VT b o 7 HERERE 37— 3
TarsI v rEE 27— 3
(1990. 12. 13)

Arrays in Miranda

WELE~—T4 v

Martin Santavy

Department of Computer Science
and Communication Engineering
Kyushu University

NHRSE T T

Abstract. We discuss a functional approach to manipulating arrays in par-
allel. We use a set of primitives that are efficiently implementable in a parallel
environment, and show that, when combined with higher-order operators, even
a very rudimentary set of primitives can be used to express algorithms in a
clean, elegant fashion that is inherently parallel. Miranda provides us with the
power and elegance of a functional programming environment and allows us

to effectively combine the basic operations into more complicated functions.

Introduction to avoid references to individual data. When a problem

or the algorithm to solve that problem is described in
This paper discusses an algebra of objects called arrays. terms of individual data items, it always require an effort
Our arrays are similar to matrices in mathematics and to convert this “sequential” description to an algorithm
arrays in Pascal or FORTRAN. Similarly to matrices, that accesses and processes data in parallel. An extreme
they can be manipulated by a number of methods and example would be an algorithm in which individual data
they conform to a set of laws. Similarly to arrays of high- show an unbreakable linear dependency, such as in the
level programming languages, they are closely related to well-known example of a non-par allelizable problem, to
the physical structure of a computer. calculate a"’k, k =1,2.... One reason why this problem

It is not the purpose of this text to develop a full-scale is easy on a sequential machine and hard on a parallel

system to manipulate arrays. Rather, we will describe machine lays in the method of describing the problem:

a minimal set of simple, yet powerful operations that it deals with individual pieces of the sequence. With--

allow us to manipulate large segments of data. These out any reference to the index & it would be difficult

operations are designed to utilize the power of parallel to come up with such an example. When indices are

environments in a way that does not depend on features used, it is easy for a sequential machine to calculate all

of any particular architecture. At the same time, they pieces of data in a simple loop, and it is irrelevant for

aim to be flexible, powerful, and “clean” enough to be the time complexity of the algorithm whether or not the

useful theoretical tools, that can be part of the design iterations of the loop are independent of each other. On

of parallel algorithms and reasoning about them. a parallel machine, on the other hand, it is crucial that

Let us point out a few, perhaps a little subjective, ob-

servations. Firstly, in parallel environments, we want

the “iterations” of a parallel loop are independent and

thus parallelizable. In our approach, we want to avoid



the problem of parallelizing loops altogether. We hope
to develop an alternative way of describing a (restricted)
class of problems that would be inherently parallel, as

much as indices and loops are inherently sequential.

Secondly, we admire the power, flexibility, and clarity of
a sequential, step-by-step language. Instead of trying to
modify the structure of a programming language to al-
low the programmer to execute parts of her program in
parallel, we parallelize the data and leave the language
to manipulate them sequential. The efficiency of the
programs will lie in the efficiency of the basic tools that
programmer uses to manipulate the data. These tools
must be designed in a way that permits an efficient im-
plementation in most parallel environments. We try to
keep the number of basic tools to the minimum and build
more tools on top of this basic set. The efficiency of the
more advanced tools is then based on the efficiency of

the “primitives”, the basic tools.

Thirdly, we would like to use a modern, functional--
language approach that would allow us to reason about
the algorithms, prove laws and properties, and verify our
programs. In this paper we use Miranda. Miranda is a
sequential language that does not allow anything but a
simulation of the operations on arrays that we would like
to see to be executed fast and in parallel. However, it of-
fers a polymorphic, strongly-typed, functional language
environment with lazy evaluation, abstract data types,
and currying. We use this functional power to combine
our primitives in a simple and elegant way. In the de-
sign of primitives themselves we settle for a theoretical
consideration of possible parallel implementations, and
implement them in Miranda in an inefficient, sequential,

but demonstrative way.

Array Definition

We will try to avoid the exact definition of an array.
There are many ways how to view an array, and select-
ing one of them as our only definition would be counter-

productive.

An array is a multidimensional, rectangular structure

that can be fully described by its shape and values. To
describe the shape, we use a finite vector of natural num-
bers. The numbers indicate the size of the array along
the corressponding dimensions; the length of the shape
vector is the dimensionality of the array. The values of
the array form a vector of length equal to the product of
the shape. All values are of the same type, and in this
text they will be reals.

