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We present an algebraic specification of a functional programming language (called Brown) with
‘reflective’ computation mechanisms which enable the computational system to compute about its
own computation in a causally connected way. The major part of the specification consists of a set
of equational axioms based on a denotational semantics which models environment, continuation and
‘metacontinuation.’ The specification is executable by term rewriting, because the equations can be
regarded as the rewrite rules which replace instances of the left-hand sides with the corresponding
instances of the right-hand sides.
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1 Introduction

Computational reflection is the activity performed
by a reflective computational system which com-
putes about its own computation in a causally con-
nected way [5]. Many reflective languages have
been proposed in the frameworks of functional
programming [3,8,12], logic programming [9,11]
and object-oriented programming [10,13,14]. In
particular, Wand and Friedman [12] presented a
clear semantics of reflection, based on a denota-
tional semantics which models environment, con-
tinuation and ‘metacontinuation’. Two basic pro-
cesses, reification and reflection, were introduced
and implemented in Scheme, a dialect of Lisp, to
describe a reflective language called Brown which
is a dialect of Lisp with reflective facilities.

The implementation was done essentially in
lambda calculus which, although suitable for
mathematically rigorous description of computa-
tion, seems unsuitable for communication among
people, and thus for specification. Unlike Lisp and
other practical languages, all functions are fully
‘curried’ and higher-order. Forms are evaluated in

“normal order (call-by-name) unless call-by-value is
simulated by applicative-order Y combinators. No
practical data types are introduced. As a result,
the description seems to be a little complicated as
a specification, especially when we try to extend
and implement the language (Brown) in other lan-
guages such as C, Modula-2, etc.

In this paper we try to specify Brown in the
framework of algebraic specification. Algebraic
specification techniques [2] are now considered as
one of the most promising approaches to specifi-
cation writing in every phase of software devel-
opment. For example, in the field of program-
ming language design, the method combination
scheme in CLOS (Common Lisp Object System)
was specified by an algebraic specification [7]. For
more current trends, consult Futatsugi [4]. Part
of the emphasis in this paper is put on how we
can specify the reflection abstractly in equational
logic and, in other words, how we can specify the
reflective facilities as abstract data types.

2 Specification (Part I)

In this and the subsequent sections, we describe
a Lisp-like reflective language called Brown [12]
in an algebraic specification language. The syn-
tax of Brown is similar to a classical Lisp. It
has identifiers, abstractions for which the nota-
tion (lambda (id ...) body) is used, and appli-
cation of a function to any number of arguments.
Unlike Common Lisp (and like Scheme), the first
element (function part) of application forms is
evaluated and the result is used as a function. For
simplicity, we do not specify the side effects on en-
vironments (e.g., by set! operation) and I/O (by
read/write), because the emphasis in this paper is
put on reflection. But remember that such side
effects could be specified either formally or infor-
mally, being accommodated in the implementa-
tion.

In the specification, we introduce the following
sort symbols:

BF : Brown functions

Exp : Brown expressions

Exp* : lists of Brown expressions
Id : identifiers

Id* : lists of identifiers

Env : environments

K : continuations

MK : metacontinuations

A : some domain of answers
v : Brown values

V# : lists of Brown values

N : natural numbers

Since an identifier can be an expression, Id and
Id* are subsorts of Exp and Exp*, respectively. N
is a subsort of Exp. Since Brown is a dialect of
Lisp, a Brown value can be a program and vice
versa, so Exp is equivalent to V. .

The rest of this section consists of a set of dec-
larations of function symbols, and a system of
commented equations which specifies Brown with- -
out reflective facilities. (The declarations of vari-
ables are omitted, and reflective facilities will be
specified in the next section.) The specification
is executable by term rewriting [1,6], because the
equations can be viewed as the rewrite rules which
rewrite terms by using the pattern matching and



the subterm replacement.

2.1 Continuation and metacontinua-
tion

A continuation is a computational object that de-
scribes the control context. It is typically mod-
elled by a function which receives a value from
the previous calculation and then finishes the en-
tire calculation of the current interpreter.

A metacontinuation represents the states of the
interpreters above the current level in the reflec-
tive tower. It is typically modelled by a function
which receives a value from the lower interpreter
and then finishes the entire calculation of all the
interpreters above the current level.

In our framework of algebraic specification, a
continuation and a metacontinuation are modelled
abstractly (in the sense of abstract data types)
through the function pass:

pass : VK MK -> A

pass[v,k,mk] passes the value v to the contin-
uation X, and the output from k further to the
metacontinuation mk, to obtain the final answer.

