0TSy B - R -
991 11 22)

OB %7V —hFD
Martin-Lof O#GEATR BT 2 HR
Interpreting OBJ subsorting
in Martin-L&f’s subset theory with a universe

KT £ 8
Kinoshita Yoshiki
BIHNBERTFRT

Electrotechnical Laboratory

Nov. 22, 1991

Abstract

OBJ NEERBHNO—2THBY 7V — b &, L=/8— 2L FD Martin-Lof OHTRE
W ITT K& o TEWKRITT 2, ZO®, OBJ DWHBET, ¥ 7V — POV TD
Bt /‘k%ﬁi LCwaEEOBIS 2% L. OBJ-S DHigMETA% ITT{ NFHICB
TEQYEHRT 5. COBRICLATEEOED ITTM KB 2HAENB & zr%.‘sa;amuzz
. b EDHBMHIADERMBRERXBL TV 5,

We intereprete subsorting, one of the important features of OBJ, in Martin-Lof’s
subset theory ITTi"b with & universe. To that end, we set up a sublanguage OBJ-S
of OBJ, which inherits the subsorting mechanism of OBJ, and whose intuitive meaning
should be understood by the intuitive meaning of OBJ. Then, we define a mapping which
takes an abstract syntax tree of OBJ-S to a term in Martin-L&f’s subset theory with a
universe, whose operational and logical meaning reflects the intuitive meaning of OBJ-S.

—163—

5—-18

Id is a set of identifiers.
Obj ::= obj Id is Body endo |
obj Id [Id :: FE] is Body endo |
Theory ::= th Id is Body endth |
thld [Id :: E] is Body endth |
View ::=view Id from E to E is Vbody endv
Body ::= EmptyBody |
using £ . Body |
sort Id . Body |
subsort Id < Id . Body |
op Id : SortList ~> Sort . Body |
var Id : Sort . Body |
eq Term = Term . Body
E:=Id | Id [View]
Sortx=Id | Id . E
SortList ::=EmptySortList | Sort SortList
Term ==Id | Id (TermSeq) | Term . E
TermSeq ::=Term | Term , TermSeq
VBody ::=EmptyVBody | ‘
VBody . sort Id to Sort |
VBody . op Id to Term |

Table 1: Abstract syntax of OBJ-S

1 Introduction

In [2], we showed that the intuitive meaning of parameterized modules in OBJ can be given in
Martin-Lof’s polymorphic set theory with a universe[l]. Here we further show that the sub-
sorting mechanism can naturally be interpreted in Martin-Léf’s subset theory with a universe,
which is also explained in (1], whose notation we will closely follow hereafter, thus avoiding
duplicating the explanation of the Martin-&f’s theory. . ‘

In the next section, we define the abstract syntax of OBJ-S, which only extends the abstract
syntax of OBJ-P in [2] by adding subsort declaration. In section 4, we define the mapping
taking the OBJ-S abstract syntax tree to terms in Martin-Lof’s subset theory with a universe.
Semantics given here to OBJ-S is a type theoretical semantics which is explained briefly in [2].

2 Abstract syntax of OBJ-S

The abstract syntax of OBJ-S is defined in Table 1. It is exactly the same as the abstract
syntax of OBJ-P except that OBJ-S has subsort declaration.

We use italic identifiers beginning with upper case letter for names of phylums (syntactic
classes). For variables ranging over abstract syntax trees of a phylum, we use identifiers made
by converting all letters of the name of the phylum to lower case. Thus, we use e, id, theory
for variables ranging over AST’s of phylums E, Id, Theory, respectively.

—164—

3 Subsort and subset

A set A in ITT4* is interpreted as an informal pair (A’, A”), where A’ is a set in ITT; and A”
is a predicate in ITT; over A’. Then the fact in ITT{"A that A is a subset of B is expressed
by two judgements in ITT;: A’ = B’ and (Ilz € A") A"(z) D B"(z). A’ is called the base set
of A and A” is called the characterization predicate of A.

One of the problem in using ITT$* to interprete subsorting of OBJ S is that A’ cannot be
determined at the time of eva.lua.tmg Obj syntax tree; even if A is not a subsort of any other
sort at the time of evaluation, it might become a subsort of a sort which will be declared in
the future. For example, consider the following Obj X:
obj X is

sort A .

op e: => A .
endo
When this Obj is evaluated, A is a subsort of no other sorts. -Now, assume the following Obj
XLIST is evaluated afterwards:

obj XLIST is

using X .

sort List . sort NeList .

subsort A < NeList . subsort NelList < List .

op nil: -> List .

op append: List List -> List .

var x: List . var y: List . var z: List .

eq append (append(x, y), z) = append(x, append(y, z))

eq append(nil, x) = x .

eq append(x, nil) =
endo
Then, the sort A.X suddenly becomes a subsort of List .XLIST. At the first glance, this may
seem to indicate that [A.X]' cannot be defined at the time of evaluating X. But we can define
[AX] at that time. Our solution is to add the judgement

