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A Fully Abstract Model for Cominunicating Processes

with respect to Weak Linear Semantics
Eiichi Horita
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The semantics of a language £ for communicating processes is investigated. It contains action prefizing,
nondeterministic choice, parallel composition, and recursion. A Plotkin-style operational semantics
Oy, is defined. This semantics is linear in that the meaning of each program in ©,,, is a set of event
sequences the program may perform, and is weak in that the event sequences are obtained by ignoring

internal moves. Then, a compositional model C,.. is proposed, and its full abstraciness, as expressed
in the following, is established: )

Crr(51) = Cop(s2) & VO[C is a contest of £ = O, (Cls1]) = O, (Cls2]) 1.
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1 Introduction

The semantics of a language £ for communicating processes is investigated. The language Lisa
subset of CCS ([Mil 80]) containing action prefiring, nondeterministic choice, parallel composition,
and a form of recursion.

First, an operational semantics O,,, of £ is defined in terms of a labeled transition system, in the
style of Plotkin ([Plo 81]). This semantics is linear in that the meaning of each statement s € £ in this
semantics is a set of event sequences, which the process represented by s may perform; it is weak in
that the event sequences are obtained by ignoring internal moves (denoted by 7 in [Mil 80]) invisible
to its environment.

Next, a compositional model C,, is proposed, which is a variant of the failures model proposed by
Brookes, Hoare, and Roscoe ([BHR 84]) and later improved ([BR, 84]). It is shown that Cp. is fully
abstract wr.t. O,,,. That is, Cy, is the most abstract compositional model which is correct w.r.t.
©\,.- Equivalently, one can obtain the following for every 51,52 € L:

Cop(51) = Cre(s2) & VC[C is a contest of £ = O, (Cls1]) = Oy, (Cls2]) 1- (1)

A similar full abstractness result has been established by Bergstra, Klop, and Olderog for a language
_ with no recursion and internal moves ([BKO 88]). Rutten discussed the semantics of a language
similar to £, in the framework of complete metric spaces, and showed, along the lines of the proof
of a similar statement in [BKO 88], that the failures model is fully abstract with respect to a strong
linear semantics O, ([Rut 89]), where O, is strong in that it does not abstract from internal moves.
The result described above is an extension of the result in [BKO 88] to a language with recursion and
internal moves; it is also an extension of the result in [Rut 89] to the case of weak semantics instead
of strong semantics. , ‘ .

The full abstractness problem for programming languages was first raised by Milner (IMil 73]). In
general, a fully abstract model for a given language w.r.t. a given operational semantics O is the
most desirable one from a viewpoint associated with ©. In particular, the fully abstract model Cy
is the most desirable one from the following viewpoint: In some practical areas, the most interesting
characteristic of a (software or hardware) system is the set of (visible) event sequences which the
system may perform. One cannot define, however, a compositional model consisting of such sets of
sequences in the concurrent setting, as was shown, e.g., by Milner (cf. [Mil 80}, § 1.2), which is also
exhibited in Example 1 in the present setting. Compositionality, in turn, is needed for the stepwise
definition of program meanings. In other words, the meaning of a composite statement needs to be
defined in terms of the meanings of its components. It is also necessary to treat systems as modules,
i.e., to make it possible for two equivalent systems, A and B, to substitute A for B within composite
systems, without affecting the overall meaning. Thus some ezira information needs to be involved to
construct a compositional model. However, it is desirable for the extra information to be minimum
so as not to bring about inessential details. The fully abstract compositional model Cp meets these
requirements.

Although the model Cy, is compositional and the meaning of each recursive program under Cq.
is a fixed point of the associated function (the interpretation of the body of its defining equation),
it is not denotational in the framework of complete partially ordered sets, where the meaning of a
recursive program is defined as the least fixed point of the associated function. Furthermore, Cor
is not denotational in the framework of complete metric spaces, where the meaning of a recursive
program is defined as the unigue fixed point of the associated contraction (cf. [BZ 82]). Such an
order-theoretic or metric topological construction of Cy, remains for future study (cf. § 8). Note
that such a denotational construction of Cn, does not necessarily exist as was shown in [AP 86]. In
[HP 79], a fully abstract model for a parallel language was constructed in an order-theoretic framework.
However, the concurrency treated there is different from the one treated here, because the language
in [HP 79] includes coroutine construct as well as the usual interleaving. The characterization of Cppe
in this paper as a fully abstract model w.r.t. O, is analogous to Milner’s characterization of the
so-called observation congruence in [Mil 83] and [Mil 85].

Brookes considered the relation between two models of concurrent behavior, Milner’s synchroniza-
tion trees for CCS, and the failures model of TCSP ([Bro 83]), where only finite processes defined
without recursion were dealt with. Since this paper investigates the relation between labeled transi-
tion systems, which are mapped into synchronization trees by a natural translation (and vice versa),
and a variant of the failures model for infinite processes, the connection described in this paper is
regarded as an extension of the one in [Bro 83] to the case of infinite processes. Our model C,,. differs
from the original failures model in [BHR 84] even for finite processes, because we treat ‘+’, alternative
composition of CCS, and the original model is not a congruence w.r.t. this operator even for finite
processes. In [Bro 83), this modification was not needed, because only TCSP operators, which do not
include ‘4, were treated there.

