, succ(®),
EP(x,i’) = B;(a:,a':', zero),
and
b;(zero, %,y) = if(p(y, &), zero, succ(zero)),
by (suce(z), £,y) = if (p(y, &), zero,
suce(t} (2,7, suce(y)),
b, (2, %) = by (x, Z, zero).
I

As seen below, (b)), and (b,), are not iden-
tical in general. Suppose that there is d such that
w(m,ci) is in N*° — {0, L} for all m. Then, for any
nt, (b)a(n 1,d) = (n + 1)1 although (b,)alnt
,(T) = L. Moreover, we have (bP)A(oo,[zy.—_ oo and

(I_JP)A(oo,J) = L for the d.

Note that the above definitions are not PRDs
but SPRDs. Although we can define bounded min-
imalization by PRDs, we shall need the above defi-

nitions in the next section.

2.3. Minimalization and Recursion.

In this sectioﬁ, we extend the class of functions on
N dealt with, to obtain the general class of com-
putable functions. In the conventional theory, one
introduces the operation of minimalization for the
purpose. In our theory, however, we do not require
it since we can describe it by semi-primitive recur-
sion with a constant co.

To the end, we first extend our equational lan-
guage by adding a new constant symbol (nullary
function symbol) inf to the set B of base function
symbols. Let B;,, = Bu{inf}; the standard inter-
pretation Ap,., of By,p extends Ap and maps inf

to oco.

Definition 2.3.1.
is a set E of equations on T(F U B, ;, X) defined
For an RD F, the

A recursive definition (RD)

in the same way as SPRDs.
denotational interpretation Ay of E is also defined
similarly. An n-ary function on N*° is said to be
recursive if it belongs to the range of Ay for some

RDE. O

Theorem 2.3.2. For any RD E, the interpreta-
tion Ay, satisfies E. [

Theorem 2.3.3. Every recursive function is con-

tinuous. O

There exist recursive functions which are not

semi-primitive recursive, because non-stable func-
tions can be defined by RDs. The following RD

defines a representation undef of L:

undef = degen(inf).

Let = be a (k + 1)-ary function on N®. A
minimalization with respect to w is a k-ary func-
tion g that satisfies: For any i € N* such that

w(m, @) = 0 holds for some m € N,
u(d) = m(in{m € N| n(m, @) = 0}.

Theorem 2.3.4. Ior any recursive function w,
there is a recursive minimalization w.r.t =. Both of

the following RDs give it if 7 is represented by p:
My (T, Ty) = Ep(oo,:r:l, ey B),

and

mp(afl, e By) = bp(oo,:cl, B
O

Hence our class of recursive function is closed
under minimalization, and clearly it contains every
primitive recursive functions. Although it is still
not known if this class of functions is the least one
among such classes, the result in the next chapter

suggests the positive answer.
3. Computability of Recursive Functions.

3.1. Term Rewriting Systems.

We briefly introduce some definitions and notations
on term rewriting systems. See e.g. [4] for more
details.

A rewrite rule is a pair (t,u) of terms in
T(FUB;,;,X) such that ¢ ¢ X and Var(t) D
Var(u) holds. We write t — u for a rewrite rule
(t,u). A term rewriling system (TRS) R is a set
of rewrite rules. A term s is called a redez of R if
for some t — u in R, t matches s. We denote the
reduction relation in It (on T(FUB,,;, X)) by — R

and the reflexive-transitive closure of — by —g-

A TRS R is said lefi-linear if for each t — u
in R, no variable symbol occurs in ¢ twice or more.
R is non-overlapping (non-ambiguous) if for every
t —uand ¢’ — ¢ in R, ¢ does not unify with any
non-variable subterm s of ¢’ except the trivial case

that (t — u) = (' =) and t’ = s.

3.2. Algebraic Semantics.

To see that recursive functions are computable, we
first introduce the algebraic semantics of left-linear
and non-overlapping TRSs [6,7,8]. It will appear in
a much simpler form than the literature since RDs
have a quite restricted form as a TRS.

Let C be a set of function symbols. A TRS R
is called a constructor system on C if for all ¢t — u
in R, t = f(t;,..,t,) is satisfied for some f & C
and t;,..,t, € T(C,X). A constructor system R
is perfect if for every f in Fun(R) — C and every
tyy oty i T(C), f(ty,...,t,) is a redex of R.

Lemma 3.2.1. For any RD E, E, is a left-
linear and non-overlapping TRS. Moreover, it is a

perfect constructor system on B. O

In what follows, we let E be an RD and
B, = EU{inf — succ(inf)}. To formalize the
computational semantics of E using a TRS £, ;,
we again extend the set of base function symbols.
Let © be a new constant symbol, By = B U {Q}
and Bg,;, . = BU{Q,inf}. Let us define an or-
der < on T®(F U Bn,z‘nf) by: T < U iff for some
P C Node(U), T = Ulp « Q| p € miny(P)]. This
ordering is due to [9].

Proposition 3.2.2. (T™(F U Bg)y X)
and (T (Bg), <) are algebraic CPOs with bases
T(F U Bg ;,;) and T(Bg), respectively. In both

cases, the least element is Q. (]

Define a function wp, = from T(FUBg ;) to

T(Bg,) as below: For each t € T(F U Bg ;,,,),
YEiny @)=tp—Qlpe mtin(P)],

where P = {p € Node(t)| t(p) € F U {inf}}.1 If
t "";3;“, u, then, we call wg,., (u) an approzimate
normal form of t.