Alternatively, a k-dimensional array can be viewed as
a k-dimensional rectangular grid with a unique value
associated with each gridpoint. The advantage of this
view is that all axes (dimensions) are equivalent and it
is natural to associate a k-dimensional index with each
value/gridpoint. However, in a computer representation
we have to “flatten” the grid and convert it to some

other representation.

A popular view of arrays is influenced by LISP. An array
is viewed as a list of lists, with each sublist represent-
ing a subarray of the array. The level of nesting of the
array /list is its dimensionality. The influence of LISP is
reflected in the inclusion of functions “first”, “rest”, and
“cat” (compare “CAR”, “CDR”, and “LIST” in LISP)
in our system. The powerful function “mu” is nothing
but LISP’s “MAPCAR”.

Most of all, of course, we are interested in arrays as
abstract data structures to hold actual data. In this
sense, we will consider the array to be a set of data
items that can be manipulated by our set of primitives

with the defined results.

Representation of Arrays

In a computer, arrays must store values. - That usually
happens in the passive part of the machine, the mem-
ory, even though, e.g., on a Connection Machine there is
no clear distinction between the active and the passive

parts of the computer.

When a shared-memory machine is used, the array can
be stored in a continuous block of memory in the row-
major order. Multiple processors can then indepen-

dently manipulate different parts of the array, with the



limited bandwidth of the bus being partially offset by
memory caches or small amounts of local memory for
each processor. Operations that access data in whole
blocks will be efficient. We have to be careful with op-
erations in which each processor must access many dif-
ferent parts of the array, as in a transposition or in a

rotation of the array.

When a machine with no shared memory is used, the
array must be distributed among the local memories of
individual processors. This can be done either by using
the combination of the processor address and the local
offset in the same way the shared memory address was
used to store the array in the row-major order (except
that each row is now distributed among several proces-
sors) or by using some form of a communication scheme
among processors, e.g. a tree or a mesh. This choice,
naturally, depends on the physical characteristic of a
given system. It is no longer possible to view the ar-
ray as easily-accessible continuous blocks of data. How-
ever, the choice of efficient operation remains almost the
same: it is still efficient tc let each processor work on its
“own” piece of the array as much as possible. The com-
munication cost of a logical addressing scheme (such as
a tree or a mesh) tend to be higher than when ﬁsing the
physical addresses of the processors to index the array.
When a logical addressing scheme is used, however, it is

much easier to change the structure of the array.

We try to avoid unnecessary changes in the structure
of the array. In array expressions, arrays are combined,
and new, both temporary and permanent arrays can be
created. Allocation of free memory and its availabil-
ity to different processors could pose a serious problem
whose solution depends on the architecture of the ma-
chine. Another difficult problem concerns the method
of storage of sparse arrays. We do not address these is-
sues. Instead, we hope for the best and simply try to
design the instructions in a way that manipulates very
large pieces of data at once while it does not assume any

particular architecture or feature of a parallel machine.

We assume MIMD and allow different operations to be
used on different chunks of data. The “flattenning” of

the array into the row-major order is given by the map-

ping function ¥,4 = Ygsoix [li>k 51 where (1k)x»0 and
(sk )0 are fhe index and the shape, respectively. Its in-
verse function is defined as vla = ((@ mod [Tj>; s1) div
[Tisk $1)kz0, Where a is the address. In Miranda, func-
tions v,i =gm i s and 7la =gm’ a s are defined as
follows: 4

gm :: [num]->[num]->num

gmis

= foldl g 0 (zip2 (i++(zrepeat 0)) s)
where g r (a,b)=a+(b*r)

gm’ :: num->[num]->[num]

gm’ a s
= map2 (mod) (foldr g [al(tl s)) s
where g n (x:xs)=x div n:x:xs

Array Representation in Miranda

An array is represented by its shape and values. In Mi-
randa, we use an array constructor, 4, to construct a pair
of a shape vector and a value vector, both of type [num].
The type of the array is then called reparray. Its syn-
onym, array, is used as a name of the abstract data
type that includes the array representation, reparray,
and a set of basic function to manipulate it, first,

rest, cat, isempty, etc.:

reparray ::= A [num] [num]

array == reparray

absttype array

with
first, rest :: array->array
cat . array->array->array
isempty 11 array->bool

This set of functions include the printing functions. We
print the values of scalars (0-dimensional arrays) as they
are. The values of a vector {1-dimensional arrays) are
printed as a sequence of values on a line surrounded by
angle brackets. Any other array is printed as a éequence
of its subarrays separated by new-lines and surrounded
by square brackets, except for an empty array, for which

only its shape is printed.