The primitive operations on continuations and
metacontinuations are meta-car, meta-cdr and
meta-cons:

meta-car : MK -> K
meta-cdr : MK -> MK
meta-cons : K MK ~-> MK

Since in Brown a metacontinuation is essentially
a stack of continuations, we can specify the oper-
ations with the following equations:

k
mk

meta-car[meta-cons[k, mk]]
meta-cdr[meta-cons [k, mk]]

2.2 Environment

An environment is a set of bindings of identifiers
with their values, and is comstructed from the
empty environment empty-env and the extend
operation. extend[r, pl, vals] extends the en-
vironment r by binding the formal parameters p1
with the actual values vals.

Environments are accessed with the function
rib-lookup.
rib-lookup[id,r,k,mk] looks up the identifier
id in the environment r, and passes to the contin-
uation k the place (‘cons’ cell) in (the ’car’ part
of) which the associated value is stored; the value
from Xk is further passed to the metacontinuation
mk. The following specification introduces the
auxiliary function lookup to define rib-lookup:

empty-env : -> Env

extend : Env Id* Exp* -> Env
rib-~lookup : Id Env K MK -> A
lookup : Id Id* Exp* Env K MK -> A

rib-lookup[id, empty-env, k, mk]
= pass[(UNASSIGNED), k, mk]

rib-lookup[id, extend[r,names,vals], k,mk]
= lookup[id, names, vals, r, k, mk]

lookup[id, (), O, r, k, mk]
= rib-lookupfid, r, k, mk]

lookup[id, (name
r, k, mk]
= if eq[id, name]
then pass[(val . vals), k, mk]
else lookup(id, names, vals, r, k, mk]

. names), (val . vals),

where eq, which we assume is imported from an
appropriate module, checks the equality of iden-
tifiers. The expression “if x then y else z” is
identical to the term if [x,y,z] which satisfies the
{following equations:

if[true, x, y] = x
if[false, x, y] = y

2.3 Initial environment

The global environment, which will be shared by
all the interpreter levels, are constructed by in-
stalling several primitives in the empty environ-
ment. In the following, we include only eight func-
tions as an example set.of primitives for the illus-
trating purposes:



global-env : -> Env
prim-names : -> Id*
prim-vals : Id* -> Vx*
primitive : Id -> BF

global-env

= extend[empty-env,
(T NIL MEANIRG .

(T NIL mean .

prim-names),
prim-vals[prim-names])]

prim-names
= (CAR CDR CONS + MAKE-REIFIER)

prim-vals[O] = O

prim-vals[(name . names)]
= (primitive[name] . prim-vals[names])

The primitive functions are specified by call.
callfid,vals,k,mk] calls the primitive (built-in)
function id with the list of actual arguments vals,
and passes the result to X and further to mk.

call : Id V¥ K MK-> A
call[CAR, ({x . y)), k, mk]
. = pass[x, k, mk]
call[CDR, ((x . y)), k, mk]
= pass[y, k, mk]
call[CONS, (x y), k, mk]
= pass[(x . y), k, mk]
call[+, (x y), k, mk]
= pass[x + y, k, mk]
call [MAKE-REIFIER, (bf), k, mk]
= pass[reifier[bf], k, mkl

where we assume that x + y represents the (built-
in) addition. The specification of reifier and
mean will be given in the next section (Part II).

2.4 Denotation

The functions that play the central role in the
specification are denote and apply as well as
pass.

denote
apply :

: Exp Env K MK -> A
BF Exp* Env K MK -> A

denotefe,r,k,mk] evaluates the Brown expres-
sion e in the environment r and passes the result
to the continuation k. The output from the contin-
uation is further passed to the metacontinuation
nk, to obtain the final answer.

denote[n, r, k, mk]

= pass[n, k, mk] when n is number

This equation means that if the given expression
is a number, it should be simply passed to the con-
tinuation, because a number is a self-evaluating
object.

&deref : K > K

denote[id, r, k, mk]

= rib-lookuplid, r, &deref[k], mk]
when id is symbol

pass[(val . x), kderef[k], mk]
= pass[val, k, mk]

If the expression is a symbol (an identifier),
rib-lookup is used to find the value associated
with the symbol in the given environment. The
cell containing the value is passed to the continu-
ation &deref [k] which then passes to the contin-
nation k the value contained in the cell.

These two equations indicate how we represent
continuations in our framework of algebraic spec-
ification. In our specification, a continuation is
implicitly specified abstractly by the interactions
with the function pass, rather than explicitly by a
lambda expression. To state more specifically, we
introduce particular functions! {such as &deref)
to make a continuation from necessary informa-
tion (such as k). Then the equation for pass
which takes this continuation as the second argu-
ment specifies how the continuation will continue
the computation when it receives a datum from
the previous computation.

closure : Exp Id* Env -> BF

denote [(LAMBDA pl body), r, k, mkl
= paas[closure[body, pl, r]l, k, mk]l

!For convenience, the names of the functions which make
a continuation begin with the letter ‘&’.



