VI TERR 3719
TursIvERE 2719
(1990. 12. 13)

HBHER7LVA LOSEY —F 4 7 TNITY XA

o BF 7 & %k BaEH

RERAZERTER

B5% L

BHEBR AR ERERBENCENTE LD TEE N RTH 5. KFRcIE
RfrTF ok Y EEHER A TEKLL oy 37 V4 E2HBRT VA LWL
5, KBLTH, Fees 3B NxNogD NoE#ERT7 V4 Lc NEOESR
OV —5F4v 7%k OT)BHETIT>7TVITY XAZERT.)

A Fast Sorting Algorithm on a Reconfigurable Array

Koji NAKANO Toshimits MASUZAWA Nobuki TOKURA
Faculty of Engineering Science, Osaka University

Toyonaka-shi, Osaka 560, Japan

ABSTRACT

A bus whose configuration can be dynamically changed is called a recon-
figurable bus. ‘A reconfigurable array is a processor array on which processors
arranged to a 2-dimensional grid and connected by reconfigurable buses. We
show an algorithm which sorts N elements in O(T) time on a reconfigurable
array of size N x Nlog™ N.

1 Introduction

Sorting is one of the most important problems in com-
puter science because there are many problems whose
time complexity depends on that of sorting. It is well
known[2] that any sequential sorting algorithm needs
Q(nlogn) time !, and there exist optimal sorting algo-
rithms. To speed-up sorting, parallel sorting algorithms
have been investigated [4] [5] [7]. For example, the op-
timal parallel sorting algorithm which sorts N elements
in O(log N) time using N processors is well known as
the AKS sorting network[3]. A sorting network is a fea-
sible model, but the coefficient of log NV is so large that
this algorithm seems to be impractical. Another opti-
mal parallel algorithm is well known as the Cole’s op-
timal merge sort which sorts N elements in O(log N)
time on the CREW PRAM with N processors [9] [10].
The coefficient of log N is not so large, but the CREW
PRAM is regarded as an impractical parallel machine.
On the other hand, a logarithmic time sorting algorithm
on more practical model is known [15]. The algorithm
is based on an enumeration scheme for parallel sorting
as follows: to sort N elements, each element is simulta-
neously compared to all the others in constant time by
using N (I —1) processors, and the rank of each element
is computed in O(log N) time by enumerating elements
whose values are smaller than that of it. Hence, N ele-
ments can be sorted in O(log N) time using N(N — 1)
processors. In this paper, we present a sub-logarithmic
time sorting algorithm based on an enumeration scheme.
Sub-logarithmic time is achieved by computing the rank
of elements faster.

Recently many processor arrays with buses attract
considerable attention. It is known that many prob-
lems can be solved fast on processor arrays with buses
because buses decrease the diameter of networks and
enhance the communication capabilities. For example,
finding maximum [1] (8] [12] [16], finding median [16],
sorting [12] [16], image processing [8] [12] [17] and com-
ponent labeling [11] have been efficiently solved. The
bus system used these algorithms is static in the sense
that the configuration of buses never change during the
execution of the algorithms.

In this paper we deal with a reconfigurable array that
consists of processors arranged to a 2-dimensional grid
and connected by reconfigurable buses(Fig. 1). A re-
configurable bus is a bus whose configuration can be
dynamically changed. Some algorithms on a reconfig-
urable array are known [13] [14] [20]. For example, it is
known [20] that N elements can be sorted by an enu-
meration scheme on a 3-dimensional reconfigurable ar-
ray of size N x N x N. This algorithm can be executed
on a 2-dimensional reconfigurable array of size N x N2.
In this paper, we reduce the number of processors and
improve this algorithm. Firstly, we show an algorithm
for summing up N binary values in constant time on
a reconfigurable array of size N x log? N. Secondary,

tThroughout this paper, the log to the base 2 is used.