A new array can be created using function arr ss vs,
which returns an array of shape ss with whose values

taken from vector vs. If necessary, vector vs is repeated.



As Miranda is a lazy-evaluated language, the values of
an array are not accessed unless they are needed. Thus
it is possible to create arrays whose values form infinite
lists or do not exist at all. In fact, this feature of the
language very well suits our needs: when all we need is

the shape of an array, its values should be undefined.

In this text we describe a minimal set of primitives that

allows us to manipulate arrays in a non-trivial way.

Basic Operations-Primitives

The Miranda definitions given here and in the next chap-
ter define the behaviour of the functions. They do not
reflect their implementation on an actual parallel ma-
chine. It is not always clear which functions should be
primitives (“internal”) and which functions should be
defined using the primitives. It is possible that a func-
tion, originally defined using the primitives, will prove
to be so useful that it will be worth to be implemented
as a primitive. ’

The basic set of (;perations must include functions that
give information about the structure of the array. Al-
though this may seem trivial, in fact it is not: e.g. when
the shape information is needed several times during
the computation, we must must either keep a copy of
it at each node of the distributed system or retrieve
it and re-broadcast it every time it is requested. The
decision which method to use is a tradeoff, whose res-
olution dépends, again, on the concrete characteristics
of the system. Examples of structural-information func-
tions are the function shp x that returns a list of values
representing the shape of the vector x and the function
issingle x that returns the boolean value True if and
only if the array x, when viewed as a list of subarrays,

has only one element.

shp (A ss vs) = ss
issingle (A (s:ss) vs) = s=1

The next come functions influenced by LISP: first,
rest, cat, returning the first subarray, everything but

the first subarray, and a catenation of two arrays of the

same (or a similar) shape along the 0-th dimension, re-
spectively. Since théy are simple and they keep contigu-
ous blocks of arrays intact, they are easy to be executed
in parallel. The functions follow a simple set of rules.

An example of a such a rule is

cat (first x) (rest x) == x

which holds for for any x. The functions are defined as

first (A (s:ss) vs)
= A ss (take (product ss) vs)

rest (A (s+i:ss) vs)
= A (s:ss) (drop (product ss) vs)

cat (A (sl:ss) vsi) (4 (s2:ss) vs2)
= A (s1+s2:ss) (vsil++vs2)
cat (A ss vsl) (4 (s2:ss) vs2)

= A (1+4s2:ss) (vsi++vs2)
cat (A (sl:ss) vsi) (A ss vs2)
= A (s1l+i:ss) (vsi++vs2)

From FP and Miranda we have functions tk and dp,
that treat arrays as lists of lists and behave similarly to
Miranda’s functions take and drop. The only difference
is that when a negative argument is used, the indicated
number of elements is taken or dropped from the end
of the array-list. In addition to these two functions,
we define function bk that returns a specified number
of subarrays, starting from a specified position. Since
arrays are multidimensional, the functions accept a list
of values indicating the number of elements to be taken
or dropped in each dimension. Both tk and dp use a
higher-order operation mu1, which is defined later. It is

worth noticing that
cat (tk [n] x) (dp [n] x) == x

for any non-scalar x and non-negative n. For other types

of arguments the equation does not hold. Equation
bk a b == (tk a).(dp b)
Holds by definition. Therefore,

tk a
dp a

== bk a []
bk [ a

The definitions of dp, tk, and bk are as follows:



dp [1 a=a

dp [s1] (4 (s:ss) vs)

tk [s+s1] (& (s:ss) vs), si1<0

4 (s-sl:ss)

(drop (six(product ss)) vs), 0<=si<s
= A (0:ss) [, s<=si

dp (s1:ss1) a = mul (dp ssi) (dp [sil a)

tk [J] a=a

tk [s1] (4 (s:ss) vs)

= dp [s+s1] (A (s:ss) vs), s1<0

A (si:ss)

(take (six(product ss)) vs), 0<=si<s
A (s:ss) vs, s<=si

tk (sl:ssi) a = mul (tk ss1) (tk [s1] a)

0]

bk ssl ss2 a = tk ss1 (dp ss2 a)

Using these primitives, we can construct other functions,
e.g. afunction cnst ¢ x that returns the array x with

all values replaced by e:

cnst n x = arr (shp x) (repeat n)

Functionals and Higher-Order

Operations

A functional accepts other functions as its arguments
to produce a value. A higher-order operation, on the
other hand, produces other operations as its result. In
Miranda, we often define it as a functional that accepts
multiple arguments. When some of the arguments are
omitted, the functional, due to the currying, becomes a

higher-order operation.

