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Abstract

Generalized Partial Computation (GPC) is a program optimization principle based on partial compu-
tation and theorem proving. Techniques in conventional partial computation make use of only static values
of given data to specialize programs. GPC employs a theorem prover to explicitly utilize more information
such as logical structure of programs, axioms for abstract data types, algebraic properties of primitive
functions, etc. In this paper we formalize a GPC transformation method for a lazy first-order language,
and extend it to use context information of a program to be partially evaluated. Context information is
represented as a projection and is utilized to eliminate redundant transformation.



1 Introduction

The recent progress in the field of partial evaluation is
striking enough to make us believe that it will continue
to be a promising and powerful technique over the next
decade ([1,6,7]). But these advances also reveal the es-
sential limit of its transformational power. Techniques
in conventional partial evaluation use only static values
of given data to specialize programs.

Generalized Partial Computation (GPC henceforth)
was proposed to overcome these drawbacks. The key
idea of GPC is to employ a theorem prover to explic-
itly utilize more information such as logical structure
of programs, axioms for abstract data types, algebraic
propetties of primitive functions, etc. GPC was first
proposed in [4], and its transformational power was
demonstrated through many examples in [5]. But the
concrete transformation methods given there expected
a restricted form of language (e.g. u-form) with strict
semantics.

In the first part of this paper we formalize a GPC
transformation method which is applicable to both
strict and lazy first-order functional languages. In the
rest of the paper we concentrate on a lazy language and
extend the method to one which utilizes context infor-
mation of the program to be partially evaluated. This
extension is based on backward striciness analysis using
projections [3,8]. '

Projections are used to describe the context in which

an expression is evaluated. Context information repre-
sents how much definedness is sufficient for an expres-
sion in that context. Our GPC transformation method
for a lazy language eliminates redundant transformation
using this form of context information.

This paper is organized as follows. Section 2 describes
a first-order functional language. In section 3 we for-
malize a GPC transformation method for the language.
Section 4 introduces a description of context that will
be used in the analysis of lazy languages. In section 5
we extend the GPC transformation method for applica-
tion to a lazy first-order language by utilizing context
information that describes the sufficient definedness of
a value.

2 Language

We consider a set of mutually recursive function defini-
tions
{fivn...vn,=€; |1<i<n}

and an expression to be evaluated in the context of these
definitions. Expressions have the syntax given by the

boolean = T |F

h :  inleger — integer
hn = casen<1of
T : 1

F : case odd(n) of
- T : h(n—1) + h(n—2)
F : h(n-1)

Figure 1: Example definition

following grammar:

case eg of cpy te1]...|cpm 1 em ' case term

e u= v variable
| C€l...6pn constructor application
| per...en primitive function application
| fei...ens  function application
|

cp CVUl.cuUn case pattern

In applications, e; ...e, are called the arguments, and
in a case term, eg is called the selector, and cp; : ey,
..+ CPm : em are called the branches. The case patterns
may not be nested. Methods to transform case terms
with nested patterns to ones without nested patterns
are well known. Each constructor ¢, primitive function
p and user-defined function f has a fixed arity n. An
example definition is shown in Fig.1.

3 GPC method G,

In this section we define a GPC method which trans-
forms a program in the first-order functional language
above. The intended operational semantics of the lan-
guage is either strict order (leftmost innermost first) or
normal order (leftmost outermost first) graph reduction.

3.1 GPC Principle

Given a syntax tree representing an expression and the
information regarding that expression, GPC transfor-
mation will involve specializing the expression using
that information, and propagating the information to-
ward the leaves of the tree to yield information about
the subexpressions to be specialized. The information
at the root describes the assumable constraints on the
values of the variables, with the result of the propa-
gation describing the constraints on the values of the
variables in the lower structure of the expression, which
are deducible from the condition at the root. The infor-
mation at each node is expressed in some logical formula
which is used by a theorem prover to specialize the cor-
responding expression. The specializing process yields
a specialized expression (residual expression) equivalent
to the original expression on the assumption of the at-
tached information. GPC employs a theorem proving



technique to guarantee this equivalence that utilizes ad-
ditional information such as semantics of the language,
axioms for abstract data types, algebraic properties of
primitive functions, etc., which are rarely used in con-
ventional partial evaluation.