Figure 1: Reconfigurable array

by using this algorithm, we show that N elements can
be sorted in constant time on a reconfigurable array of
size N x Nlog? N. Lastly, we obtain more generalized
algorithm which sorts N elements in O(T") time on a
NxN log(T) N reconfigurable array !. This implies that
N elements can be sorted in constant time on a reconfig-
urable array of size N x N 1og®® N and in O(log" V)
time on a reconfigurable array of size N x N.

2 Models and Notations

A reconfigurable array (shortly, an array) consists of pro-
cessors arranged to a 2-dimensional grid and connected
by reconfigurable buses. An array is formalized as fol-
lows. Processors on an array of size N x M are denoted
by PE(i,j) 0 < i < N—10<i< M—1). As
shown in Fig. 1, it is considered that PE(3,0) (0 <
i < N —1) is located at the top row of an array and
PE(0,5) (0 £ j £ M — 1) is located at the leftmost
column of an array. Each processor on an array is the
RAM (random access machine) extended by the instruc-
tions for changing configuration of buses, sending data
to buses and receiving data from buses. Each proces-
sor has several ports denoted by U(k), D(k), L(k) and
R(k) (0 £ k £ P —1). The ports face to each other
are connected by buses, that is, D(k) on PE(3, j) and
U(k) on PE(i,j + 1) are connected. Similarly, R(k) on
PE(i, j) and L(k) on PE(i + 1,5) are connected. It is
assumed that each processor on an array can have the
constant number of ports, that is, P is constant. All
processors on an array work synchronously and execute
the following instructions in order in a unit time:

Phase 1 Connecting its own
buses(Fig. 2).

ports by local

Phase 2 Sending at most one piece of data to each
port.

Phase 3 Receiving data from each port. The data sent
at the previous phase are received at this phase.

Let log™® = loglog:--log and log" n be the smallest k such

k times
log(k> n <1

Figure 2: Example of connecting ports

Phase 4 Executing the constant number of instruc-
tions of the RAM.

In an array, all processors execute these phases syn-
chronously, that is, no processor executes a phase before
all processors finishing the previous phase. As shown in
Fig. 2, after connecting ports of each processor by lo-
cal buses, it can be regarded that the processors are
connected by static buses. Several bus models are pro-
posed [11] in terms of simultaneous sending on a static
bus system.

Exclusive It is prohibited that two or more processors
simultaneously attempt to send to the same bus.

Common If two or more processors simultaneously at-
tempt to send to the same bus, they must be send-
ing the same value.

Arbitrary If several processors simultaneously at-
tempt to send to the same bus, then one of them
succeeds and sends its value actually.

Throughout this paper, we use the common model as
the model of a reconfigurable bus. For a cleaner pre-
sentation of the algorithms, we will omit the floor and
ceiling operators necessary to ensure that all values are
integers.

3 Basic Property and Basic Al-
gorithms

In this section, we show a basic property and basic al-
gorithms for our sorting algorithm. At the end of this
section, we show an algorithm that sums up binary val-
ues in constant time.

3.1 Basic Property

The following lemma implies that the difference within
the constant factor of the number of processors can be
ignored.

Lemma 3.1 Any ezecution in a unit time on an array
of size O(N) x O(M) can be simulated in a unit time on
an array of size N x M.

Figure 3: Leftmost finding

Proof. Let A and B be an array of size c; N X c; M
(where ¢; and c; are constant positive numbers) and an
array of size N x M, respectively. Since both ¢; and
¢y are constant, it can be assumed that each processor
on B has max{c;,c,} times as many ports as A. Then,
each PE(z,y) on B can simulates any execution of all
PE(,j) (ae < i<alz+ 1),y <j<cly+1) o
A.. Therefore, any execution on A in a unit time can be
simulated on B in a unit time.]

Even if we regard that the time complexity is affected
by the number of the local computation, any execution
in a unit time on A can be simulated in O(c;c;) time on
B. Since cc; is constant, B can simulate A in constant
time.