2 Notation and Mathematical Preliminaries

The underlying structures of the models introduced in § 4 and § 5, are domains of (finite or infinite)
sequences of some elements. Sequences are treated in the standard manner in set theory, using the
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notations below (cf., e.g., [Kun 80]),
The phrase “let (z €)X be --” introduces a set X with variable z ranging over X.

Notation 1 .

(1) Thestandard A-notation is used for denoting functions: For a set A, a variable z, and an expression
E(z), the expression (Az € A : E(z)) denotes the function which maps z € 4 to E(z).

(2) For a set X, the cardinality of X is denoted by §(X). For two sets X and Y, the set of functions
from X to Y is denoted by (X — Y) or by YX. The set of natural numbers is denoted by w.

Let @ =w\ {0}. Each number n €w is identified with the set {i €w: 0 < i < n} as usual in
set theory. Forncw,let a={mew:1<m<n}. |

Notation 2

(1) The empty sequence is denoted by e.

(2) Foraset A, the set of finite sequences of elements of A is denoted by A<% and the set of nonempty
finite sequences of elements of A is denoted by A*. The set of finite or infinite (with length w)
sequences of elements of A is denoted by AS¥,

For a € A, the sequence (a) consisting only of a is sometimes denoted by a.

(3) Each sequence g € AS¥ is regarded as a function whose domain is a member of w U {w}. Thus,
referring to its length as dom(g), one has ¢ = (Ai € dom(q) : ¢(3)). For a € 4 and v € w U {w},
let ¢ = (Ai€v:a). '

(4) For g € (AS¥ \ {€}), rest(q) denotes the unique sequence § € AS“ such that there is an isomor-
phism ¢ : dom(§) — (dom(g) \ {0}) satisfying Vi € dom(g)[ §(:) = ¢(¢(2))].

(5) For ¢y € A< and g5 € ASY, let ¢; - ¢ denote the concatenation of ¢; and gs. Also, for p; C A<¥
and pp CAS¥, let p1-p2 = {01 - q2: 91 €p1 A g2 € pa}.

(6) Forp C AS¥ and g € A<, let plg] = {§ € AS“ : ¢- € p).

(7) For g1,92 € AS¥, let us write ¢, <p 92 to denote that ¢, is a prefiz of ¢2. The relation <, is known
as the prefiz ordering. |

The notion of a homomorphism is defined below; it is used to define the merging of two sequences in
§5.2.

Definition 1 Let A and B be sets. A function h: ASY — BSv¥ is called a homomorphism iff
h[A<¥] € B<“ and Vg, € A<, Vg, € AS“[ h(q1 - ¢2) = h(q1) - h(22) ]. I

It easy to see that a homomorphism h : AS¥ — BS¥ is determined by the values h(a) (a € A).

3 A Language £ for Communicating Processes

In this section, a language £ for communicating processes is defined. This is a subset of CCS ([Mil 80])
containing action prefizing, nondeterministic choice, parallel composition, and a form of recursion.

Definition 2 Let (X €)V be a set of statement variables. First, a language (S €) £[V] with general
recursion is defined as follows:

§:=D|(:9) | ()| (S1+82)| (8111 5) | X | X(S), @)

where D, 7, +, and || represent deadlock, the internal move, the alternative composition, and the
parallel composition, respectively; ¢ ranges over C, a set of commaunication actions. For S € L],
let FV(S) be the set of free variables contained in S. Intuitively pX(S) stands for a solution of the
equation X = .S"\ Syntactically the prefix “4X” binds each variable X, as “Az” in A-notation.

Next, (S €) L[V], a sublanguage of L[V] with a restriction on recursion, is defined to be the set of
S € L[V] satisfying the following restriction: ‘

If uX(S') is a subexpression of S, then FV(S') C {X}. (3)

For V' C V, let L[V'] = {S € L[V]: FV(S) C V'}. We write L[X] for L[{X}] (X € V). Finally, let
(se)L=L[0]. n

The reason why the restriction on recursion is imposed is stated in the following: For the restricted

language E[V], the correctness of the model C.,. (to be presented in § 5) w.r.t. the weak linear
operational semantics, follows immediately from its compositionality. However, this is not the case for
the unrestricted language L[V]: The proof of the correctness for £[V] requires a considerable amount
of work, in addition to the compositionality. Since this paper focuses on the full abstractness of Cers

which can be demonstrated by discussing only E[V], we first establish the full abstractness of Cp, for

L[V]. The proof of the correctness of C - for L[V] is outlined in the Appendix.
Note that, once the correctness for ETV] has been established, the full abstractness for £[V] follows

in the same way as for L[V].
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Notation 3 For S, S’ € L[V], we write S = 5, to denote that S and S’ are syntactically identical.
For S,5' € L[V] and X € V, we denote by S[S’/X] the result of substituting S’ for all free occur-
rences of X in S. 1

4 Weak Linear Semantics O, for £

The weak linear operational semantics O, of L is defined as usual in the style of Plotkin ([Plo 81)).
Here “WL” stands for Weak Linear Model. For the definition, some preliminaries are needed.