In this paper the information at each node is ex-
pressed as a set of identities, each of which we write
here in the form { — r, where [ and r are expressions.
The equational reasoning is used for theorem proving.
There is a special set -Ey of identities which are all valid
throughout the program. Ej is called the .underlying
logic for the language, and is used implicitly in the spe-
cializing process together with the information attached
to the node. The formal definition of compatibility be-
tween logics and languages, which must be satisfied by
an underlying logic [4], is not given here. It will suf-
fice to say that the intended meanipg of compatibility
is that if two expressions are proved to be equal under
the logic, they calculate the same result.

3.2 Rules for G,

GPC transformation method G, is defined by the set of
fourteen rules shown in Fig.2. Write Gyfe] £ to denote
the residual expression of specializing expression e with
the information E. Here I <% r means that there is a
finite sequence of I = 8] — &y & ... = t, =r (n 2> 1)
of application of equations in £ U Ey. FV(e) denotes
the set of free variables in e.

It is easy to examine that the rules cover all possible
expressions: of the five kinds of expression (variable,
constructor application, primitive function application,
function application, case term) the first four are cov-
ered directly, and for case terms, all five possibilities for
the selector are considered.

It is required that Gofe] £ = e whenever e satisfies
the constraints E. That is, Gofe] £ and e should com-
pute the same value if e satisfies E. It is clear that each
of the rules preserves equivalence.

In rules (2), (3), and (5), the basic form of the expres-
sion is not changed, and the components are converted
recursively.

Rules (1), (4), (7), and (11) are applied if the expres-
sion can be reduced to the constructor application form
using the information E. The simplified expressions are
converted recursively. The let construct is used in the
residual program to introduce local variables.

Rule (6) introduces a new function f’ to continue
specializing that function application. It emulates the
popular loop for program transformation: instanti-
ate/unfold/simplify/fold [9]. This is the only source of
nontermination. Later we will elaborate this rule to
make the transformation terminate more often.

In rule (9), the form of the expression tells which
branch should be used, and the right hand expression
of that branch is converted recursively. Rule (10) is

used to eliminate the expression which is never used to
calculate the result. We use L to represent these useless
expression. It is possible to eliminate the case branch
whose right hand expression is L.

In (8), (12), and (13), we don’t know which branch
is used to calculate the result. The form of the case
term is preserved and the components are converted re-
cursively. Each branch has different information, which
reflects the semantics of the case term: the right hand
expression of each branch is selected to calculate the re-
sult if and only if the selector matches with the case pat-
tern. The information for each branch is extended with
an identity which expresses that the selector matches
the corresponding case pattern.

Variables in the identities are treated as constants in
the equational reasoning. Especially, variables in the
case pattern should be renamed in the branch to avoid
conflict with the constant names in E.

After adding the identity, the consistency of the infor-
mation EU {e < p;} is checked. If it generates the con-
tradiction (F «* T), the corresponding branch p; : !

3
is eliminated from the residual case term.

This extension of the information is the central idea
of GPC and the most essential difference from conven-
tional partial evaluation. It can be said that the whole
GPC method is devised to utilize this extended infor-
mation.

For rule (14), the nested case term is simplified, and
the result is converted recursively.

3.3 Examples

We illustrate the application of the method Gy with a
simple example. Let

fn = casen<1of
T:0
F : (case odd(n) of
T: f(n—-1)
F:n-2 )

The transformation of the expression f n is shown in
Fig.3.

It is obvious that this version of G, is too weak. It
works well only with an expression which is transformed
into one without recursion after finite unfolding. If the
given expression is inherently recursive (e.g. function
h in Fig.1), this method always goes into the infinite
loop. As mentioned above, the only source of nonter-
mination is rule (6). We elaborate this rule to avoid
nontermination.

