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Abstract

We study a fragment of Milner’s pi-calculus with the intention of understanding the

* notion of concurrent object-based computing in the theoretical setting. We construct
a formal system from the original one as an elementary expression of the notion of
“objects” and “asynchronous messages”, not by adding but by reducing it to a smaller
system while retaining the computational power almost fully. What is interesting is
that our asynchronous bisimulation is broader than the traditional bisimulation and
moreover congruence relation.
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1 Introduction

This paper introduces a calculus of concurrent objects, which tries to represent the essence
of concurrent object-based computing in a simplest possible formal system. The concur-
rent object-oriented computing is enchanting software modeling methodology based on the
abstraction of “objects” and “messages” [17, 15]. At the same time, we do not have the
foundational formalism for concurrent object-based computing, which has been harmful in
various theoretical and pragmatic investigations. This paper presents an attempt to con-
struct the core theory of concurrent object-based computing, which is a simple formalism
of objects and communication just as Lambda-calculus is that of functions and application.
As such, our hope is that the formalism will provide the basis for further clarification and
development of concurrent object-based computing.

Two important precursors should be noticed before we present our formalism. One is
the study of the actor model by Carl Hewitt and his colleagues [5, 4, 1], which contributed
to the conceptual framework of our formalism. Another is Milner’s w-calculus, proposed in

" [10] and reformulated in [11], which is a basis of theoretical construction of our formalism.
For details of relationship between our calculus and Milner’s calculus, please consult [8].

The structure of the rest of the paper is as follows. Section 2 presents the concep-
tual framework of our formalism called migration-based computing, which underlies our

*The previous version of this paper appeared in Proceedings of the Workshop for Object-based Con-
current Systems, Ottawa, 1990.
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theoretical development. Section 3 defines the syntax and operational semantics for our
formal system. Section 4 discusses several remaining topics. Finally Section 5 concludes
the paper.

2 The Computational Framework

This section presents the unusual computational framework called migration-based computing[13,
6, 14], which underlies our theoretical construction described later. It is unique in that

it positions the inherent concurrent, distributed computational space, where distance and
locality are dual important notions essential in any aspects of computation, at the center of

the general study of concurrent computation, not only of the study of physical distributed
computation space. There we no longer consider that computational space consists of
processing nodes and communication networks. We instead have the field.

Let us envisage that a computational space is a horizontal, continuous extension called
the computational field. The field is supposed to give computational power and migration
capability to entities functioning on it. We suppose that each point in the field is given
its own address (which we suppose globally distinct). On this field, there are two kinds of
entities, objects and messages, both being supposed to be very fine-grained and primitive.
An object has a name and child entities. The name should be the same as some address
(please note that, in general, there can be multiple objects with the same name). The
object should be situated in some neighborhood of this address, and does not voluntarily
move around. In contrast, messages are more active entities. A message has the name of
its target object, and a value to transmit to the target. Once generated, it will migrate to
its target address. Then it will actively search for the target object around the address,
to interact with it. Now computation proceeds as follows;

1. When interaction takes place, the message is assimilated into the object and the
value is transmitted. Possibly using this value, the object generates child entities
into the computational field. The original message and object just disappear.

2. If objects will be generated, they are situated in that local field, waiting for messages,
and if messages are generated, each will migrate to its respective target.

The name of one object may be inherited, in some cases atavistically, by its descendants,
which means a rather loose kind of persistence. As these descendants will be situated in the
same local space, the number of objects in the neighborhood may grow as time proceeds.
Thus some kind of biological populations (or colonies) are generated here and there. We
can identify such a colony as a kind of local configuration in the global computation space.

The most important point in this framework is its departure from the foregoing node-
network metaphor of computation and communication. This results in a clean way of
representing asynchronous messages as syntactic terms in our formalism presented later.
Another point is its emphasis on locality and communication, which primarily distinguishes
our framework from Chemical Abstract Machine [2]. For more detailed discussions, see [8].
Also see [16] for application of the “field” concept to load balancing strategy in distributed
computation environments.



3 The Formal System

Our basic framework is that very small entities, some being objects and some being mes-
sages, interact with one another in a horizontal extension called the computational field.
Apart from the formalization of such subtle mechanisms as migration etc., the framework
can be very cleanly represented as a formal system of computation. This is what we will
show in the subsequent exposition, a formal system! born from the marriage between clean
expression of dynamic concurrent computation in Milner’s 7-calculus and our migration
framework of computation.

3.1 ‘Syntax and Structural Congruence

In the syntax definition below, we assume an infinite set of labels, written in non-capital
letters or sometimes non-capital strings.

Definition 1 Syntaz by extended BNF grammar.