Definition 3
(1) A bijection 7: C — C is assumed to be given such that for every c € C, ¢ =c.
(2) Let A=CU{r). . ‘
(3) A transition relation —C (£ x A x L) is defined as the smallest set satisfying the following rules.
For s1,82 € L, a € A, we write s; -2 5y for (s1,a,52) €.
@ (@) s
(i)
a.
§1 —* 5
(s1+82) = 51
(s2+ s1) — s}

(iii)
had /
§1 — 8
(51 l192) = [[ 52
(2] s1) — 52 || 54
(iv)
c K3
8§ — Sll, §9 — 82
ceC
s1 |l s2 = 51 || 5% ( )
(v)
S[pXx(9)/X] AN
4X(S) = o

This rule is called the recursion rule.
(4) Then for w € A<, a binary relation 2,, is defined recursively by:

®H 5= s,
(ii) s OV, i A s s A s e, 8 ).

' (5) For w € C<¥, a binary relation == is defined by:

s== s iff ' € A¥[ (W' \T)=w As 2, s IR
where (w' \ 7) is the result of erasing 7’s in w'.
(6) Fors € L, let act(s) ={a € A :3s[ s A |
By means of these notions, the weak linear operational semantics O, is defined as follows.
Definition 4 | ‘
(1) The domain of O, written D(O,,,), is defined by:
D(04,) = (C<* - {(8),(LHH U C*,
where 8 and L are distinct symbols representing deadlock and divergence, respectively.

(2) For s € L, let Traces(s) be the set of traces ending with deadlock, Inf(s) the set of infinite paths,
and Div(s) the set of divergences. Here Traces(s), Inf(s), and Div(s) are defined as follows:

Traces(s) = {w-(§) :w € C¥ As'[s == ' Aact(s) CC 1}, ' , (4)
Inf(s) = {(¢n)new : I(Sn)newl 50 =5 AVn[ sn =2 5,41 11} ‘ (5)
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Div(s) = {w (L) : 3¢, 3(sp)neuw[ s => ' A so = &' A Vn[s, = sn41 1|} (6)
(8) Fors e L, let
" Oy (s) = Traces(s) UInf(s) U Div(s). §
As stated in the introduction, O,,,, is not compositional as is exhibited in the following example.

Example 1 Let s1 = (co; ¢1; D) + (co; €2; D), s2 = co; ((c1; D) + (c2; D)). Then, O (1) = Oy (s2).
However, putting s = ¢1; uX(7; X), one has
(co,8) € Our(s1 ]l s)\ Oy (52 || 5), and therefore, Ou.(s1]5) # Our(s2]l5)- 1

5 Compositional Model C,, for £

In this section a compositional model Cp, for £ is defined, It is a.mild variant of the failures model
of [BHR 84] and can be shown to be a fully abstract comgositional mode]l w.r.t. the operational
semantics O, . Here“RF” stands for Rooted Failures. Model. '

5.1 Definition of C,,

First, the domain of ., written D(C,, ), is defined as follows:
Definition 5 Let us use I as a variable raging over p(C). First, let
B(Cre) = (C¥ - {({(8,T)) :T € CHU{((,T)) : T C CUC U(C¥ - {(1)}).
By means of this, D(C,, ) is defined by: D(Cp;) = p(B(Cpy))-
For p € D(Cgy), let )
Fop) =pn(C<-{(,T) : T C C}), R°(p) =pn {((§,T)): T c C},
Inf*(p) = pN (C¥), Div*(p) = p 1 (G - {(L)}). N
The compositional model C,.(s) : £ — D(Cy;) is defined by:
Definition 6

(1) For s € £, let F(s) be the set of failures in the usual sense, R(s) the set of refusals of s (not of

some s’ such that s =5 5').
Here F(s) and R(s) are defined as follows:

F(s) ={w- ((5,T)): 33’[ s= s’ Aact(s) CC AT CCATNact(s) =0}, : )

R(s) = {({5,T)) : (act(s) C C) AT C C A T Nact(s) = 0}. : (8)
(2) Forse L,let .

Cre(s) = F(s) UR(s) UInf(s) U Div(s). § 9)

Note that from C, . (s), each of fgs), R(s), Inf(s), Div(s) is represented as follows: F(s) = F°(Cp.(s)),
R(s) = R°(Cqe(s)), Inf(s) = Inf®(Cyr.(s)), Div(s) = Div®(Cpr(s)).

Remark 1 '

(1) The definition of C,, is nonstandard in the sense that it contains both failures and re-

fusals. The refusal part R(s) is added to distinguish two statements such that their failure
sets are the same but their operational meanings are different in some context of £. Let

¥:{((5,T)) : T € C} = {({§,T)) : T C C} be defined by $(((8,T))) = ((6,T)). Then for every
s € L, R(s) is embedded into F(s), i.e., $[R(s)] C F(s). : :

Thus, for every element ({4, T')) € R(s), a copy ({5,T)) € F (s) exists. The difference between
({4,T)) and ({6,T)) is that ({4, T")) is an immediate refusal of s itself (not of s’ such that s = '),
while ({(§,T)) is a refusal of some s’ such that s == s’ (s’ may be $ itself by the definition of

==5). In other words, ({4, T)) must stem from the root of the transition tree of s, while ({(6,T))
may not.

(2) There are alternative fofmula.tions for Cpe. For example, let us define R/ as follows: For s € £,
oy 3} if act(s) C C,
Ri(s)= { é otherwise.
Then it is easy to see that for every sy, sy € £, the following holds:

F(s1) UR(s1) = F(s1) UR(s1) & F(s1) UR'(s1) = F(s1) UR'(s1).