3.4 Memoization for G,

Infinite introduction of new functions causes the infi-
nite loop. The memoization trick is used to avoid this
infinite regress. Each new function introduced during



go |[v]] E

|
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ifvefge
= v . otherwise

il

(Ju[c ey... Cn:n E c ((}o[[el]I E) .. .(Go[e,,]] E)
Gilper...en] E = letcv,...p =pej...en in
Gocvi...i] EU{v1 = €},...,vp €L}
if pey...en opcel... €}
? (Goler] E) ... (Golen] E) otherwise

Golfer-..ea]l E = flo1...0
def

where fisdefinedas: fz,...2, = e
Défine a new function f’ by:
ffvi...n def Golle[z1 :==¢€1,...,zn =€ ]] B

vhere {vi...v:} = FV(e;)U---UFV(ey)

Golcase v of py:é€ll...|pm: e, ] E
: = letcv,...vp =vin
Goflcase c vy...vx of py :€f]...|pm e[, ] EU{v; = €l,...,0t — €}
it vepeel .. el
= case v of py : Gole] EU{v = p1}]...|pm : Golel,] EVU {v & pn}

otherwise
'Gol[case cey...e, of py :el}...|pm e, ] E
= Golel[z1 :=e€1,...,2n := €3]] E it p = czy...2,
= 1L otherwise
Golcase pey...en of pr:el|...|pm e ]1 E

= letcvy...vp=pey...epin
Gollcase c vy...vr of py:ef]...|pm e, ] EU{vy = €f,...,0p & €}
" if pej...ep pcel .. e}
= case ¢ of
p1:Golet] EU{e & pi}...|pm : Goler] EU {e < pm}
where Gofper...e,] E =e
otherwise

Golcase fer...ep of pyiel]...|pm e, ] E
= case ¢ of .
p1:Golel]1 EU{e o pi}l...|pm : Goler] EU {e & pm}
vwhere Go[fey...e ] E =e

Gollcase (case e of py :e1]...|ps i en) Of Pl :€l]...|p), e, ] E
= Go[lcase e of
p1: (case ey of py:ef]...|pl, eh)]...]
Pn i (case e, of py tef|...|ph, t el )] E

(1
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®
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(10)

(11)

(12)

(13)

(14)

Figure 2: Transformation rules for Go




gollf 61...6,,1' E = (f' vl...vk)ﬂ (6—1)
it 3f' : memoized function s.t.
memoized with call pattern : f e ...e), and information : E
f'isdefined as: f' v;...v; & .
and 34 : substitution over variables s.t.
{fei...el |E'}Y = {(fe...e})0| E'8},
fer...en =g (fe)...e)f,
{fer...ea|E} = {fer...en| E'8}
= flog...n (6-2)
where
fisdefined as: fz...zp & e

Define a new function f’ by:
flo...u def Golle[z: :=e1,...,2n :=€en]] E
where {v;...vx} = FV(e1)U---UFV(e,),
and memoize f' with call pattern : f e, ...e, and information : E

otherwise

Figure 4: Improved rules for Gy using memoization

Golfnl® = fon (by (6))
where
fon
det Go[[case n < 1 of
T:0
F : (case odd(n) of
T: f(n-1)
F:n-2 )10
= case n <1 of (by (12) (3)(12))

T:0
F : (case odd(n) of
T : Gof[f(n—-1)]
{n <1 & F, odd(n) — T}

F : Gon —2]
{n €1+ F, odd(n) — F})
= case n <1 of (by (6)(5)(2))
T:0
F : (case odd(n) of
T : f1 n
F :n-2)
vhere
fin
4o Gof[case n —1 < 1 of (bY‘(ﬁ))
T:0

F : (case odd(n — 1) of
T: f(n—1-1)
F:n-1-2 )]

{n <1« F, odd(n) —~ T}

= Go[case odd(n — 1) of (by (11)(9))
T: f(n-2)
F:n-3 1
{n <1 F, odd(n) & T}
= Gon-3{n <1 F, odd(n) =T} (by (11)(9))
= n-3 (by (5)(2))

Figure 3: Example transformation with G

the transformation is memoized with the original call
pattern and the information attached to it. Upon in-
troduction of a new function, the expression and the
information are checked against the already memoized
functions to determine they deserve the new function.