An example of a simple functional is the reduction, £1dr.

fldr £ a
= first a, issingle a
= f (first a) (fldr f (rest a)), otherwise

Even though here it is defined recursively, as a primitive
it should be defined as a fan-in that runs in logarithmic
time on architectures that allow “non-local” communi-
cation. The result is then defined only for associative

functions.

LISP’s function MAPCAR applies its function-argument

— 23—

to all elements of its list-argument. Similarly, the higher-
order operation mul £ x applies function £ to every sub-
array of array x, which is viewed as a list of its subar-
rays. On parallel machines, the same function is applied
to all elements of the array. The structure of the array
changes, however. When the structural information is
held locally, it is easy to modify it. When it is held
in a global location with each processor just holding its
address, it has to be duplicated and modified for every
subarray. The addresses of these duplicates must then

be passed to the processors. Function mui is defined as:

mul f x
= arr (0:shp (f (first x))) [1, hd (shp x)=0
cat (f (first x))(mul f (rest x)),otherwise

We introduce two simple generalizations of mui. The
operator mul’ accepts an additional numerical param-
eter that determines along which axes the function--
argument should be applied. The operator mui’’ ap-
plies its function-argument on the subarrays along the
Oth dimension, but supplies the function also with the

ordinal number of each subarray, starting from zero for

the first subarray:

mui’(n+1) £ = mal (mul’ n £)
mul’ 0 f =1f

mul’? f x
= g n x vhere n = hd(shp x) .
g (k+1) x = cat (f (n-(k+1))(first x))
(g k (rest x))
g 0 x = arr (O:shp (f 0 (first x))) [J

There are other possible generalizations of the mui op-
erator, e.g. for binary function-arguments. We will not’

discuss these generalizations in this text, however.

The higher-order operations op1 and op2 extend com-
mon unary and binary operations to'arrays. When the
sizes of the arrays do not match, op2 tries to replicate
the “smaller” argument to match the size of the other
argument. E.g., when a scalar is added to a multidimen-
sional array, its value is replicated and added to every
element of the array. Operation mu1 is used to achieve
this effect. On any parallel machine the implementation
of these operations should be trivial. Except a possible

broadcast of the smaller argument in the case of a binary



function there is no communication required. All oper-
ation can be done locally and all processors do exactly

the same computation.

opl £ (A ss vs)
= A ss (map £ vs)

op2 £ (A s1 vi) (& s2 v2)

= A s1 (map2 £ vi v2), si=s2

mul (op2 £ (A si v1)) (A s2 v2), #si<is2
mui (op2 g (& s2 v2)) (A si vl), #si>#s2
where g ab=fba

The access operations tk, dp, and bk are destructive:
éven though they allow us to access and modify a part of
the array, we lose the other parts of the array in the pro-
cess. The higher-order operation upd a b f (update)
restricts the function f to the part selected by bk a b,
while leaving the rest of the array intact. Its imple-
mentation in a parallel environment should be similar

to that of the bk function.

[num] -> [num] ->
(array->array)->array->array
ssl ss2 f x
i ssi ss2 (shp
(k+1) (si:ssi)
‘mcat 2 (mcat b
mcat b (mcat c
mcat a (mcat c
= mcat ¢ (mcat b
where
mcat = mu2’ k cat

upd ::

upd

x) f x where
(s2:s52) (s:ss) f x
c), si>=0 & s2>=0
a), si1>=0 & s2<0
b), s1<0 & s2>=0
a), s1<0 & s2<0

oo

a=mi’ k (tk [s2]) x
b = g (k+2) ssi ss2 ss f
(mui’ k (bk [s1] [s21) x)
¢ =mil’ k ((dp [s11).(dp [s2DD) x