Thus the part R(s) can be replaced by a 1-bit piece of information R’ (5). We prefer the present
formulation for the convenience of the definition of semantic operations in § 5.2 and of the
correctness proof in the Appendix. | .

1The terminology is partly borrowed from [BK 85], where the notion of rooted 7-bisimulation is proposed.

(5)



5.2 Compositionality of C

It can be shown that Cp, is a congruence w.r.t. all operators of £, and therefore, Cqp is compositional.
For this purpose, semantics operations corresponding to the syntactic operators of £ are defined.

First, for each a € A, a unary semantic operation prefix, corresponding to syntactical prefixing of
a is defined. o

Definition 7 o .
(1) Let c € C. First, two auxiliary operations F, R. are defined as follows: For p € D(Cyy),

Fup) = {((§,T)): TCC AT} U (9)-F°(),
Re(p) = {({4,T)): TC C A cgT}.

From these, prefix, is defined as follows: For p € D(Car),
prefix,(p) = () UR<(p) U (9) - Inf*(p) U (¢) - Div°(p).
(2) A unary operation prefix, is defined as follows: For p € D(Cqg),
prefix, (p) =p \ R°(p)- U
Next, a binz;ry semantic operation ¥ corresponding to ‘+’ is defined.

Definition 8 With an auxiliary operation F,, F is defined as follows: For p1,p2 € D(Cpp),

Fo(p1,p2) = (F°(pr) \ $[R°(p1)]) U (F°(p2) \ $[R°(p2)]) UY[R®(p1) NR®(p2)],
P1Fp2 = F, (p1,p2) U (R°(p1) NR(p2)) U (Inf° (p1) U Inf®(p2)) U (Div®(py) U Div®(p2))- 1

Note that the failures-part of (s1 + s2) is composed of the failures- and refusals-parts of s; and s2,
while the refusals-part of (s; + s2) is composed only of the refusals-parts of s, and s;.

Finally, a binary semantic operation || corresponding to ||’ is defined. As a preliminary to the
definition, a function merge,, : (ASY x AS¥) — p(C<¥) is defined by:
Definition 9 Let g1, g2 € AS¥.

(1) First, the set of merged sequences of ¢; and g3 with extra information on the origin of its elements,
written merge*(q1, q2), is defined. Let L, R, S be distinct symbols standing for ‘Left’, ‘Right’,
‘Synchronization’, respectively; put .

R = {p€ ({L,R,S} x A)S¥ :Vi € dom(p)[ first(p(i)) = S 2> a € C]}.
Two homomorphisms 7,7, : R — AZ¥ are defined as fqllows: Fora€ Aand c€C,

7, ({L,a)) = (a), ;n((R,ag) =¢ WL((S,cg) = (e),
m((L,a)) =€, 7((R,a)) = (a), 7a((S,)) = (2).

Then, let merge* (g, g2) be the set of elements p € R satisfying the following conditions:

dom(q1) + dom(qz), if dom(g1),dom(q2) € w,
w otherwise, .

@ domip)={ &

(i) 7.(p) <p 01y Ta(P) Sp @2
(2) Another homomorphism 7 : R — AZ¥ is defined as follows: Fora € A and c€ C,

((L,a)) = 7((R,a)) = (a), 7((S,e) = (7).

Then, let merge(qi, g2) = m[merge* (g1, ¢2))-
(3 merge,, (q1,92) = {(¢\ 7) : ¢ € merge(q1,2)}- ,
(4) For p; C C2¥, p, C C=¥, let Merge,, (p1,p2) = U{merge,(g1,92) : 1 € A Em}. - 1
From the homomorphisms defined above, we have the following lemma: \
Lemma 1 Let s1,s9,8 € L, w € A<¥. Then
51|82 = &' &

JpeR,3s),shel[m(p)=wAs —-ﬂn si A s —KR—(p)—n, shAsd=s1ls5] 1

Proof. By easy induction on dom(w). W
From Merge,,, the semantic operation || is defined by:

Definition 10 For p € D(Cy), let
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Trace,(p) = {w € C<¥: plw] # 0},
P?eﬁxnk(p) ={weC¥: w-(L)e Div(p)}.

First, four auxiliary operations

Fy, Ry, Infy, Div, 1 (D(Ce) X D(Cre)) = D(Crr)

are defined as follows: For p1,p2 € D(Cy,.),
Fyprpn) = {w-(61): ?wl (6.T) € F2(pu) 3us - (1
Iy

w € merge,, (w1, wa) . YA
(C\Fl)n(C\Fz) 0]}
R, (p1,p2) = {((6,1)): 3((5 I1)) € R°(p1), 3({8,T2)) € R°(p2)
[(TCT)A (orcrz) A(C\T1)N(C\Tz) =01}
Inf,(p1,p2) = Merge (Trace.(p1), Inf’(p2)) U Merge,, (Trace.(p2), Inf°(p1))
U (C* N Merge,, (Inf°(p1 ), Inf°(p2))),
Div,(p1,p2) = Merge, (Trace;(p1), Prefix, (p2)) - (1)
U Mérge, (Trace, (pa), Prefoc. (p1)) - (L)
U (C<¥ N Merge,, (Inf’(p1), Inf°(p2))) - (L).