Here we state a required property (or a conjecture)
for Gy without proof. We cannot prove that the current
definition of G, satisfies this because the properties of
the underlying logic and its relation to the semantics
of the language has not been studied enough. Further
work is needed in this direction.

Requirement
If a substitution @ over variables in expression e
has the property {e|E} = {ef|Ef}
as the set of ground expressions,
then

(Golle] EY0 = Gollef] (E6) holds.

The criterion for reusability of the memoized function

follows directly. Rule (6) is safely replaced with the two
rules shown in Fig.4.

If there exist a memoized function f’ and a substi-
tution 4 which satisfy the condition of rule (6-1), the
following equation holds. This justifies rule (6-1).

Golfer...ea] E Gol(f €. ...eL)1 (E'6)
(Gollf €} ...eL]1E")6

(f’ ... 1)),)0

With this new set of fifteen rules, the expression h n

with the function k in Fig.1 is successfully transformed
as follows:

Go[hn]® = hon (by (6'2)l)

vhere ho is memoized with call pattern : h n
and information : @



hon‘

« Gofcase n <1 of
T:1
F : (case odd(n) of
T : h(n—1) + h(n—-2)
F : h(n-1) ) 1¢
= case n<1of (by (12)(3)(12)(5))
T:1
F : (case odd(n) of
T : Go[h(n —1)]
{n <1 F, odd(n) — T}
+ Goll(n —2)]
{n €1 F, odd(n) « T}
F : Gof[h(n - 1)}
{n <1« F,odd(n) = F} )
= case n<1of (by (6-2))
T:1
F : (case odd(n) of
) T : hin +‘_}o[h('n-—2)]
{n <1 F, odd(n) ~ T}
F : Goffh(n —1)]
{n<1e F odd(n)~ F} )
where h; is memoized with call pattern : b (n —1)
and information : {n <1« F, odd(n) ~ T}
h] n

& Gofcase n —1 < 1 of

T:1

F : (case odd(n — 1) of
T : h(n—1-1) + h(n—-1-2)
F:hn-1-1) ) }

{n <1+ F, odd(n) — T}

= Gofcase odd(n —1) of (by (11)(9))
T : h(n—2) + h(n-3)
F:hrn-2) ]
‘{n <1 & F, odd(n) ~ T}
Gofh(n — 2){n <1 & F, odd(n) ~ T}  (by (11)(9))

[}

hz2n (by (6-2))
where h; is memoized with call pattern : & (n — 2)
and information : {n < 1 « F, odd(n) « T}
han
' Go[case n—2 <1 of
T:1
F : (case odd(n — 2) of
T : h{n—2-1) + h(n-2-2)
F:h(n—-2-1) ) ]
{n <1 F, odd(n) ~ T}
case n < 3 of (by (12)(3))
T:1
‘F : Go[case odd(n — 2) of
T : h(n—3) + h(n—4)
F : h(n-3) 1
{n <3 & F, odd(n) ~ T}
(by (11)(9)(5))

= case n <3 of
T:1
F : Gollh(n —3)}{n £ 3 « F, odd(n) — T}
+ Gofh(n — 4)]{n < 3 & F, odd(n) — T}
For term Go[[h(r — 3)] {n < 3 & F, odd(n) « T},
function ky and substitution § :n ++n —2
satisfy the condition for reusability of (6-1).

= case n < 3 of
T:1
F :h(n-2)
+ Go[h(n ~4)]{n < 3 & F, odd(n) ~ T}
For term Go[h(n — 4)] {n < 3 — F, odd(n) «~ T},
function k; and substitution 6 : n+—+n —2
satisfy the condition for reusability of (6-1).