(k+1) [1 (s2:ss2) (s:ss)

=g (k+1) [s] (s2:s52) (s:ss)

g (k+1) 1 [0 ss £ =1

g (k+1) (sl:ss1) [J = g (k+1) (si:ss1) [0]

o

The it (iterate) operator applies a given function recur-
sively on smaller and smaller parts of a given array. It

is not a primitive.

it ssl ss2 f x
= x, isempty x
= upd ss1 ss2 (it ssi ss2 f) (f x), otherwise

LU Decomposition Algorithm

Let us consider the following Pascal routine to decom-
pose matrix A into a product L¥U of a lower-diagonal
matrix L and an upper-diagonal matrix U. The diago-
nal of L is formed of zeros. At the end of the routine,
the lower-diagonal part of matrix A is replaced by the '
lower-diagonal part of matrix L (excluding the diago-
nal) and the upper-diagonal part of matrix A is replaced
by the upper-diagonal part of matrix U (including the
diagonal).
procedure LU (n:integer; var A:matrix)
§ n denotes the size of the matrix 4 }
{ type matrix = array[0..,0..Jof real }
var i,j,k:integer;
begin
for k=0 to n-1 do
begin
for i:=k+1 to n-1 do {step i}
ali,k]:=ali,k]/alk,k];
for i:=k+1 to n-1 do {step 2}
for j:=k+1 to n-1 do
ali,jl:=ali,jl-ali,k]*alk,jl;
end
end;

It is not difficult to verify that this algorithm indeed
finds a LU decomposition of a given matrix. Let us sim-
ply ignore the problem of division by zero when alkk]=0

here.

The loops in the Pascal routine do not represent the real
idea of the algorithm. The real idea is to subsequently
take smaller and smaller submatrices of matrix A, and
for each submatrix divide its first column, except the
upper-left-corner element, by that upper-left-corner el-
ement, and then to subtract the outer product of this
column with the first row, again, without the upper-left-
corner element, from the lower right principal minor (i.e.
what is left after removing the first row and column) of

the submatrix. -

In our system, the the upper-left-corner element of a ma-
trix x is accessed as first (first x), while the first col-
umn, except the first element, as bk [n-1,1] [1,0] x
where n=hd(shp x). Therefore, the update of the sub-

matrix in step 1 can be written as:



stepl x
= upd [n-1,11 [1,1]1($divd (first(first x)}))x
where n = hd(shp x)

The outer-product is very easy to defined when the op-

erator mui’ is used.
op x y = mul’ k (mult x) y where k=dim y

where mult is defined, predictably, as op2(*). The fitst
column and the first row, both without their first ele-
ment, of a matrix x can be accessed by mu1 first(rest x)
and rest (first x)), respectively. The lower right prin-
cipal minoris simply dp [1,1],orbk [} [1,1]. There-
fore, the step 2 of the algorithm can be written as

step2 x
= upd [1 [1,1] ($sub
(op(mul first(rest x)) (rest(first x)))) x

The consecutive application of steps 1 and 2 is then

simply

lu = it [1 [1,1] (step2.stepl)

To verify the correctness of the result, and also to taste
more of the practical value of the update operator, upd,
we create two functions to extract the lower and upper
triangular portions of the resulting matrix, and a func-
tion chklu that prints the expected and actual results
of the algorithm. Since the function ip that calculates
the inner product of two arrays, needs yet-undefined op-
erator, mu2, we will leave the question of its definition

open.

lower
= mul’’ g where
g k=(upd [1][k](cnst 1)).
(upd [1[k+1](cnst 0))

upper = mul’’ g where
g k=(upd [k] [I (cnst 0))

chklu x
= [lu_x, ip (lower lu_x)(upper lu_x), x]
where lu_x= lu x

Conclusion

The Pascal routine in the example contains a triply-
nested loop. Our Miranda equivalent contains none. An
argument can be made that the ip operator in fact rep-
resents a loop because of the tail-recursion in its defini-
tion. The index, k, however is gone from the algorithm,
and so are the “parallelizable” inner loops and their in-

dices. We see two main positive sides of our approach:

e when the primitives are implemented in parallel,

the whole algorithm is inherently parallel, and

o when the algorithm is free of unnecessary loops
and indices, it is much easier to see its basic ideas

and reason about it.