If the expression is a lambda expression, the clo-

sure which encapsulates the body, the parameter

list and the environment is passed to the continu-

ation.

&apply : Exp* Env K -> K

denote[(fun . args), r, k, mk]

= denote[fun, r, fapplylargs, r, k], mk]
when fun <> LAMBDA

pass[bf, &applylargs, r, k], mk]
= apply[bf, args, r, k, mk] -

If the expression is a function application form,
the first element of the form (which is expected
to be evaluated to a Brown function) is evalu-
ated, and the result is passed to the continuation
&applylargs, r, k] which, when it receives a
Brown function, applies the function to the un-
evaluated arguments args in the environment r,
and passes the result to the continuation k.

Now we specify apply. applyl[bf,e,r,k,mk]
applies the Brown function bf to the list of un-
evaluated expressions e in the environment r, and
passes the result to k, and further to mk.

Id K -> K
Exp Id* Env K -> K

&prim-call :
feval-body :

applylprimitive[id], args, r, k, mk]
eval-args[args,r,&prim-calllid, k] ,mk]

pass[vals, &prim-callf{id, k], mk]
calllid, vals, k, mk]

applyl[closure[body,pl,ri],args,r,k,mk]
= eval-args[args,r,
geval-body[body,pl,ri,k] ,mk]

pass[vals, Zeval-body[body,pl,r1,k], mk]
= denote[body,extend[ri,pl,vals], k,mk]

When the function is either a primitive (with name
id) o1 a closure, the arguments are evaluated from
left to right and passed to a suitable continuation.
If the function is a primitive, it is called with the

evaluated arguments. If the function is a closure,
its body is evaluated in the environment which
extends the encapsulated environment by binding
the parameters with the evaluated arguments.

The argument evaluation process is defined by
eval-args:

eval-args : Exp* Env K MK -> A
eval-args : Exp* Env K -> K
&cons : V Env K -> K

eval-args[(), r, k, mk]
= pass[(), k, mk]

eval-args[(arg . args), r, k, mk]
= denotelarg,r,teval-argsfargs,r,k],mk]

passlval, &eval-args[args, r, k], mk]
= eval-argslargs,r,&cons[val,r,k],mk]
pass[vals, &coms[val, r, k], mk]

= pass[(val . vals), k, mk]

If the argument list is empty, the empty list
is passed to the continuation. Otherwise, the
first element of the list is evaluated and passed
to the continuation &eval-argsl[args, r, kI,
which then evaluates recursively the rest of the ar-
guments and passes the result to the continuation
gcons[val, r, k], which constructs and passes
to the continuation k the final list of the evaluated
arguments.

3 Specification (Part II)

In this section, we augment the specification in
the previous section with the reflective facilities:
reification and reflection.

3.1 Reification

Retfication is the process in which the current ex-
pression, the current environment and the current
continuation contained in the interpreter registers
are passed to the program itself, suitably packaged
(or reified) so that the program can manipulate
them. Since environments and continuations are



represented by functions in Brown, the reification
process must turn the interpreter environment and
the continuation into Brown functions.

reifier : BF -> BF
reify-env : Env -> BF
reify-cont : K -> BF

applyl[reifier[bf], args, r, k, mk]
= applylbf, (E R K),
extend[r, (E R K),
(args
reify-env[r]
reify-cont[X1}],
meta-car [mk], meta-cdr[mk]]

A reifier, or a reifying procedure, represented by
the term reifier [b£], is a Brown function turned
from an ordinary Brown function bf with three
arguments. Recall the last equation of subsection
2.3 to see that this transformation is done by the
primitive MAKE-REIFIER in a Brown program.

When a reifier is applied, the list of the argu-
ments is passed to bf as the first argument. In ad-
dition, the environment and the continuation are
turned into the corresponding Brown functions by
reify-env and reify-cont, and passed to bf as
the second and the third arguments, respectively.
Note that Brown functions take a list of uneval-
uated arguments, so actually, the list (E R K) is
passed to bf in a suitable environment. At the
same time, the reflective tower is “shifted up” to
continue the computation under the new continu-
ation meta-car[mk], because the old continuation
k was reified to reify~cont[k] which will be con-
trolled by the Brown: program.