3.2 Leftmost Finding

We consider the problem to find the leftmost element
whose value is 1, when a binary sequence of length N is
given. The problem to finding the leftmost element on
an array of size N x 1 is defined as follows.

Input Let B =< a(0),a(1),...,a(N —1) > be a binary
sequence. Each a(i) (0 € i < N — 1) is given to
PE(, 0).

Output All processors know m such that m =
min{i|a(¢) = 1}. If there does not exist 7 such that
a(i) = 1, all processors know m(= N).

The leftmost finding algorithm follows (Fig. 3).
[Algorithm for Leftmost Finding)

Stepl if a(é) = 0, then L(0)—R(0) : PE(i,0). {means
that if a(s) = 0, then PE(4,0) connects L(0)
and R(0)}
if a(s) = 1, then R(0) «— 1: PE(¢,0). {means that
if a(i) = 1, then PE(i,0) sends 1 to R(0).}
L(0) — c(i) : PE(3,0) (0 < ¢ < N —1). {means
that each PE(4, 0) receives the data from L(0),

and stores it to ¢(1) that is a local memory cell
of PE(i,0).}

if PE(4,0) cannot receive any data, let c(i) « 0.

Step2 if a(i) = 1 and (i) = 0, then PE(3,0) broad-
casts 7 to all processors.

if a(N—1) = 0 and ¢(N—1) = 0, then PE(N -1,0)
broadcasts N to all processors.

[end of algorithm]

The next lemma holds.

773 f—

Lemma 3.2 Leftmost finding can be done in constant
time on an array of size N x 1.

Proof. 1If ¢(i) = 1 then there exists j < i such that
a(j) = 1 and vice versa. Thus, if both a(:) = 1 and
¢c(z) = 0 hold, a(7) is the leftmost element. Tf such i does
not exist, the value of all elements is 0. This completes
the proof. 0

3.3 Compression

We consider the procedure that compresses a sequence
of elements. Compression on an array of size N x M is
defined as follows.

Input Let B =< a(0),a(1),...,a(N — 1) > be a se-
quence of elements. Each element in the sequence
may take value NULL. Each a(i) (0 < i1 < N — 1)
is given to PE(i,0).

Output Let B' =< a(ig), a(é1), a(iz),... > be the sub-
sequence of B such that an element in B is in
B' if and omly if its value is not NULL. Each
PE(0,7) (0 < j < M — 1) knows a(3;) if exists.

In the compression algorithm, each column on an ar-
ray works as a stack and each processor on the top row
works as the top of the stack. From the rightmost to
the leftmost column, if an element given to a column
is not NULL, then the processors on the column push
the element on a stack. Otherwise, the processors do
nothing to the stack. After that, each processor on the
leftmost column knows the element whose value is not
NULL. The compression algorithm follows (Fig. 4).

[Compression Algorithm)]

Stepl Each PE(7,0) (0 < i < N—1) broadcasts a(7) to
the processors on the same column, PE(z, j) (0 <
isM-1).

Step2 if a(¢) = NULL

L(0) ~ R(0) : PE(i,) (0 < j < M~ 1).
if a(i) # NULL
D(0) - R(0) : PEGi,) (0< § < M — 1)
U(0) — L(0): PE(3,/) (0<j < M-1)
U(0) « a(i) : PE(5,0). -
L(0) — ¢(j) : PE(0,5) (0 < j < M = 1). {c(j)
contains a(z;).}
[end of algorithm)]

The following lemma holds.

Lemma 3.3 Compression can be done in constant time
on an array.

Proof. The proof can be done by induction'éasi]y. =}

Figure 4: Compression

3.4 Prefix Remainder Computation

The prefix remainder computation of a binary sequence
on an array of size N x M is defined as follows.

Input Let < a(0),a(l),...,a(N — 1) > be a binary
sequence of length N. Each a(i) (0<i< N —1)is
given to PE(s,0).