1))€ °(pz)
(rcr,)

From these, || is defined. as follows: For p1, p; € D(Cp,),
21 ﬂ p2 = -7:"(1’1:1’2) UR" (plapz) U Inf“(Pl';PI!) U Di""(Pl,P2)~ |

From the semantic operations prefix, (a € A), ¥, ||, the compositionality of C,,, can be established.

Lemma 2 ( Composztzonahty of Cor)
Let s,s1,89 € L.

(1) For each a € A, Cp(a;s) = prefix,(Cqz(s)).
(2) cnp(sl + 52) = cm-‘(sl)"l"cm*(s2)'
’ (3) np(sl " 32) cm-‘(sl) ﬁcm'-*(s2) |

Proof. By case analysis on the types of elements of C..(a;s), Car (51 + 52), m,.(s1 || s2), using the
definitions of Cy;. and the semantic operations. |l

6 Correctness of C,, with respect to O,

The correctness of C,, w.r.t. Oy, is shown by means of an abstraction function a : D(Cy;) — D(OQL)
defined as follows:

Definition 11 For p € D(C;), let
o(p) = {w- (6) : 3w, 30w ((5,T) €p]} U Inf*(p) U Div’(p). W

Note that R°(p) contributes nothing to a(p).
The following proposition follows immediately from the definitions of me Cars and a.

Proposition 1 For every s € £, Oy, (5) = a(Cqre(s)). B

By this and the compositionality of C ., the correctness of Cy; for Lwrit. Oy, can be established
(for a proof for £ see the Appendix).

Lemma 3 (Correctness of Cpp for L)
Let 51,52 € L. If Cop(51) = Crp(52), then the following holds for every S € L[X]:

OWL(S[SI/X]) = OWL(S[SZ/X])- | (10)

Proof. This follows straightforwardly from Lemma 2 and Proposition 1. Formally, this can be
established by induction on deg(S), the number of operators included in S and in the scope of no
p-statement.

Induction Base: Suppose deg(S) =0. Then either S=D or S=X or X = pY(S') with some
Y eV, $ € L. In the last case, X¢FV(S’) by the condition (3) in Deﬁmtlon 2. Thus in all cases,
S[sl/X] S[s2/X], and therefore, (10) holds.

Induction Step: Assume that (10) holds for every S’ € £ with deg(S’') <n. Let S€L with
deg(S) = n+ 1. Then either S=4;S5; or S= S+ Sz or S S1 || Sz, with some S; € £ such that
deg(Si) < n (i =1,2). In all cases, (10) follows from the induction hypothesis and Lemma 2. [l
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7 Full Abstractness of C, with respect to O,

The full abstractness of C,. w.r.t. Oy, can be established under the assumption that
the communication set C is infinite.? ‘ (11)
As a preliminary, for s € £, let A(s), the alphabet of s, be defined by:
Definition 12 A(s) = {c € C:Jw,3s'[ s == s’ Ac€act(s))]}. 1
The following proposition follows from'the definition of L.
Proposition 2 Vs € L[ A(s) is finite].

Theorem 1 (Full Abstractness of Cyp)
For s1,s9 €L,

e(s1) )
C CHE D, (St0r/3D) = Owe(Stoa/ XD 1

Proof The => -part is the statement of Lemma 3. For estabhshmg the <-part, it suffices to show
Coe (51) # Cup(s2) = 3 € LIXI[ O,y (STs1/X]) # Opey (Sloa/X]) 1.
Let s1,s2 € £, and suppose Cpp(s1) # Crp(s2). When
Inf(s;) # Inf(s3) or Div(s1) # Div(ss),

it follows immediately that O, (s1) # Ow.(s2).

Otherwise, there are two cases.
Case 1. Suppose F(s1) # F(s2). Then one can construct an appropriate statement T° called a tester
such that O, (s1 || T) # Ow.(s2 || T).2 :

One has either

(i) Jw- ((6,T)) € F(s1)\ F(s2) or (ii) Iw - ({6,T)) € F(s2) \ F(s1)- ‘ ‘ (12)

The former case is considered. We can assume that T is finite by Proposn',lon 2 LetT' = {c1,---,¢n},
and let us take -

c € (C\ (A(s1) U A(s2) U A(s2)))- V (13)

The set (C\ (A(s1) U.A(s2) U A(sz2)) is non-empty by Proposition 2 under the assumption (11).
Setting Q@ = pX(7;X), T"=D+ (T; QD+ -+ (c;Q), and T = ¢; T, it follows immediately from
(12) (i) and the definition of T that. o

w-(c)- (6) € Opy (o1 | T). | W
Let us show, by contradiction, that ‘ ‘ o '
w-(¢) - ()¢Ow.(s2 | T). ' ‘ ' ‘ (15)

Assume that this does not hold. Then, by the definition of O, there are s',s” € £, W€ A<¥ and
k > 0 such that

sz||T——> HOLAN s" A (B\7)=wAact(s")CC.~ '
By (13), the action ¢ must stem from T. Moreover, by (13), there can be no synchronization between
55 and T before T has performed the action c. Thus the actions in @ must stem from s,, and therefore,
there exists s5 such that :

@ s sy As' =4I T, () (o5 1l T) = (65 11 T7) T ", (i) act(s”) C ©. (16)
By (16) (ii) and Lemma 1, there are p € R, s¥, and T" such that

7(p) =1 A s AN Sy AT LIGIR IO =S| T o (17)

Let us show, by contradiction, that
-3¢ € dom(p)| first(p(:)) € {R,S} ]. : (18)

2This assumption might seem too strong when we consider hardware systems where communications are regarded
as physical ports. However, for software systems where communications are regarded as identifiers (such as entry
identifiers of Ada), this assumption seems reasonable. A similar assumption is given by Mllner for characterizing
observation congruence (cf. [Mil 89] § 7.2).