(by (6-1))

= case n < 3of (by (6-1))
T:1

F:h(n—2)+ ha(n—~2)
Return to the intermitted transformation of ko n,

For term Gofh(n —2)] {n < 1 ~ F, odd(n) —~ T},
function h; and substitution § :n+—n
satisfy the condition for reusability of (6-1).
ho n
= casen<1of
T:1
F : (case odd(n) of
T : hin + han
F : Gofh(n —1)]
{n <1« F, odd(n) ~ F})
For term Gof[k(n — 1)} {n <1 ~ F, odd(n) ~ F},
function h; and substitution #:n+— n 41
satisfy the condition for reusability of (6-1).

(by (6-1))

= casen<1of
T:1
F : (case odd(n) of
T: hin + han
F:ha(n+1) )

(by (6-1))

4 Representing Contexts with
Projections

In this section we introduce how projections can be used
to model contexts of programs. This form of context
information will be utilized in our new GPC method
for a lazy language in section 5. The formulation of
contexts using projections is first provided by Wadler
and Hughes in the analysis of strictness [8]. For a fuller
and formal development the reader is referred to [3,8].

The basic problem concerning contexts is, given a
function, how much information is required from the
argument in order to determine a certain amount of in-
formation about the result of the function. The notion
of projection from domain theory can provide a concise
description of the required amount of information.

Definition 4.1 A projection o is a continuous function
from a domain D to itself, such that

a C ID

aox = «

The first condition says that a projection only remove
information from its argument, but does not change its
type. The second condition says that all the informa-
tion is removed at once, so further application has no



effect. A projection is used to represent the context,
where the information removed represents information
not needed by that context. In the following the terms
projection and context will be used interchangeably. o
and g (sometimes subscripted) will always denote pro-
jections.

Definition 4.2 (Safe Projections) Given a projec-
tion a and a function f of arity n, if a projection B
satisfies the safety requirement

a(f(uy, ..., un)) C f(uy, ..., (Bw),...,u,)

for all objects uy, ..., uy,, then we say B is a safe context
for the i’th argument of f in context a.
And we write f':a = 8.

To specify necessity with proje'ctions Wadler and
Hughes extended a domain with a new element L, called
“abort”. The interpretation of au =L, is that context
a requires a value more defined than u. Simple strictness
is defined with the projection STR, where STR maps 1
to L, and acts as the identity on all other values. To
make this work, L; must be a new bottom element to be
added to every domain D. This new domain is written
'DL‘. Every function f : Dy — D, is naturally ex-
tended to a function in D, — ’Dzl1 by making strict
in L. A formal development of these technical devices
are studied in [2].

Projections form a complete latice under the ordering
C, with the identity function ID as the greatest element
and FAIL as the least element. FAIL is defined by

FAILu =1, forallu

Another useful projection is ABS, defined by

ABSYL = L
ABSu = L,u#l

The notions of strictness and ignored arguments can be
defined using these.

Definition 4.3 f is strict on the i’th argument iff

fi:STR= STR

Definition 4.4 f ignores its i’th argument iff
Fi:STR= ABS

For each constructor ¢;, we define projections of the

form C; ay ... an;, where

C,' oy ... a,,i(cj Uy ... u,,j)
cilarur) ... (en;un;) ifj=1i
L, otherwise

For each sum-of-products type with constructors
€1y...,¢m, FAIL and the projections of the form
UZ, G a;y ... a; 5, consist a complete lattice.

Analysis of context is a backward analysis : given a
context o for a function f, we want to know the smallest
context f; for each argument which satisfies the condi-
tion fi:a= f;.

The backward strictness analysis given in [3,8] pro-
vides us a computable approximation of the ideal solu-
tion for the problem. Given a set of function definitions,
the analysis calculates a set of projection transformers
J# for each function, which satisfy the safety property

filra= f#a, for all a.

5 GPC method G for a Lazy
Language

In this section we concentrate on a lazy first-order func-
tional language and define a GPC method G which
adapts to it. G is an extended version of Gy to utilize
context information of program to eliminate redundant
transformation. G terminates more often than Gg.

The structure of GPC method is analogous to that
of backward analysis. It propagates the information at
the root node toward the leaves to yield the information
for each lower nodes with appropriate transformation.
The information propagated by GPC method Gy is the
constraints on each node which are assumable for the
value of that node whenever its value is required. It does
not include the context information about how much
definedness is required for the value of each node.