0 u= «awv (a migrating message) (1)
| a:{z. 0} (an object) (2)
| 0,0 (entities running concurrently) (3)
| P(v)(a,b,c,....) (instantiate an object definition) (4)
| lyl O (private labels) (5)
| Nil . (a null term) (6) =

We will call the expression (a term) of the form (1) and (2), a message term and an object
term, meaning a message and an object, respectively. We call “a” in (2) a handle, meaning
a communication handle. Subterms of O in (2) are called descendants of a:{z. O}. The
meaning of each term above is clear, except (4) and (5). First, in (4), we are assuming
existence of a defining expression for object behaviour, in the form of

P(a)(y1,¥2,--.) & a:{z. O}  (where y;,y2, etc. are distinct.)

Here we suppose that each of free labels in the right hand side should be one of y1,y2, ...
Second, in (5), private labels are binding to the labels which are not yet bound in the
subsequent expression. That is, “|a]” in “|a| E” will bind the appearances of “a” which
are free in expression “E”. The private labels are used instead of let statements (of the
form “let x = new ...”) which are found in various actor-based languages as in w-calculus
[10]. They function as new label creation in reality. It is called p-binding. In addition,
“z” in “a:{z. O}” binds the free occurrences of = in O. This binding is called v-binding.
‘For these bindings, we assume standard substitution rules of variables.

The below is the syntactic equivalence rule called structural congruence. It was first
proposed and successfully exploited by Milner in [11], and we follow his formulation closely
here.

1The previous version of this formal system is called ACF, but the current version remains anonymous
for the time being.



Definition 2 The structural congruence is the smallest congruence relation over
terms which includes:

0, = O, (if O is an alpha conversion of O,) (1)

0,, O, = 0, 0, (2-a)

01, (02, 03) = (01, 03), 04 (2-b)

PO)(a,..) = A{v/zHar,./91,.} (when P(z)(y1,.) < 4) (3)

lz|lylo = |yll=|O (4)

|z|(04, 03) = 0y, |20, (if x is not free in O,) (5)
O,Nil = o) (6) m

Among all, (5) is the most important, in that it states the meaning of p-binding. Informally
speaking, this rule says that p-binding means that the label is globally new in the whole
space of the field of computation.

3.2 Semantics

A configuration (or a program) is a collection of terms. Its meaning can be defined in
many ways, but a possibly most general steps to define the operational semantics for our
system may be as follows;

1. Define the basic interaction transition rules, specifying internal interaction sequences.

2. Based on the transition rules, construct its behaviour rules which stipulate the pos-
sible reduction sequences when the configuration is composed with any possible
configurations, labeled according to the category of such transitions.

The below is the bahavioural transition rules constructed following the framework above
(see [7] for details). We will use a : v, a:|v]|, a(z), and T as labels for transitions.

Definition 3 Behaviour transition of a term is a labeled transition relation, which can be
inferred by the following rules. It embodies the notion of asynchronous message passing
as foundation of our calculus.

IN: — =
P —5 P +a:v
OUT: —_—
co —a:v — Nil . .
M: Cavai{s 0] Ofv/z) (=internal computation)
RES 0—0o (if = ¢ labels(1))
: e O if z ¢ labels
|z}0 — |z|O’
v g
OPEN : Lm-l—o— (if a # v)
[v|l0 = [v]0’
0,-50|
PAR(1): L1 (if ! not of the form z : |v|)
0y, O3 — Oi, O,
zlo) -,
PAR(2) : 01:_;"01 (f v not free in O,)
O1, O — 0}, O,
!
STRUCT : O;EOI, 01 —_ 02, 0250; ]

[
1= 0%



The transition relation denotes action sequences the one configuration can have when it
is composed with some configuration. In terms of migration-based computing, it denotes
sequences of consumption and generation of messages inside the configuration when it
is situated at some local space in the field (where many other configurations exist here
and there). Especially please note that, in IN rule, we boldly introduce asynchronous
message reception, which means that a configuration can just get messages from outside,
without any interaction happening. Not only does this express our notion of asynchronous
message passing loyally, but also this formulation of operational semantics is found to be
more robust and general than synchronous one, especially in that the abstraction level is
higher in its expression of causal connection and hence concurrency. See [8] for details.

Based on this behaviour transition, we can define the standard strong and weak bisim-
ulation. Firstly, the “strong” bisimulation requires that two configurations have exactly
the same set of transition sequences.

Definition 4 A term O, is said to be strongly bisimilar to Oy (written Oy ~ Oz) iff:

whenever O — O} then for some O ~ O}, O3 LN 04, and the same with O; and
O, reversed. |

The second one is more important, as here lies the core of Milner’s approach in the
semantics of concurrent systems, hiding unobservable internal computation in the semantic
schemes.