3The variable T is used to denote a statement when it is considered a tester, while the typlca] variable for the set of
statements is s.
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If this does not hold, then one has, by the form of 7Y, that T” =, and therefore,
act(s”) = act(sy || Q)BT which contradicts (16) (iii). Hence one has (18).

Thus one has Vi € dom(p)] first(p(i)) = L ], and therefore, r* = w(p) = 7,(p), s -——>s2, and
s" =sY || T". By this, (16) (iii), and (17), one has act(s§) C C and act(s§) Nact(7”’) =@. Thus,
by (16) (i), one has w - ({6,T)) € F(s3), which contradicts (12} (i).
Thus one has (15); it follows from (14) and (15) that O, (51 || T) # Oy (s2 || T).
Case 2. Suppose F(s1) = F(s2) and R(s1) # R(s2). Then either

(1) 3((8,T)) € R(s1) \ R(s2) or (ii) 3((8,T)) € R(s2) \ R(s1). (19)
The former case is considered. Since ((§,T)) € R(sl), one has
act(s;) C C. (20)

Moreover, by (19) (1) one has ({6,T)) € F(s1), and therefore, ({8, T)) € F(s2).
Thus there exits s4 such that

52 == 5% A (act(sh) € C) A (T Nact(sh) = 0). k (21)
Since ({8, T))gR(s2) by (19) (i), s5 cannot be s, itself; thus there exists s such that
53 T sl =5 5) (22)

Thus 7 € act(s;). Let us take a context S = X + (; Q).
First, one has

(8)€0u(S[s1/X]) = Oyr(s1 + (1;9Q)), (23)

since by (20), there is no st such that (s; + (7;Q)) == s} and (act(s}) € C).
Next, one has"

(6) € Oy (Sls2/X]) = Oyp(s1 + (139)), ) (24)

since it follows from (21) and (22), that (ss + (1;Q)) == s, and (act(sz) c Q).
By (23) and (24), one has Oy, (S[s1/X]) # O, (S[s2/ X))-

8 Concluding Remarks

We conclude this paper with remarks about possible extensions of the reported result. There are two
directions for such extensions.

One is to investigate the same full abstractness problem for other languages that are extensions of
L. The set of operators of L is rather restricted. The operators sequential composition and abstraction
of ACP; (cf. [BK 85]), as well as restriction and relabeling of CCS (cf. [Mil 80]) are good candidates
to add to £. The author conjectures that C_, is a congruence w.r.t. any set of operators defined on
the basis of a transition system specification in the so-called SOS format (cf. [BIM 88]). A similar full
abstractness problem for nonuniform languages such as the ones treated in [HBR 90], also remains for
future study.

The other direction is to investigate denotational construction of Cy. in the order-theoretic or metric
topological setting. It is hoped to accomplish this by means of the construction method in [BHR 84]
or the one in [Rut 89], with some modification if necessary. However, neither of them can be used as
it is, as described below.

There are two difficulties in using the standard ordering in [BHR 84], i.e., inverse inclusion. First,
the operation || is not in general continuous w.r.t. this ordering. For example, let

Pn = U{Car(c®; D) : k > n} (n > 1), and p' = Y{Cprr(c*; D) : k > 1}. :
Then Vn > [ ((6,{c,&})) € pa || P’ ], but ({6, {c,€}))€Nn>1(Pn) || P'. Second, for some recursively de-
fined statement pX(S), the least upper bound of the iteration sequence generated by the inter-
pretation of S, does not coincide with the intended meaning. For example, we would like to de-
fine C, so that Cpr(pX(7;X)) = {(1)}. However the iteration sequence generated by the func-
tion (Ap € P : Prefix,(p)) with the initial point CHAOS = B(C,;) gives a rather different value
B(Coe) \ {(4,T) : T C C}.

As Rutten did in [Rut 89], one can define a distance d on B(Cp) by means of truncation; this
distance induce the so-called Hausdor{f metric on peis(B(Cgy)), the domain of closed subsets of B(Cyy).
There are two difficulties in using this metric: First, it is not known whether C,..(s) is closed in D(Cy;)
or not, for s € £. Second, unlike in the sirong semantics of [Rut 89], the operation || is not in general

non-erpansive, even if Cpe(s) is closed for every s € L. For example, let s1 = (¢; D), 51 = (¢; ),
s3 =(¢; D), and s = (¢;{2), where Q is the statement defined in the proof of Theorem 1. Then

d(Cop (1), G (1)) = (1/2), d(Cop (52), Cur (55)) = (1/2), but d(Coe (o1 [ 52), Cae (4 Il 55)) = 1.

(9)
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Appendix
A Proof of Correctness of C., for the Full Language £

A semantic model M : £ — D(M ) is called a congruence for £ iff it satisfies the followmg
Vs1, 82 € L[ M(51) = M(s2) & VS € LIX][ M(S[sl/X]) = M(S[sz/X]) 1

Since Cyp respects Oy, (cf. Proposmon 1), the correctness of Cpy W.r.t. Oy, follows immediately
from the proposition that C,. is a congruence for £. Therefore, let us prove that Cp, is'a congruence
for L.