Output Each PE(:;,0) (0 < ¢ < N — 1) know
(Zk-pa(y)) mod M. .

In the algorithm for computing the prefix remainder,
each column on an array works as a cyclic shift register
of size M. It is considered that the cyclic shift register
is placed vertically. On the leftmost column, only the
top element of the cyclic shift register is 1. On each col-
umn, if the element given to the column is 1, then the
processors on the column shift the cyclic shift register.
Otherwise, the processors do nothing to the cyclic shift
register. Then the prefix remainder is equal to the posi-
tion where 1 places on the cyclic shift register. The al-
gorithm for computing the prefix remainder is described
as follows(Fig. 5). .

[Algorithm for Computing Prefix Remainder]
Stepl Each PE(7,0) (0 < ¢ < N — 1) broadcasts af(i)

to the processors on the same column.
Step2 ifa(i) =0,

L(0) ~ R(0) : PE(;,5) (0< j S N - 1).

if a(i) = 1, '
L(0) - D(0) : PE(i,j) (0< j < M —2)
U(0) - R(0) : PEG,) (1 < j < M—1)
U(1) - D(1) : PE(i,j) (1 < j < M —2)
D(1) - R(0) : PE(i, 0)
L(0) - U(1) : PE(, M - 1).

L(0) — 1: PE(0,0).

R(0) = c(i,7) : PE(3,7) 0<j < M —1).

Step3 if c(i,7) = 1, PE(4,) broadcasts j to the pro-
cessors on the same column. : .

[end of alg(irithm]

l 1 1 0 l 1

+-+‘*‘ *-*-* =I
e R

Figure 5: Prefix remainder

Lemma 3.4 The prefiz remainder of a binary sequence
can be computed in constant time on an array.

Proof. It is sufficient to prove that for all 4, ¢(4,7) = 1
iff 324 oa(k) = j (mod M) holds. This can be easily
proved by induction. o

The CRCW PRAM with the polynomial number of
processors cannot compute even the exclusive-or of the
binary sequence in constant time[6]. Hence, an array is
more powerful than the PRAM with regard to the prefix
remainder computation.

3.5 Remainder Computation

We show an algorithm for computing the remainder of

the sum of a binary sequence on an array. The w-
remainder computation on an array is defined as follows.

Input Let < a(0),a(1),...,a(N — 1) > be a binary
sequence of length N. Each a(i) (0 <i< N —1)is
given to PE(3,0).

Output Let z = 3N 1 a(i). All processors know r in
the congruence z =r (mod w).

From Lemma 3.4, M-remainder can be computed in con-
stant time on an array of size N x M. We will show
that the remainder from a lager modulus can be com-
puted in constant time. The basic idea is as follows.
Consider that an array of size N x M is divided into
VM subarrays of size N x 1, N x 2,---, N x /M. To
express z by the RNS (residue number system), we ap-
ply the algorithm in Lemma 3.4 to each subarray, and
then ¢1,¢y,...,c 37 can be computed such that z = ¢;
(mod i). If ¢i,ca,...,c /37 are known, the remainder
from a larger modulus than M can be computed. We
utilize the Chinese remainder theorem and the prime
number theorem, famous theorems in discrete mathe-
matics, for analyzmg how large modulus come to be by
using this method.

Theorem 3.5 (Chinese remainder theorem)

Let p1, pa, - .-, bm be mutually prime positive integers .
If b1, b3, ..., by are known as follows,

z = b (modp)

z. = by (mod py)

z = by (mod p)

then r can be computed such that z = »
(mod pipz -+ - pm)- a

From the Chinese remainder theorem, the following
corollary holds.

Corollary 3.6 Let lem(m) be the L.C.M. (least com.-
mon multiple) of {1,2,...,m}. If the following congru-
ences hold for integers z and y,

z = y (mod1)
z = y (mod?2)
z = y (modm)

then the congruence z =y (mod lem(m)) holds. O

To analyze how large lem(m) is, we use the prime
number theorem.