Since we have now introduced two more con-
structors of Brown functions, we have to augment
apply and pass with the following equations:

&lookup : Env K -> K
applylreify-env(ri]l, (arg), r, k, mk}
= denote[arg, r, &lookuplri, k1, mk]

pass[id, &lookupfri, k], mk]
= rib-lookupfid, r1, k, mk]

reify-env(lri] is the Brown function which
represents the reified environment ri. When it is
applied to a single argument, the argument is eval-
uated (to an identifier) and passed to the contin-
uation which, when it receives an identifier, looks
it up in r1, and passes the associated cell to k.

applylreify-con[ki], (arg), r, k, mk]
= denotelarg, r, k1, meta-cons[k, mk]]

reify-con[ki] is the Brown function which
represents the reified continuation ki. When
reify-con[k1] is applied to a single argument,
the argument is evaluated and the resultant value
is passed to the continuation k1 after “shifting
down” the reflective tower by meta-consing k to
mk.

3.2 Reflection

According to the definition of Wand and Fried-
man, reflection is the process by which an ex-
pression, an environment and a continuation all
of which are expressed in Brown are passed back
to the interpreter to reinstall them in the inter-
preter registers. The reflection is invoked by the
Brown function mean:

mean : -> BF
reflect-env : BF -> Env
&reflect-cont : BF -> K
greflect : K -> K

apply[mean, args, r, x, mk]
= eval-argslargs, r, kreflect[k], mk]

pass[(e rb kb), kreflectik], mk]
= denotel[e, reflect-env[rb],
greflect-cont[kb],
meta~-cons [k,mk]]

reflect-env and &reflect-cont turns a-
Brown environment and a Brown continuation
(both of which are Brown functions) into the inter-
preter environment and the continuation. When
the meaning function is applied to the list of ar-
guments, the arguments are expected to be evalu-
ated to an expression (e), an Brown environment



(rb) and a Brown continuation (kb), respectively;
and their list is passed to the continuation which,
when it receives the list, evaluates the expres-
sion e under the new environment reflecting rb,
and passes the result to the new continuation re-
flecting kb and further to the metacontinuation
meta-cons [k,mk]. Note that the environment r
might be thrown away.

Since we have now introduced new constructors
of environments and continuations, we have to add
two more equations to rib-lookup and pass.

rib-lookup[id, reflect-env[rb], k, mk]
= applylxb, (E),
extend[global-env, (E), (id)],
k ,mk]

To look up an identifier in the reflected envi-
ronment reflect-env[rbl, we apply the Brown
environment function rb to the list of a symbol E
under the environment in which E is bound to the
identifier.

pass[v, &reflect-cont[kb], mk]
= applyl[kb, (E),
extend[global-env,(E), (v)],
meta-car[mk], meta-cdr[mk]]

To start the continuation &reflect-cont[kb]
with a value v, we apply the Brown continuation
function kb to the list of a symbol E under the
environment in which E is bound to the value. At
the same time, the reflective tower is “shifted up”,
so the result of the application is passed to the
lowest element of the metacontinuation.

3.3 Reflective tower

Let &R-E-P[n] be the initial continuation (a read-
eval-print loop) for the interpreter at level n. Thus
each interpreter begins with a continuation which
is a read-eval-print loop:?

8R-E-P : Exp -> K

2Note, however, that this is not part of the formal speci-
fication, because it contains the side effects on 1/O and our
specification prohibits side effects.

print&promptéread : Exp V -> Exp

pass[v, &R-E-P[prompt], mk]

= denote[print&prompt&read[prompt, vl,
global-env, %R-E-P[prompt], mk]

print&prompt&read[prompt, v]
= begin
writeln[v];
write[prompt]; readf]
end

Then the infinite layer of the reflective tower is
defined by the following equation augmented by
two equations for meta-car and meta-cdr:

-> MK
: N -> MK

tower :
tower—above

tower = tower—abovel[0]

meta-car[tower-above[n]] = &R-E-P[n]

meta-cdr[tower-above[n]]
= tower-above[n + 1]

You can start the system by calling
boot-tower:
boot-tower : -> A

boot-tower[]
= pass[STARTING-UP,
meta-car[tower], meta-cdr[tower]]

where STARTING-UP can be an arbitrary value used
as a dummy.

4 Conclusion

Brown was originally specified and implemented in
the lambda calculus by Wand and Friedman [12].
In this paper, we have presented an abstract form
of the specification in equational logic. Appar-
ently, the implementation by Wand and Friedman
is one of (and the earliest of) the possible models
that satisfy our abstract specification. Our speci-
fication is first-order, consisting of a set of simple



equations that are rigorous and easier to under-
stand. Also, it is executable by term rewriting
in an intuitively clear way. Therefore, we believe
that it will help make the reflective language eas-
ier to be understood, implemented, extended and
reasoned about.
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