Let 51,55 € £ such that Cup(51) = Cqe(s2), and S € L[X]. Let us prove the following:

Car (S[s1/X]) = Cee(S[s2/X])- s (29

We will prove this, by induction on the length of inferences through which transitions s 255 are
proved, which is analogous to Milner’s proof of the fact that the so-called strong equwalence is a
congruence (cf. [Mil 83], § 4).

Some notational preliminaries are needed for the proof.

Notation 4 For 5,8’ € £, a € A, and n e w, let us write Fey 8 -, to denote that there is an
inference with length n through which s — s’ is proved. ‘
We write k) s 2+ 5', to denote that Ik <n[F,, s RO E
One obtain mlmedlately, by the definition of the transition relation —, that
s—=+s e dnew[k,s—s]
In order to prove (25), it suffices to prove the following:

(i) R(S[s1/X)) = R(S{&/X];
(i) F(S[s1/X]) = F(S[s2/X]
(iii) Inf(S[s1/X]) = Inf(S[s2/X]),
(iv) Div(S[s1/X]) = Div(S[s2/X]).

The propositions (i), (ii), (iii), and (iv) of (26) will be proved in this order.

Lemma 4 Let 51,2 € £ such that Cyp(s1) = m-(32): and S € L[X]. Then, (26) (i) holds, i.e.,
R(S[s1/X]) = R(S[s2/X])- 1

Proof. In order to prove R(S[s: /X]) = 'R(S[sz/X]) it suffices, by the deﬁnltlon of 'R (cf. Defini-
tion 6), to prove the following:

{ () VS € LIX)[3s4] Slor/X] T 1] = 38’2[ Sls2/X] = 55 1},

() VS € LIX][ ~3sh[ Slsa/X] o 55 ] = , @)
Ve[ 3si[ Sls1/X] s8] 3sy[ Ss2/X] = s 1) :

- (26)

Forn € w, let

@r(n) & VS € LIX][ Isi[ F,, Sls1/X] 51 ] = 3sy[ Sls2/X] — 53 1),
1 (n) < VS € LIX][ ~3sh[ S[s2/X] —— ] =
Vel 35}, Sls1/X] = 81 ] = 3s5[ S[s2/X] — 11

We will prove, by induction, that ¥n[ &% (n) A ®%(n) ] holds.
Induction Base: First, we will prove ®(0). Suppose Js[ Feo 5[31 /X158 ]. We dlstlngulsh
two possible cases according to the form of S.
Case 1: Suppose S E X. Then one has,
Sls1/X] = sy - s}, and therefore, Ish[ S[s2/X] = 52 — s ],
since Cop(51) = RP(SZ) .
Case 2: Otherwise, S=(7;5') for some §', and therefore, S[s2/X]|= (7;S'[s2/X]). Thus,

S[s2/X] = S'[s2/X], and therefore, 3sj[ S[s2/X] —— s ].

The other part ®%(0) can be established by a similar case analysm to the above one. Thus one has
$%(0) A ®%(0).
Inductlon Step: For k € w, assume Vi < k[ 9} (z) A % (z; ]. Let us prove % (k + 1) A QT(’G +1).

We will prove only. &% (k + 1); the other part (lc + 1) is proved 51m11arly Let S € £[X], and
suppose : , ~
3s3[ F gy Sls1/X] RAYA! (28)
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Let us show
3s)[ S[s2/X] > 55 ). ' (29)

We distinguish 5 cases according to the form S, i.e., one of the following holds: S =X, S = (r;5"),
S=(5'+8"), §=(5"]|8"), or S = uY (5.

If S = X, then (29) is obtained immediately.

Out of the other 4 cases, we consider the case where S = pY (S'); in the other 3 cases.the same
result is obtained similarly. If Y = X, then (29) is obtained immediately. Suppose Y # X. Then, by
(28), one has .

Fsny KY(S)[s1/X] = wY (S's1/XT) <o s).

By this and the definition of —, one has

Fay St/ XY (S'[s1/X])/ Y] = S'[pY (5')/ Y [s1/X] > 5.

By this and the induction hypothesis, one has
35 S' WY (S)/Y1ls2/X] = S'[s2/ X][uY (S'[s2/ X])/ Y] - s} 1.
Thus, by the recursion rule, one has
KY (S'[s2/X]) = S[s2/X] D> 5. W
The following notations are introduced as a preliminary to the proof of (26) (ii).
Notation 5 For wy,ws € AS¥, let wy ~+ wy iff (wy \ 7) = (wa \ 7) and (wi#eo wr#e). §

Lemma 5 Let 51,52 € £ such that Cor(s1) = Coe(s2), and S € L[X]. Then, (26) (ii) holds, i.e.,
F(Sls1/X]) = F(S[s2/X])- W

Proof. In order to prove F(S[s1/X]) = F(S[s2/X]), it suffices to prove that the proposition ®5(n, k)
defined below, holds for every n,k € w:

@}'(n,k) =4
Va€ A,V € A", VX,VS[ 3sY,84[ b, Sls1/X] o5y A st 2 st
Aact(s1)) CC A act(s))NX =0 ] (30)
= 31!)2,36'2[ wy ~t (a) W A S[Sz/X] Bt N s
Aact(sh) S C A act(sh)NC =0 ]).