Theorem 3.7 (Prime number theorem) Let -7r(n)
be the number of prime numbers less than or equal to
n. The following equality holds:

lim m(n)lnn
) n=—+00 n

= 1,
where In is the natural logarithm.]

Thus, 7(n) = ©(n/logn) holds. From the prime num-
ber theorem, the following lemma holds.

Lemma 3.8 The equality lem(n) = 290 holds.

Proof. Let {p1,p2,....Pm} (M1 =2<p2< - <pm <
n,m = m(n)) be the set of primes less than or equal
to n and a3, ay,...,an, be the integers such that p;* <
n < p;%*! holds. From the prime number theorem,
m = O(n/logn). Thus,

kem(n) = pp™ - p
< n"
_ n(')(n/]ogn)

29(71)'

Let m’ be the integer such that p,y < n/2 < pprg1. From
the prime number theorem, m—m' = ©(n/logn). Thus,

lem(n) > pmit1Pmit2’ " Pm

> (n/2)®('nllogn)
= 90m)
Therefore, lem(n) = 29 holds. o

The algorithm for computing the remainder from a
lager modulus is described as follows.

[Algorithm for Computing lem(v/M)-Remainder]
Consider that an array of size N x M is partitioned
into v/M ‘subarrays of size N x 1, N x 2,. LN x
VM. PE(i,) on an subarray of size N x k' is de-
moted by PE,(%, 7).

— 75—

Stepl On each subarray of size N x k, computing r
such that z = r, (mod k) by computing the pre-
fix remainder. When the computation of prefix re-
mainder completed, PE;(N —1,0) broadcasts ry to
all processors on the kth subarray.

Step2 Computing the prefix remainder of the sequence
< 1,1,...,1 > on each subarray of size N x k. After
that, each PEg(4,0) knows 7y ; in the congruence
i=ry; (mod k).

Step3 On each ith column, comparing 4 and r}; and
examining whether r, = r{; holds for all k¥ (1 <

k < VM)

Step4 Finding the minimum i provided that r, = r};
for all k£ (1 < k < VM) by executing the left-
most finding algorithm. That is, computing r =
min{i|r; = r}; for all k}. And broadcasting r to all
processors on an array. After that, all processors
know r, the solution of lem(v/M)-remainder.

Step5 Finding the minimum ¢ > 0 provided that r} ; =
0 for all k (1 < k < VM) by leftmost finding. That
is, computing w = minf{é|r} ; = 0 for all k}. If such
w (= lem(v/M)) exists, broadcasting w.

[end of algorithm]

For computing lem(v/M)-remainder only, we do not
have to execute step5. But, for the application to the
following algorithm that computes the sum of a binary
sequence, lem(v/M) is computed in step 5.

Lemma 3.9 The problem lem(v/' M)-remainder can be
solved in constant time on an array of size N x M.

Proof. For all k (1 < k < VM), the congruence
z = r (mod k) holds. Therefore, from Corollary 3.6,
the congruence z = r {(mod lem(v/M)) holds. This
completes the proof. o
From Lemma 3.9, lem(vkM)-remainder can be com-
puted in constant time on an array of size N x kM.
Hence, from Lemma 3.1, the following lemma holds.

Lemma 3.10 The problem lem(©(v'M))-remainder
can be solved in constant time on an array of size N x M.
’ m]

From Lemma 3.8, there exists a constant number &

such that lem(y/klog? N) > N. Therefore, the following
corollary holds.

Corollary 3.11 The sum of a binary sequence of size
N can be computed in constent time on an array of size
- N xlog?N. o

Proof. To compute the sum of a binary sequence, the
lem(y/klog? N)-remainder computation is repeated for
k=1,2,... in order until lcm(y/klog? N) > N holds.