Next, we define the symbolic value of L in E, .,

denoted by Valg, (1), by:

Valg, (t) = W{wg, (u)] 1 _**E.-,,, u}.
We can show that ValEmf is a total monotone func-
tion from T(FU B, ; o) to T (Bg). This function
defines the evaluator for a program, i.e., a term in
T(Fu Bz'nj,ﬂ)‘ Approximate normal forms are par-
tial outputs from the evaluator running and their

Lu.b. is the eveniual output as the limit.

3.3. Computational Interpretation of RDs.

Using the function ValEi"!, we formulate the func-
tions on N°° computed with an RD E.

The CPO (T™(Bg), =) is considered as the
output domain of our evaluator. It is easy to see
that the CPO is isomorphic to (N, C); We let v,
be the unique continuous bijection from (N%°, L)
to (T'°(Bg), <), which is a Bg-isomorphism in the
sense of [2,8].

Next, we shall construct the input domain.
Remark that Valg (T(By) L {inf}) = T(Bg)
holds for every RD E.
order Lp ~on T(Bg) U {inf} by: t Cp |
Valg () = Valg, (u). Then, it can be eas-
ily shown that (T'(Bg) U {inf}, EE.',.;) is a CPO
isomorphic to (N®, C); We denote, by v;, the

Let us define a pre-

u iff

unique continuous bijection from (N, L} to

(T(Bﬂ) U {inf}x gEinI).

+ It can be shown that YE.., is exactly one ap-
peared in [6,7,8] using the fact that £y, ; isa perfect

constructor system and ¢ is in T(F U Bn‘i”f).

Definition 3.3.1. For an RD E, the compu-
tational interpretation I'y of E is an interpreta-
tion of Fun(E) U B;,, defined as follows: For f €

Fun(E)U B,,,; with arity n,
Jrg(dy,.nd))
=7, (Valg,,, (F(:(dy), - %:(dn)),
ford,,...,d, in N*.

Theorem 3.3.2. Forany RDE,I'p=Ap 0O

4. Concluding Remarks.

From the Theorem 3.3.2, we can conclude that re-
cursive functions are computable; Leaving the term
“computable” to mean intuitively effective, we shall
verify the above. ~An immediate consequence of
the theorem is that a recursive functions is com-
putable if the corresponding Valg, |rpus,,, q) is-
The latter would be, however, revealed true from
the following observation. First, one-step rewriting
and w Einy is clearly effective since E' is a finite set.
Second, there is a rewriting strategy (i.e., an ef-
fective and deterministic restriction of the relation
— Ew) that prevents non-terminating enumeration
of —-»EW by the evaluator approaching the Lu.b. of
{wg,,, (W)t —-r*E’M u} (see [8]); it is a kind of lazy

evaluation methods.

Acknowlidgements.

The authors wish to thank Prof. Namio HONDA
and Prof. Teruo FUKUMURA for their encourage-
ment, Prof. Toshiki SAKABE and Prof. Tomio HI-
RATA for their helpful discussions, and Dr. Ken
MANO, Dr. Mizuhito OGAWA and Dr. Satoshi
ONO for their stimulative comments and help to
survey related work. Their work is partly supported
by the Grants from Ministry of the Education, Sci-
ence and Culture of Japan (Scientific Research on
Priority Areas No. 63633008, Grant-in-Aid for En-
couragement of Young Scientists (A) No. 01750329)

Referrences.

[1] H.P. Barendregt, “The lambda Calculus -
Its Syntax and Semantics,” 2nd ed., North-
Holland (1984).

[2] B. Courcelle, “Fundamental Properties of Infi-
nite Trees,” Theoretical Computer Science 25,
pp. 95-169 (1983).

[3] A. Church, “The Calculi of Lambda Conver-
sion,” Annals of Math. 6, Princeton University
Press (1941).

[4] G. Huet, “Confluent Reductions: Abstract
Properties and Applications to Term Rewrit-
ing Systems,” J. ACM 27, pp. 797-821 (1980).

[5] S. Kleene, “General Recursive Functions of
Natural Numbers,” Mathematische Annalen
112, pp. 727-742 (1936) '

[6] T. Naoi and Y. Inagaki, “The Conservative
Extension and Behavioral Semantics of Term
Rewriting Systems,” Technical Research Re-
port No.8604, Department of Information Sci-
ence, Nagoya University (1986).

- [7] T. Naoi and Y. Inagaki, “The Relation be-

tween Algebraic and Fixedpoint Semantics of
Term Rewriting Systems,” Technical Report
COMP86-37, IEICE (1986).

[8] T. Naoi and Y. Inagaki, “Algebraic Seman-
tics and Comnplexity of Term Rewriting Sys-
tems,” Proc. of 3rd RTA89, Lecture Notes in
Computer Science 355, Springer, pp. 312-325
(1989).

[9] M. Nivat, “On the Interpretation of Recursive
Polyadic Program Schemes,” Symposia Math-
ematica 15, Rome, pp. 255-281(1975).

[10] D. Scott, “Continuous Lattices,” in: F. Law-

vere, ed., “Toposes, Algebraic Geometry and

Logic,” Lecture Notes in Mathematics 274,

Springer, pp. 97-136(1972).