This is achieved by iterated induction. That is, the claim that Vn[ Vk[ ®5(n,k) ]] is proved by
induction on n, where for each n, the claim that Vk[ ®#(n, k) ] is proved by induction on k.

Note that ®(0,0) is proved by means of Lemma 4. The induction steps are similar to the proof of
Lemma 4.

For the proof of (26) (iii), (iv), the notion of strong bisimulation is assumed to be known (cf., e.g.,
[Mil 83], § 4), and the following notations and definition are introduced:

Notation 6 Let $,81,52€L,a€ A, and we AS¥.

(1) The strong bisimulation is denoted by ~. That is, s; ~ s5 iff s; and s are bisimilar.

(2) 51 =S 87 iff Tsh[ 51 — &) A sy~ s ].

(3) 51 —oup 5 iff Ish[ 51 2w 55 A sh ~ 59 ]-

(4) When w € A¥, we write s —, to denote that 35'[s —», 5s']. When w = A<¥, we write 5 —,
to denote that 3(s;)icu[ s =50 AVi€w[s; wd) siv1 1] 11

Definition 13 For w € AS¥, let

w\ 1) (1) if Iw =w-7v],
al(w)={ EU)QT% ) Lth:lj'[wii‘;e. u; 7 ]

The following lemma, essentially used in the proof of (26) (iii), (iv).

Lemma 6 Let 51,55 € £ such that Cpp(s1) = Cpp(s2). Then for w € At, w' € ASY, and S € L[X],
the following holds: :
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(w\7) # e A S[s1/X] 22,
= Jwe At " € AS¥ 35 L£,35 € L[X]
[\ )= (@\7) ABL(w) = 00 (w") A §|| ls1/X] 2
A Sls2/X] a0 5| Sls2/X] 1
Proof. This lemma js proved in a similar fashion to the proof of Lemma 5, by iterated induction on
dom(w) and the number k such that 3s{[F,, S[s1/X] 2O, 1A Sy rest(u) e’ v
For dom(w) =0 and k =0, we take § and S as follows: If S =X, then we take & such that
S[s2/X] = s2 LA 5 v and § = D. Otherwise, S = (w(0); S’) for some S’, and we take 5§ = D and
s Lef us prove (26) (iii) by means of Lemma 6.

Lemma 7 Let 51,52 € L such that CRF(sl) = Cpp(s2), and S € L[X]. Then, (26) (iii) holds, i.e.,
Inf(S[s1/X]) = Inf(S[s2/X]).

Proof. In order to prove Inf(S[sy /X]) = Inf &S[sz /X1), it suffices to prove
Inf(S[s;/X]) C Inf(S[s2/X]) and Inf(S[s2/X]) C Inf(S[s;/X]).
We will prove the first part. In order to show this, it suffices to prove the following:
V(en)new € C¥,Yw € A¥
[ (w\7) = (ea)new A S[s1/X] =+ =
5 e L, 3‘SO € ‘C[X] 3((311’511: 'wn))ned’ € (‘C X ‘C[X] X A+)w (31)
[ Sls2/X] ~ 5o || Sols2/X] A ) i
Vi > 1] (@n \ 7) = (cn1) A Sn1 || Sn-1[s2/X] ==up 3n || Suls2/X] ]]].

Let (cn)new € C¥, w € A¥ such that (w\ 7) = (¢n)new and S[s/X] ==

First, let 5 = D and 5'0 =

Next, let us define ((3,,Sn, w,.)),.e,p inductively as follows: For n € w, suppose 3, and S, have been
defined.

Ifsp=LlorS,=1,let (§n+1,S,.+1, Wp1) = (L, L, 1).

Otherwise, putting

N= {(35,®) € LxL[X]x At : (&\7) = (cnt1) A
Fu'[ 0L((¢n+1+-):eu) =01(w") A 5 || Snls2/X] s 81| Sls2/X]
A 51| Blsr/X] 2 1},

let

Grer Sorn, Grpny = | (D) i N =0,
n+lOntls Wn+l/ = 1 any element of N otherwise.

It can be shown by induction on n using Lemma 6, that
V> 1[ (8n-1,80-1) € L x LIX] A By € A A (@ \ T) = (cn-1)
A &a_1 ]| Sn-als2/X] — s} 3n I 5n I

Thus one has (31). W
Finally, let us prove (26) (iv). In order to prove it, the following lemma is employed.

Lemma 8 Let 51,82 € L such that Cop(s1) = Cpr(s2). Then for S € L[X], the following holds:

S[s1/X] —— ) ]
= e {r}*,I5e L£,35 € LIX][ 5| Sls1/X] T=u A S[s2/X] s 5| S[s2/X]]. N

Proof. This lemma is proved by induction on the number k such that

351 [ by 51| Ss1/X] T 4 A s) —— ],
using Lemma 6.
By means of this lemma, (26) (iv) is proved in a similar fashion to the way Lemma 7 is proved by

means of Lemma 6. Thus, one has:

Lemma 9 Let s1,s2 € £ such that Cop(s1) = Crp(s2), and S € L[X]. Then, (26) (iv) holds, i.e.,
Div(S[s1/X]) = Div(S[s2/ X]).
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