Definition 5 A term O; is said to be weakly bisimilar to Oz (written Oy = O3} iff:

whenever O; —— O} then for some 04 = O}, O- =4 0}, and the same with Oy and
O, reversed. |
The relation == stands for —— —— —Tv*, and | means the null if [ = 7 and ! itself
otherwise. The definition says that two programs are equivalent if and only if an outside
“observer” cannot distinguish them by any interaction sequences. In terms of our mi-
gration framework, this bisimulation only pays attention to interaction between the local
configuration and the outside environment in the form of message exchanges. This weak
bisimulation is strictly more general than its “synchronous” counterpart [8].

Strong and weak bisimulation are defined to be the largest such relations, whose ex-
istence we can prove. More interesting “relativized” versions of these equivalences are
discussed in e.g. [12, 9].

3.3 Object-Orientation and Naming

" The readers may wonder how the usual notion of “objects” can be compared to the terse
expression of “object terms” in our calculus. Indeed the careful examination of the be-
haviour transition rules will soon lead us to the observation that the behaviour rules do
not prevent multiple object terms from having the same object id, which may seem severe
violation of the usual principle of object-orientation. Also it is obvious that our object
terms may or may not be persistent. That is, regeneration of an object (i.e. generation of
a descendant object with the same handle but possibly with the different behaviour), may
be or may not be carried out. Please note how these “object-oriented” notion is closely
related with the framework of naming of the descendant object terms in our calculus.



While the condition of identity preservation and strict persistence can be stipulated
easily as naming principles, our present formal system is based on a much looser framework
regarding these points. It is called Local Naming Constraint and is given as follows.

Definition 6 A program P conforms to the local naming constraint, written as LN (P),
iff none of handles of object terms are v-bound in P. |

What is the significance of this naming framework? There are two important consequences
from this definition:

e If free handles of object terms in one configuration do not overlap with those in
another, they will not overlap in any future transitions.

o It does not prevent multiple objects from sharing the same handles.

Thus multiple objects with the same name can coexist, but only within some local bound-
ary of the computational space. Hence the collection of behaviors of objects with the
same name are locally given, rather than from the arbitrary configurations. Preliminary
investigation utilizing this concept will be presented in [8], where we show the relationship
between the naming concept and controllability notion. We contend that, while the local
naming constraint is much looser than the foregoing framework of concurrent objects, it
does offer us another authentic notion of “objects”, which is based on locality rather than
strict identity. See also [3] for related discussions from the pragmatic concerns. Further
consequences of this “object-orientation” in our calculus is, however, to be clarified in our
future investigations.

4 Remaining Topics

We did not talk much about the expressive power of our formal language, which deserves
close scrutiny just because it is virtually a rather small subset of 7-calculus. In reality, we
can encode essential primitive data/control structures using only basic constructs of our
calculus. In other words, our formal system is computationally complete, and moreover
can express “concurrent objects” very naturally in its terse syntax (see [8]). Another
notable fact is all the constructs of the full 7-calculus except the matching operator and
unguarded summation can be loyally mapped to our calculus (up to weak bisimulation).
In a sense, our formal system is “purely asynchronous” version of w-calculus, without no
embedded synchronization constructs unless absolutely necessary (i.e. only in the case
of value passing and subsequent bindings). Yet it is equipped with the almost similar
expressive power. The relationship with n-calculus and our “subset” calculus, however,
needs further careful investigations.

There are other interesting topics concerning our formal system, such as: investigation
of various typing schemes; construction of denotational framework; development of for-
mal specification-verification methodologies; the logical architecture for concurrent objects
computing based on our formal theory; and comparisons with other framework of concur-
rent computation, especially those using streams for communication such as A’UM [18].
Some of these issues are being actively investigated in our laboratory, and their results
will be discussed in our subsequent papers in near future.



5 Conclusion

In this paper we presented a simple and rigorous formalism for concurrent .objects com-
puting based on the formalism of Milner’s m-calculus. Coupled with its underlying frame-
- work of migration-based computing, it opens new possibilities for formal, conceptual, and
pragmatic aspects of concurrent object-based computing. The formal system is powerful
enough to represent dynamic computation scheme of concurrent object-based computing.
Being a significantly simple formalism, we hope that it can serve as one of basic strata for
investigation of theoretical and other aspects of concurrent object-based computing.

Concluding this paper, we would like to express many thanks to Carl Hewitt for stim-
ulating discussions during his stay in Keio University from 1989 to 1990, to researchers
who gave us beneficial suggestions in the course of development of our theory, to Vasco
Vasconcelos for good advices and productive criticisms on the paper, and to all the mem-
bers of our laboratory for kind assistance and cheers. ‘
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