For analyzing a language with strict semantics, it is
sufficient to see whether the value of the expression can
be needed or not, because once the value of the expres-
sion is required, the whole part of the value must be
calculated. Since the calculation in a lazy language is
done as much as it is needed to calculate the result of
the root node, the context information about required
definedness should be taken into account in the analy-
sis of a lazy language. Without these information the
transformation may go further into the expression whose
value would never be used, and it may leads us to non-
termination.

To treat these context information properly, we adopt
the formulation of a context used by the backward
strictness analysis shown in section 4. The context in-
formation is represented by a projection.

In order to adapt our GPC method to analyzing a
lazy language, the rules for transformation are param-
eterized with a projection which represents a context
corresponding to the expression.



Glelax E
Glvla E

Glcei...en] a E

Glper...en] @ E

Glfer...ea]la E

=1 if o C ABS (1)
= ¢ ifvege (2)
= v othervise (3)
= c (9[e1] a1 E)...(G[en] an E) if 3pst.a =(Car...an)Up (4)
= 1 othervise (5)
= letcuv,...ok=per...enin (s)
Glcvi...vid @ EU{vy = e1,...,vk + €} } if per...enhcel...ef
= p (Gl ](p*' @)E)...(Cle.l(p* ) E) otherwise (7
= (fr1...0)0 (8)

if 3f': function memoised with
call pattern : f e} ...e),, context:«, and information : E’
f'is defined as: f' vy ... v df .
and 39 : substitution over variables s.t.
vV {feliien| E'Y = {(fel...en)| EGY,
feroien o (fel...en)8,
{fer...en|E} = {fer...en|E'0}
= flo...0p (9
vhere f is defined as: f ...z, e,
Define a new function f' by: f' v1...vx e Gle[z1 i==e€1,0.c,2n :=€n]j @ E
wvhere {vi...m:} = FV(e1)U---UFV(en),
and memoize f' with call pattern : f €1 ...en, context: o, and information : E
othervise

Glcase v of p1 : €i|...lpm tel] @ E

= letcov...on=vin (10)
Glcase cvi...vx of py:el]...|pmiem] @ EU{v1 = e, .., vx — €}
if verpcel...el
= casevof p1 : GeiJa EU{v = p1}...|pm : Glem] @ EU {v & pn} (11)
othervise

Glcase cer...en Of pr:ei|...[pm:ep] a E

= Glei[z1:=e1,...,Zn:=en]l @ E if pi = ¢z1...%n (12)
=1 N othervise (13)

Olcase per...enof pr:ei|...lpm:en] a E

= letcvi...op =pe1...eq in (14)
Glcase cvi...vx of pyiel]...[pm:em]a EU{vy —ef,...,vx — &)
if per...en —opcel...ep
= case ¢ of (15)
p:Glei]la EU{e =»pll...|pm:Glem]l a EU{e & pm}
vhere Glpe;...ex] B E =e (B is a safe context for the selector)
otherwise

Glcase fei...en of pr:ef}...lpm:el ] a E

= case e of (16)
p1:6[eila EUu{e = pi}|...|pm : Gler] @ EU{e & pm}
where G[fei...en]B E =e¢ (B is a safety context for the selector)

Glcase (case e of p1:ex|...lpn:en) Of pr:iey]...lpm:em] @ E

= Gfcase e of (17)
p1:(case ey of py teil...|ph s enm)]. ..}
pni(case en of p :ei|...|pm:em)]a E

Figure 5: Transformation rules for G




5.1 Rules for G

Our extended GPC method G[] is defined by the set of
seventeen rules shown in Fig.5. Write G[e] a E to denote
the residual expression of specializing expression e with
the information E in the context a.

The context information is treated in the similar way
to the constraints. It is propagated to the subexpres-
sions with proper trasformations. The point is any ex-
pressions in the context ABS will never be used. We
can safely replace them with dummy values (we use L
for this purpose).