At the end of the iteration, z = (z mod lem(y/klog® N))
holds because z is at most N. Since k is constant, the
number of the iteration is constant. Therefore, the sum
of the binary sequence can be computed in constant
time.) a

A more efficient algorithm can be obtained if the algo-
rithm in Lemma 3.9 is modified as follows: for the prime
numbers py, pa, . . . defined in the proof of Lemma 3.8, an
array is divided into subarrays of size N X p1, N X pa, ...
and z mod p;,z mod p,, ... are computed on them. In
this algorithm, the modulus come to be 29(Vlogh)
Hence, in Corollary 3.11, the size of an array is reduced
to N x log? N/loglog N. But this modification makes
algorithm more complicated and does not lead asymp-
totical improvement of our sorting algorithm.

4 New Sorting Algorithm
Sorting on an array is defined as follows.

Input Let < a(0),a(1),...,a(N — 1) > be a sequence
of elements. Each a(i) (0 <7 < N — 1) is given to
PE(, 0).

Output Let < a(ro),a(r1),...,a(ry—1) > be the sorted
sequence of the input sequence, that is, a(r;) <
a(ri41) for all 4. Bach PE(4,0) (0 < i < N —1)
knows a(r;).

Without loss of generality, it is assumed that the el-
ements are distinct, that is, for all ¢ and j (¢ # j),
a(i) # a(j) holds. The rank of a(i), the number of
smaller elements than a(i), is denoted by r;.

4.1 Constant Time Sorting

At first we show a constant time sorting algorithm on
an array of size N x Nlog? N. Sorting is done along
an enumeration scheme, that is, by computing the rank
of each element. To compute the rank of each element,
we use the algorithm for computing the sum of a binary
sequence. From Corollary 3.11, the sum of a binary
sequence of length N can be computed in constant time
on an array of size N x log? N. Therefore, the ranks of
all elements can be computed in constant time on an
array of size N x Nlog? N. The algorithm is described
as follows.

[Constant Time Sorting Algorithm] Consider that
an array of size N x N log? N is divided horizontally
into N subarrays of size N x log? N. We denote
PE(4,j) on the kth (0 < k < N — 1) subarray by
PE,(i, 7), that is, PE(4, j) means PE(i, klog® N +
9)-

Stepl Each PE(7,0) broadcasts a(i) to the processors

on the same column. And each PEg(k,0) broad-
casts a(k) to all processors on the same row.

Step2 Each PEy(4,0) compares a(k) and a(d). If a(k) >
a(i), let ry; < 1. Otherwise, let ry; < 0.

Step3 Computing the rank of a(k) i.e. re = T7ig' ;s
on each kth subarray in constant time by computing
the sum of the binary sequence.

Step4 Each PEg(ry,0) sends ryth element, a(k), to
PE(Tk,O).

fend of algorithm]
The following theorem holds.

Theorem 4.1 N elements can be sorted in constant
time on an array of size N x Nlog’ N. O

4.2 General Sorting Algorithm

We show a sorting algorithm on an array of size less
than N x Nlog? N. On an array of size N x M (M <
Nlog? N), the rank of each elements cannot be com-
puted in constant time. But the remainder of the rank
of each element can be computed by the remainder com-
putation, so the elements are classified by the remainder
of their ranks and are partitioned into the groups. And
the sorting algorithm is applied to each group recur-
sively so that the rank of each element in its group can
be computed. After that, the rank of each element can
be computed from the remainder of the rank and the
rank in its group.
The sorting algorithm is described as follows.

[Algorithm for Sorting] Similarly to the constant
time sorting, consider that an array of size N x M
is divided into N (horizontal) subarrays of size
N x (M/N). And let w = lem(,/M/N). Regard-
less of the horizontal partition, if w < N, consider
that an array of size N x M is divided into w verti-
cal subarrays of size N/wx M. Each PE(3, j) on the
kth vertical subarray is denoted by PE,(7,7) (0 <
i< N/w—1,0<j< M).