In most of the existing functional languages, the em-
phasis lies on lists and their sequential manipulation.
The program-verification schemes are based on lists and
their properties. Our approach, on the other hand, ma-
nipulates whole arrays at once. We hope that this could
be useful for the formal verification of nontrivial matrix

and array algorithms.

In the future, it will be necessary to show that our ap-
proach is flexible enough t6 be used as a practical- tool
for designing algorithms. It is still not clear to us what
is the optimal set of primitives to be used, especially

when sparse matrices are considered.

Acknowledgements

I thank Lenore Mullin and Nathan Freedman for their

support and encouragement.

Examples

Let us assume the following definitions:

al = arr [3..5] [1..]

a2 = tk [2,3] al

a3 = bk [2,1,3] [0,2,1] al
a4 = tk [1] a1l



ab
aé
a?

mul (tk [1]) ai
mul (mui (tk [1])) a1
upd [2,1,3] [0,2,1] (op1(*10)) al

Then the results look as following:

REQUEST: al REQUEST: a2
ANSWER: ANSWER:
shape: <3 4 5> shape: <2 3 B>
[r [C
<1 2345 <1 2345>
<6789 10> <6 7 89 10>
<11 12 13 14 15> <11 12 13 14 15>
<16 17 18 19 20> 1L
1L <21 22 23 24 25>
<21 22 23 24 25> <26 27 28 29 30>
<26 27 28 29 30> <31 32 33 34 35>
<31 32 33 34 35> 1]
<36 37 38 39 40>
1L REQUEST: a3
<41 42 43 44 45> ANSWER:
<46 47 48 49 50> shape: <2 1 3>
<61 52 B3 54 55> [C
<56 57 58 59 60> <12 13 14>
1] 1L
<32 33 34>
11
]
REQUEST: a4 REQUEST: a6
ANSWER: ANSWER:

shape: <1 4 5>
c

shape: <3 4 1>
[L

<12345> <1>
<6 7 8 9 10> <6>
<11 12 13 14 15> <11>
<16 17 18 19 20> <16>
1] 1C
. <21>
REQUEST: a5 <26>
ANSWER: <31>
shape: <3 1 5> <36>
[C 1L
<123 45> <41>
1L <46>
<21 22 23 24 25> <B1>
1I <56>
<41 42 43 44 45> 1]
1]
I
REQUEST: a7
ANSWER:

shape: <3 4 5>
L
<1 2345
<6 7 8 9 10>

<11 120 130 140

15>

<16 17 18 19 20>

1

<21 22 23 24 25>
<26 27 28 29 30>
<31 320 330 340 35>
<36 37 38 39 40>

1L

<41 42 43 44 45>
<46 47 48 49 50>
<51 52 53 54 55>
<66 57 58 59 60>

1

References

&

(2

(8

Bl

10]

J. Backus, Can Programming be liberated from the
von Neumann style: A functional style and its alge-
bra of programs, Communications of the ACM 22,
no. 8, pp. 613-641, Aug. 1978.

J. Bird, P. Wadler, Introduction to Functional Pro-
gramming, Prentice Hall, 1988

C.A.R. Hoare, An Axiomatic Basis for Com-
puter Programming, Communications of the ACM,
vol.12, no. 10, 1969.

K.E. Iverson, A Programming Language, John Wi-
ley and Sons, 1962.

L.M.R. Mullin, A Mathematics of Arrays, PhD the-
sis, Syracuse University, 1988. .

L.M.R. Mullin, G. Gao, M. Santavy, & B. Tiffou,
Formal Program Derivation for a Shared-Memory
Arxchitecture: LU-Decomposition, McGill Univer-
sity, TR in progress, May 1990.

J.C. Reynolds, Reasoning About Arrays, Commu-
nications of the ACM 22, no. 5, pp. 290-299, May
1979.

D.B. Skillicorn, Architecture-Independent Parallel
Computation, Queen’s University, TR no. ISSN-
0836-0227-90-268, Mar. -1990.

D.A. Turner, Miranda: a non-strict functional lan-
guage with polymorphic types, in J.-P.Jouannaud,
editor, Functional Programming Lahgua.ges: and
Computer Architecture, Springer-Verlag, 1985.

D.A. Turner, An overview of Miranda, SIGPLAN
Notices, Décember 1986.