Before applying these rules, the backward strictness
analysis is applied to the set of primitive functions and
user defined functions. In the following it is assumed
that we already know the set of projection transformers
for the primitive functions and user defined functions.
For each primitive function p of arity n, the projec-
tion transformers p#!,...,p#" are defined to have the
safety property p':a => p¥‘aq, for all context a. Pro-
jection transformers f#1! ..., f#7 are also calculated
for each user defined function f of arity n, to satisfy
corresponding safety condition.

In rule (15) and (16) we need a safe context 3 for the
selector. It can be calculated as follows. For each case
branch, the context for right hand expression is a. Using
known projection transformers, a safe context for each
case variable can be calculated. Putting these contexts
together with the projection transformer corresponding
to the type constructor in the case pattern, we get the
projection for each case branch. The least upper bound
over the set of projections for all case branches gives a
context 8.

5.2 Examples

We illustrate the application of the method G with a
simple example. Let

append z y = case z of

Nil Y

Cons z zs : Cons z (append zs y)
squares zs = case zs of

Nil : Nil )

Cons y ys : Cons (y*y) (squares ys)
second s = hd (tail zs)

The example transformation is for the expression
second (squares (append z y))

with information {z < Cons a (Cons b ¢)} in context
STR. In the following, a projection transformer CONS
which corresponds to the constructor Cons is written
in infix notation (:). For example, ABS : (STR : ABS)
is equivalent to (CONS ABS (CONS STR ABS)).

Glsecond (squares (append z y))] STR
{z « Cons a (Cons b c)}
= secondp T y

(by (9))

vhere secondp is memoized with
call pattern : second (squares (append z y)),
context : STR, and
information : E = {z « Cons a (Cons b c)}

secondo T y
def

= G[hd (tail (squares (append = y)))] STR E
= hd (tail (G[squares (append z y)]
(ABS : (STR : ABS)) E))

= hd (tail (squareso = y))

(by (M) (7))
(by (9))
vhere squaresg is memoized with
call pattern : squares (append z y),
context : (ABS:(STR:ABS)), and
information : E = {z « Cons a (Cons b c)}

squareso T y
& Glcase (append z y) of
i : Nil
Cons zzs : Cons (z*z) (squares zs)}
(ABS:(STR: ABS)) F
case (appendp z y) of (by (16))
Nil : GINil] (ABS : (STR : ABS))
E U {appendo v y « Nil}
G[Cons (z + z) (squares zs)]
(ABS : (STR : ABS))
E U {appendp z y « Cons z zs}

Cons z zs

= case (appendo z y) of {(by (5)(4))
Nil
Cons zzs : Cons

G[z + z] ABS

E U {appendo  y « Cons z zs}
Glsquares zs} (STR : ABS)

E U {appendo © y «+ Cons z zs}

(by (1)(9)

case (appendy = y) of
Cons z zs : Cons L (squares; 2s)

where squares; is memoiged with
call pattern : squares zs,
context : (STR:ABS), and
information : E’ = { z — Cons e (Cons b c),
appendy z y — Cons z zs}

squares; 28

def
Z  G[case zs of

Nil : Nil
Consuus : Cons (u*u) (squares us)]
(STR : ABS) B’
= case zs of (by (11))
Nil : G[Nil] (STR : ABS)
E'U {zs ~ Nil}
Cons u us Gl[Cons (u * u) (squares us)}
(STR : ABS)
E'U{zs v Cons u us}
= case zs of (by (5)(4))
Nil HE
Cons uus : Cons G[uxu]] STR
E'U {25 « Cons u us}
G[squares us] ABS
E'U{zs «» Cons u us}
= case zs of (by (7)(3)(3)(1))
Cons u us Cons (uxu) L



Return to the suspended introduction of appendo,

appendp is memoized with
call pattern : append z y,
context : (ABS:(STR:ABS)), and
information : E = {z « Cons a (Cons b c)}

appendy T y
def
= G[case z of
Nil t oy
Cons z zs Cons z (append zs y)]