Step1,Step2 Executing the same as stepl and step 2
of the constant time sorting.

Step3 Computing w-remainder of < rxp, k1, -+
i y—1 > on each the kth horizontal subarray, that
is, computing 74 such that ry = r; (mod w). In
case w > N, executing step 4 of the constant time
sorting algorithm, because r, = r} holds. Other-
wise, executing the following steps to gather ele-
ments whose ranks take the same remainder.

Step4 Fach PEj(0,kM/N) (0 < j < w—10<k <
N —1) let its local variable d;(k) «+— NULL. Since for
all k each PE;, (0, kM/N) knows a(k), let dry (k)
a(k). After that, < d;(0),d;(1),...,d;j(N = 1) >
contains all elements whose rank takes the remain-
der j

Step5 Compressing < d;(0),d;(1),...,d;(N — 1) > for
each j on each vertical subarray. After this, each
PE[(i,0) knows one of the elements whose. rank
takes the remainder j. Let s;; be the index such
that PE/(:,0) knows a(s;,).

Stepé Sorting each sequence < a(s;o), a(sj1), ---.
a(sjNjuw-1) > for all j on each vertical subarray
recursively. Let the rank of a(s;;) in the sequence

< a(s_.,-,o), a(s,-yl), cery a(sj_N/,,,_l) > be Ty Then
the rank of a(s;;) in < a(0), a(1), ..., a(N — 1) >
is 7w+ J.

Step7 Similarly to step4 of the constant time sorting.
sending a(s;;) to PE(r;,w + 7,0).

[erid of algorithm]

Theorem 4.2 N elements can be sorted in time O(T)
on an array of size N x Nlog™ N.

Proof. The correctness of the algorithm can be proved
easily by induction. We have to analyze the computa-
tion time required in this algorithm. Let u; x M be the
size of vertical subarrays after the ith iteration of the
recursive procedure. Thus, up, uy, ... are the decreasing
sequence and up = N, u; = N/lem(,/M/N) hold. In
general,u;41 = u;/lem(y/M/u;) holds. From Lemma 3.8,
there exists constant ¢ such that lem(n) > 2*/¢ for all
n > 2. Hence, w41 < ui/2V Muile holds. Thus, Uiy <
U /2V Mt holds. Let M = N(log™® N)?, then u. <
N/logTV N and u,, < N/(log"V N)2. In general,
Ungime < N/1ogT™ N and upe < N/(log!™™" N)? hold.
This can be proved by induction on i. In case 1 > 7',
Uz < 1 holds, so the number of iterations of the re-
cursive procedure is at most 2¢7" = O(T'). Because each
iteration can be done in constant time, the computa-
tion time is O(T). Furthermore, since (log™ N)? <
log@ =V N holds, the computation time is O(T) in case
M =Nlog® N. [m]
Theorem 4.2 implies the following corollaries.

Corollary 4.3 N elements can’ be sorted in constant
time on an array of size N x Nlog(o(l)) N. O

Corollary 4.4 N elements can be sorted in O(log" N)
time on an array of size N x N. O

Let us estimate the area-time complexity of our sort-
ing algorithm in Corollary 4.3. On a reconfigurable array
of size N x N log(o(m N, processors: at the top row of
each horizontal subarray must be connected by horizon-
tal buses that transfer log N bits in one unit time be-
cause the elements and the rank of elements have to be
transferred. Similarly, every vertical bus is required to
transfer log N bits in a unit time. But the other horizon-
tal buses are required to transfer only 1 bit in one unit
time, because these buses are used only for summing up
the binary sequence. Hence, the sorting algorithm needs
area A = O(Nlog N) x O(Nlog N + Nlog®' N) =

O(N?log’ N) and time T = O(1). Therefore, we get
AT? = O(N?log® N) that is slightly closed to the lower
bound AT? = Q(N?log N)[18][19].