[ax] = [List.XLIST]
as well as the implication
‘ (ITz € [AX])[AX]"(x) D [List.XLIST]"(x)

in the base set theory ITT; at the time of evaluating X LIST. According to this method,
the set of values (normal forms) of sort A.X is the singleton { e} just after evaluating X, but
evaluating Y changes it to

{'e,nil, append(e,e), append(e, e, e),...}

In our interpretation of OBJ-S in ITT3*, the equality between the base set is expressed
as an equality set Eq(U,[A.X], [List. XLIST]]) in ITTy. It is possible because all sorts have
their coding in U. Specifically, an OBJ-S phrase

subsortX <Y

has the term
Eq(U,[X], [Y]N&(Mz € [X])[X]"(z) D [Y]()
in ITT; as its the denotation.

—165—

4 Semantic functions

A semantic function, which takes an AST to a set or an element of a set in IT'T, is provided
for each phylum. As indicated in [2], definitions of semantic functions are given relative to a
collection R of constants and axioms. In the following, we will explain Table 2, which gives
the definitions in detail. ‘

Notations First, we fix some notations. We use ((}) to delimit meta level function applica-
tions. [] is an empty context. Bold face is used for mata level functions between expressions
of ITT;. These functions (e.g., M and unpack) are auxiliary functions for use in the defini-
tion of semantic functions. AST’s are enveloped by [], as are in conventional denotational
semantics.

All terms in lefthand side of ' are terms in the subset theory ITT4* except for the case
of

B[subsort sort, < sort; . body]...% ...

in which case the term is in the base set theory ITT;. Since all judgements in ITT{* are
interpreted in ITTy, we can very well expand the judgements and terms of ITT$ in ITT;.
We did not do so just for readability of the definitions.

We assume that all elements of the set of identifiers Id can be introduced to ITT; as a
constant; i.e., constants and identifiers are taken from the same collection of symbols.

References

[1] Nordstrém, Bengt; Petersson, Kent; Smith, Jan M.: Programming in Martin-Lof’s Type
Theory, Oxford University Press, 1990.

[2] Kinoshita, Y.: OBJ3 ha.s predicative polymorphism, in Proceedings of the 8th Japan
Society for Software Science and Technology conference, 1991.

— 166 —

O[obj id is body endo] ¥ [id € M{(B [body][])]
Ofobj idy [idy :: e 1 is body endo] % [id, € (Iidy € £ [e]) M{(B [body][])]
T[th id is body endth] ¥ [id = M{(B[body][])]
T[th idy [id2 :: e] is body endth] & [idi = (Il id; € Ep [e]) M{B[body][1)]
V[view id from e, to e; is vbody endv] ¥ [id € VB[vbody][e: [e2]]
B[emptybody] p = [T]
Blusing e . body]p ¥ [(Tzy € A)) ...(Szq € Ay) Blbody[{(p¥[21 € Ay,... 70 € A])]
B[sort sort . body]]pdér [(Esort € U)B[body]{{p W [sort € UI))]
B[subsort sort; < sorty . body]]pd-—cif
[Eq(U,S [sort, [, S [sort,) &(ITz € S [sorty) S [sort, ["(z) D S [sort2]"(z)]
Blop id : sorty ... sort, -> sort . bodg,(]]pd:%f
[(Tid € sy X -+ X 3, = s) B body]{{p W [id € s, X -++ X 5, — 3])}]

where s; = S[sort;] for 1 <7< nand s =S8 [sort]
Blvar id : sort . body]]pq%ff(HidES[sort]]p)B[[body]]p] v
Bleg t, = t, . body]p % [Eq(A, t1, t;) x B[body] p],

where t; € A[p] follows R

. 17 def id] if id = A follows R,
rlid] € { [[A]] if id € A follows R.
Erlid [view 1] ¥ [Blid, :=C])

where 7 [id] = [(I1id; € A) B] and V[view] = [id; € C].
Eo[id] ¥ [id]
Eolid [view 1] % [apply(id; V [view])]
S[id] % set(id)
Slid . e] ¥ Set({(€o[e]) Lid)
Alid] € id
Alid Ctr s ooy ta)] Eapply(id, (Al],..., ALt 1))
Alterm . €] & A'[e; term |
A'le; id] ¥ (&5 [e]) Lid
Ale id (b, ..o,)] d-ﬁ-fapply(((f,'o[[e]))),Lid, (Ale te],..., A [e; 1))
Ale term .] ¥ Ae, term])
VB[emptyvbody] [e1][e2] % €0 [e1]
VB[vbody . sort id to sort] & (VB[vbody][ei[[e2 1)} ![id := S [sort . e]
VB[vbody . op id to term] & (VB[vbody[ei I e 1) [id := A term . e]]

Table 2: Semantic functions

BOLETRIRT

—167—