(ABS : (STR : ABS)) E
= let Cons z zs =z in (by (10) (12))
G[Cons z (append zs y)]
(ABS: (STR: ABS)) EU{z «+ a,23 « Cons b c}
= let Cons z zs =1z in (by (4))
Cons G[[z] ABS EU {z <+ a,25 ~ Cons b c}
Glappend zs y]
(STR: ABS) EU {z ~ a,z8 «+ Cons b c}
= let Conszzs=1z in (by (1)(9))
Cons L (append; zs y)

vhere append; is memoized with
call pattern : append zs y,
context : (STR:ABS), and
information : E" = { z « Cons a (Cons b c),
zea,28 »Consbec }
append; z3 y
def G[case zs of
Nil : oy
Consuus : Cons u (append us y)]
(STR : ABS) E” :
= let Cons v us = zs in

G[Cons u (append us y)}
(STR: ABS) E” U {u ~ b,us « ¢}
= let Cons u us = zs in (by (4))
Cons G[u] STR E” U {u « b,us « c}
Glappend us y] ABS E"” U {u — b,us < ¢}
(by (3)(1))

Summing up these transformation, we get the result:

(by (10)(12))

= let Cons u us=zs in Consu L

Glsecond (squares (append z y))]
STR {z «~ Cons a (Cons bc)} = secondo z y

where

secondo £y - = hd (tail (squareso z y))
squareso Ty = case (appendo z y) of

Cons z zs : Cons L (squares; zs)
squares; zs = case zs of Cons u us: Cons (u*u) L
appendg zy = let Conszzs=1z in

Cons L (append; zs y)
append; zsy = let Cons u us=zs in Cons u L

6 Conclusion

In this paper we formalize a GPC transformation
method for a lazy first-order functional language. GPC
provides the natural setting to utilize additional infor-
mation such as logical structure of programs, axioms
for abstract data types, algebraic properties of primitive

functions, etc. which have been rarely used in conven-
tional partial evaluation.

The given two methods do not always terminate
but more powerful than conventional partial evaluation
techniques. The first method Gy, which is applicable to
both strict and lazy first-order languages, employs the
memoization technique for proper treatment of recur-
sion. The second method G, which is specific for a lazy
language, extends the first method utilizing the context
information represented by projections. The result of
backward strictness analysis is used to eliminate redun-
dant transformation effectively, which helps the method
terminate more often.

References

[1] A. Bondorf. Automatic Autoprojection of Higher
Order Recursive Equations. In ESOP 90, 70-87,
LNCS 432, Springer-Verlag, 1990.

[2] G.L. Burn. A relationship between abstract in-
terpretation and projection analysis(extended ab-
stract). In 17th ACM Symposium on Principles of
Programming Languages, January 1990.

[3] K. Davis and P. Wadler. Backward Strictness Anal-
ysis: Proved and Improved. In Proceedings of Glas-
gow Workshop on Funclional Programming, 12-30,
Springer-Verlag, 1990.

[4] Y. Futamura and K. Nogi. Generalized Partial
Computation. In D. Bjgrner, A. P. Ershov and N.
D. Jones, eds., Partial Evaluation and Mized Com-
putation, 133-151, North-Holland, 1988.

[5] Y. Futamura, K. Nogi, A. Takano. Essence of Gen-
eralized Partial Computation. In D. Bjgrner and
V. Kotov, eds., Images of Programming, North-
Holland, 1991(to appear).

[6] N.D. Jones, P. Sestoft and H. Sgndergaard. MIX:
An Self-applicable Partial Evaluator for Experi-
ments in Compiler Generation. LISP and Symbelic
Computation, 2 (1) : 9-50, 1989,

[7] P. Sestoft. Automatic Call Unfolding in a Partial
Evaluator. In D. Bjgrner, A. P. Ershov and N. D.
Jones, eds., Partial Evaluation and Mized Compu-
tation, 485-506, North-Holland, 1988.

[8] P. Wadler and R.M.J. Hughes. Projections for
Strictness Analysis. In Functionel Programming
Languages and Computer Architectures, 385-407,
LNCS 274, Springer-Verlag, 1987.

[9] P. Wadler. Deforestation: Transforming Programs
to Eliminate Trees. Theoretical Computer Science,
73 : 231-248, 1990.