5 Conclusions

In this paper, we have presented a fast sorting algorithm
on reconfigurable arrays. As mentioned before, our sort-
ing algorithm needs the smaller number of processors
than the previous algorithm [20]. But the previous al-
gorithm requires reconfigurable buses whose model is
exclusive. Hence the previous algorithm is executed on
the weaker model than ours.

It remains open whether N elements can be sorted in
constant time on a reconfigurable array of size N x N
or not.

References

[1] A. Aggarwal, Optimal Bounds for Finding Mazi-
mum on Array of Processors with k Global Buses,
IEEE Trans. Comput., C-35, 1, pp.62-64, 1986.

[2] A. V. Aho,]. E. Hopcroft and J. D. Ullman,
The Design and Analysis of Computer Algorithms,
Addison-Welsey,1974.

[3] M. Ajtai, J. Kolmos and E. Szemeredi, An
O(nlogn) Sorting Network, Proc. 15th ACM
Symp. on Theory of Computing, pp.1-9, 1983.

[4] S. G. AKl, Parallel Sorting Algorithms, Academic
Press, 1985.

[5] S. G. AKl, The Design and Analysis of Parallel Al-
gorithms, Prentice-Hall, 1989.

[6] P. Beame and J. Hastad, Optimal Bounds for De-
cision Problems on the CRCW PRAM, Proc. 19th
STOC, pp.83-93, 1987.

[7] D. Bitton, D. J. Dewitt, D. K. Hsiao and J.Menon,
A Tazonomy of Parallel Sorting, ACM Computing
Surveys, 16, 3, pp.287-318, 1984

[8] S.H.Bokhari, Finding Mazimum on an Array Pro-
cessor with a Global Bus, IEEE Trans. Comput.,
C-33, 2, pp.133-139, 1984.

[9] R. Cole, Parallel Merge Sort. Proc. 27th FOCS,
pp.511-516, 1986.

[10] A. Gibbons and W. Rytter, Efficient Parallel Algo-
" rithms, Cambridge University Press, 1989.

[11] K. Iwama and Y. Kambayashi, An O(logn) Par-
allel Connectivity Algorithm on the Mesh of Buses,
Information Processing, 11, pp.305-310, 1989.

[12] V. K. P. Kumar and C. S. Raghavendra, Array Pro-
cessor with Multiple Broadcasting, J. of Parallel and
Distributed Comput., 4, pp.173-190,1987.

[13] R. Miller and Q. F. Stout, Efficient Parallel Convex
Hull Algorithms, IEEE Trans. Comput., C-37, 12,
pp.1605-pp. 1618, 1988.

[14] R. Miller, V. K. P. Kumar, D. I. Reisis and
Q. F. Stout, Data Movement Operations and Ap-
plications on Reconfigurable VLSI Arrays, Proc. of
ICPP, 1, pp.205-208, 1988.

[15] D. E. Muller and F. P. Preparata, Bounds to Com-
plexities of Networks for Sorting and for Switching,
J.ACM, 22, 2, pp.195-201, 1975.

[16] Q. F. Stout, Mesh-connected Computers with Mul-
tiple Broadcasting, IEEE Trans. Comput., C-32,
9,pp.826-830,1983.

[17] Q. F. Stout, Meshes with Multiple Buses, Proc. 27th
FOCS, pp.264-272, 1986.

[18] C. D. Thompson, The VLSI Complesity of Sort-
ing, IEEE Trans. Comput., C-32, 12,pp.1171-
1184,1983.

[19] I. D. Ullman, Computational Aspects of VLSI Coni-
puter Science Press, 1984.

[20] B. F. Wang, G. H. Chen and F. C. Lin, Constant
Time Sorting on ¢ Processor Array with a Reconfig-
urable Bus System, Information Processing Letters,
34, pp.187-192, 1990.

— 78—

